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Chronic stress has become an epidemic with negative health risks including 
cardiovascular disease, hypertension, and diabetes. Traditional methods of stress 
measurement and monitoring typically relies on self-reporting. However, wearable 
smart technologies offer a novel strategy to continuously and non-invasively 
collect objective health data in the real-world. A novel electrocardiogram (ECG) 
feature has recently been introduced to the Apple Watch device. Interestingly, 
ECG data can be used to derive Heart Rate Variability (HRV) features commonly 
used in the identification of stress, suggesting that the Apple Watch ECG app 
could potentially be utilized as a simple, cost-effective, and minimally invasive 
tool to monitor individual stress levels. Here we  collected ECG data using the 
Apple Watch from 36 health participants during their daily routines. Heart rate 
variability (HRV) features from the ECG were extracted and analyzed against 
self-reported stress questionnaires based on the DASS-21 questionnaire and 
a single-item LIKERT-type scale. Repeated measures ANOVA tests did not find 
any statistical significance. Spearman correlation found very weak correlations 
(p < 0.05) between several HRV features and each questionnaire. The results 
indicate that the Apple Watch ECG cannot be  used for quantifying stress with 
traditional statistical methods, although future directions of research (e.g., use 
of additional parameters and Machine Learning) could potentially improve stress 
quantification with the device.
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1. Introduction

According to the WHO, stress is the “Health Epidemic of the 21st Century” (1). Over a 
quarter of U.S. adults report such high levels of daily stress that they are not able to function 
properly (2). Stress, as a survival mechanism, is normal and healthy: stress allows the body to 
generate more energy to deal with a potential threat. The stress response is modulated by the 
sympathetic nervous system (SNS) and parasympathetic nervous system (PNS). The SNS is 
responsible for triggering a response to unexpected threats to generate energy and resources for 
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the body – the fight-or-flight response – by signalling adrenal glands 
to release adrenalin and cortisol, which lead to several physiological 
changes including increased heart rate, blood pressure, and respiration 
(3, 4). Once the acute stressors are removed, the PNS functions to 
relax the body, returning it to its normal state (3, 4).

Despite the necessity of a stress response to survival, chronic 
exposure to stressors can lead to severe health consequences including 
cardiovascular diseases, hypertension, obesity, and diabetes (3, 5, 6). 
Chronic stress is an increasingly observed condition worldwide. High 
levels of daily stress are reported by 38% of United States adults aged 
40–49 years and 33% of adults aged 50–59 years (7). In Canada, daily 
stress was highest amongst individuals between 35–49 years (27.8%) 
followed by individuals aged 50–64 years (22%) and 18–34 years 
(21.9%) (8). Individuals over 65 years reported the lowest levels of 
stress (8). Chronic stress is estimated to cost over USD 300 billion 
annually in associated healthcare expenses, reduced job performance, 
and absenteeism (1, 9). Workplace stress is connected with 120,000 
premature deaths annually (10). The COVID-19 pandemic has 
amplified this crisis: a recent survey by the American Psychological 
Association discovered that approximately 80% of respondents 
identify the pandemic as a major source of stress in their life and 
almost 70% reported increased levels of stress owing to 
COVID-19 (11).

The identification of stress and the application of interventions 
should be a public health priority. Research data on stress is typically 
collected through self-reporting surveys, which may have limitations 
such as low response rates, recall and social bias, cost and delays (12). 
Smart technologies, such as mobile and wearable devices, have 
recently been identified as useful tools to measure health parameters. 
Several of these technologies have embedded sensors that collect 
objective health data such as sleep, blood pressure, and heart rate (13, 
14). In particular, an electrocardiogram (ECG) feature for detecting 
atrial fibrillation has been introduced to the Apple Watch device (13–
15). Unlike the standard 12-lead ECGs, which use electrodes 
connected to the body, the Apple Watch ECG collects a 30-s 1-lead 
ECG when users place their finger on an electrode located in the 
digital crown of the device (16). Interestingly, ECG data can be used 
to derive Heart Rate Variability (HRV) features which are commonly 
used in the identification of stress (17). This suggests that the Apple 
Watch ECG app could potentially identify and monitor individual 
stress. Apple Watch applications could use this information to provide 
instant user feedback and interventions, such as suggesting the use of 
meditation apps (18). Furthermore, the use of a wearable data 
collection device would improve stress research data by eliminating 
recall biases and increasing population sample sizes. However, 
compared to longer measurements, there is not a large amount of 
evidence suggesting that ultra-short HRV measurements are 
reliable (19).

