AUTHOR=Velmovitsky Pedro Elkind , Lotto Matheus , Alencar Paulo , Leatherdale Scott T. , Cowan Donald , Morita Plinio Pelegrini TITLE=Can heart rate variability data from the Apple Watch electrocardiogram quantify stress? JOURNAL=Frontiers in Public Health VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2023.1178491 DOI=10.3389/fpubh.2023.1178491 ISSN=2296-2565 ABSTRACT=
Chronic stress has become an epidemic with negative health risks including cardiovascular disease, hypertension, and diabetes. Traditional methods of stress measurement and monitoring typically relies on self-reporting. However, wearable smart technologies offer a novel strategy to continuously and non-invasively collect objective health data in the real-world. A novel electrocardiogram (ECG) feature has recently been introduced to the Apple Watch device. Interestingly, ECG data can be used to derive Heart Rate Variability (HRV) features commonly used in the identification of stress, suggesting that the Apple Watch ECG app could potentially be utilized as a simple, cost-effective, and minimally invasive tool to monitor individual stress levels. Here we collected ECG data using the Apple Watch from 36 health participants during their daily routines. Heart rate variability (HRV) features from the ECG were extracted and analyzed against self-reported stress questionnaires based on the DASS-21 questionnaire and a single-item LIKERT-type scale. Repeated measures ANOVA tests did not find any statistical significance. Spearman correlation found very weak correlations (