The goal of this paper was to explore the associations between 
HRV data collected from the Apple Watch ECG app with perceived 
stress levels in a real-life study. To the best of our knowledge, this is 
the first paper that provides statistical analyses of data derived from 
the Apple Watch ECG for stress detection, studying the reliability of 
these short-term measurements, and it is a continuation of previous 
work that uses a set of the same data, from 40 participants, to create 
Machine Learning (ML) stress prediction models (12). ECG data from 
the Apple Watch ECG app was collected from 36 participants in a 
real-world setting over 2 weeks. We were able to identify significant, 

albeit weak, correlations between several HRV features and self-
reported stress states, as well as significant differences between groups. 
Results from this study support the continued development of 
wearable ECG sensors as tools to measure stress.

The paper is organized as follows: section 2 described related 
work, including previous studies that used different sets of the same 
data for creating Machine Learning models; section 3 describes the 
methods, while section 4 presents the results and section 5 discusses 
our findings. Finally, section 6 presents the conclusions.

2. Related work

This paper is an extension of previous work performed by the 
authors that uses data from 40 participants, to derive HRV features 
from the Apple Watch ECG data and use that data to create machine 
learning (ML) models for stress prediction – specifically using 
Random Forest and Support Vector Machines (12). The models, 
trained on subsets of the data according to age, gender, income, 
profession, and health status, found a weighted f1-score lying 
approximately between 55–65%, which is in line with the state-of-
the-art for stress prediction using ML, although towards the low end. 
The models possessed high specificity – i.e., in general they were 
capable of successfully predicting when an individual is not stressed 
– but were less successful when predicting the stressed state. Notably, 
feature importance of the Random Forest models was calculated to 
determine, for each model, what features were most important in 
determining the prediction results. Although they vary per model, in 
general the heart’s acceleration (AC) and deceleration (DC) capacity 
were some of the most important features, present in most of the 
models. Another noteworthy feature is the standard deviation of 
interbeat intervals (SDNN). A more detailed explanation of HRV 
features and the feature extraction process is provided in the 
methods section.

Data from the same study, this time from 27 participants, was 
used by Benchekroun et al. (20), although in this case the HRV data 
was derived from the Empatica E4 device rather than from the Apple 
Watch ECG. The Empatica E4 device collects data continually as 
opposed to cross-sectionally, providing larger datasets. Random 
Forests trained on this data in an area under the receiver operating 
characteristic (ROC) curve (ROC AUC) of 0.79 and a macro f1-score 
of 75%. Further, a cross dataset analysis was performed in which 
models were trained on a laboratory dataset and tested on the 
Empatica E4 data, achieving a ROC AUC of 65% and a f1-macro 
score of 62%.

MCcraty et  al. (21) performed repeated measures ANOVA 
analysis on HRV metrics of 24 patients with panic disorder and 
healthy control, finding differences in features such as the SDNN 
index, Total Power of VLF, Normalized LF/HF ratio, among others. 
Hong et al. (22) conducted repeated ANOVA analyses for participants, 
finding changes in HF and RMSDD.

Seipäjärvi et al. (23) studies stress and HRV in a laboratory setting 
among participants in different age groups and health status, finding 
that with the application of stressors differences in HRV could 
be observed. Föhr et al. (24) investigated the association between 
physical activity, HRV and subjective stress measured with the 
perceived stress scale (PSS), finding significant changes between 
physical activity and HRV with stress. However, using ecological 
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momentary assessments, Martinez et al. (25) found a significant but 
small relationship between HRV and stress, where only a small 
amount of variance was explained by models. The author’s concluded 
that HRV might be a good proxy for stress in controlled settings with 
specific stressors applied, but not in real-life. Silva et al. (26) conducted 
Spearman correlation analysis between the perceived stress scale 
(PSS-14) and 5-min HRV variables at rest, and found weak to 
moderate correlation for the low frequency (LF) band. A similar 
Spearman correlation analysis was done in this study between HRV 
features and stress.

The Task Force of the European Society of Cardiology and the 
North American Society of Pacing and Electrophysiology provide 
widely used guidelines for the analyses of HRV data and were of 
great help in guiding this research (27). The authors in Acharya 
et  al. provided an extensive review of HRV metrics (17), while 
several papers explored the feasibility and characteristics of 
analyzing HRV data. For example, Benchekroun et  al. (28) 
discussed the impact of missing data on several HRV-related 
metrics and the best interpolation techniques to handle 
this situation.

It is important to note that there is limited research on the 
reliability of ultra-short-term HRV measurements (less than 5 min) 
when compared to long-term methods. Baek et al. studies ultra-short-
term measurements to define recommended minimum intervals for 
each of these metrics to be valid (19). In general, each metric has a 
different recommended interval, varying from seconds to minutes. 
Shaffer et al. (29) conducted a review of ultra-short-term heart rate 
variability norms, finding that most studies did not use criterion 
validity to study if the procedures produce comparable results with 
validates measurement procedures, applying other metrics (e.g., 
Pearson correlation) which may be insufficient to provide evidence of 
comparable methods. Studies that did use more appropriate metrics 
[such as Baek et al. (19) mentioned previously] typically found that 
different metrics will depend on different intervals. Munoz et al. (30), 
for example, found that a minimum of 10s was required for RMSSD 
and 30s for SDNN. The authors also found that ultra-short-term 
measurements are extremely sensitive to artifacts. For example, a 
single false heartbeat can alter the HRV metrics, and so special care 
must be taken when analyzing the data. In short, while ultra-short-
term recordings such as the ones used in this study have potential due 
to its increased accessibility and ease-of-use, there is a lack of robust 
evidence base to assert that these recordings can be used as proxies for 
longer recordings. In this study, as will be  described, the Kubios 
Premium Sofware was used to process the data to mitigate issues with 
noise or artificats.

In addition, while Apple Watch ECG data was shown to 
be successful in detecting atrial fibrillation (31) there is also a lack of 
a robust evidence base on how the HRV data derived from the Apple 
Watch ECG compares to gold standards. A study by Saghir et al. (32) 
found good results, showing that the agreement between the Apple 
Watch ECG and a standard 12-lead ECGs to be moderate to strong in 
health adults. In other words, there is promising but limited evidence 
both on ultra-short-term recordings and on how Apple Watch ECG 
data compares to more traditional, longer-term measurement methods.

It should also be noted that, while on this work we are specifically 
focusing on HRV derived from ECG – HRV being an essential 
parameter in stress quantification – other metrics, such as 
electrodermal activity (EDA), can also be considered for analyses (33).

3. Methods

3.1. Participant recruitment

Healthy participants (n = 36) were recruited from the 
University of Waterloo as well as through Facebook Ads and Kijiji 
(a Canadian website that allows users to advertise products and 
services). Participants had to live close to the Kitchener-Waterloo 
region in Ontario for devices to be  delivered in person. 
Participants were offered CAD 100.00 for 2 weeks of data 
collection. This study was approved by the University Waterloo 
Research Ethics Board (REB [43612]). Data collection took place 
between December 2021 and December 2022. Table 1 shows the 
characteristics of the study participants. Participants were aged 
18 years or older. For the analyses described in this paper, 
we considered only healthy participants, i.e., who did not drink or 
smoke, did not have any chronic conditions or take 
prescription medications.

3.2. Data collection

This study followed the Ecological Momentary Assessment 
(EMA) methodology to obtain self-reports closer to the event to 
approximate real-life scenarios (34). Participants were given an iPhone 
7 with iOS 15.0 and an Apple Watch Series 6 with watch OS 8.3 for 
2 weeks. The Apple Watch contained the ECG app and a Mobile 
Health Platform (MHP) was installed on the iPhone. The MHP was 
used to collect health data, including ECG recordings, from the 
iPhone’s Apple Health app data repository (12–14, 20).

Users were instructed to perform an ECG measurement on the 
Apple Watch ECG app 6 times during the day in approximately three-
hour intervals followed by the stress questionnaire (below) on the 
iPhone. Figure 1 shows the study protocol (times are included for 
reference purposes; participants were asked to collect data as soon as 
they woke up).

The app installed in the iPhone, termed the Mobile Health Platform 
(MHP), can collect health data saved on the iPhone’s health data 
repository, the Apple Health app, including the ECG recordings. The 
MHP collected this data, which were then saved in our database using the 
JSON format (for each ECG reading there are 15,360 voltage 
measurements and associated timestamps in milliseconds, forming the 
30-s ECG). The MHP also contains a tab with the stress questionnaires to 
be completed, which will be described next. Figure 2 shows the interface 
of the MHP, including the additional variables collected in the study.

We noticed that several participants had difficulty managing the 
study protocol with their daily life responsibilities. Therefore, we asked 
participants to use the devices for additional days to compensate 
as applicable.

Of note, this study is part of a larger cross-sectional study that 
investigates the use of smart technologies for stress detection. As part 
of this larger study, in addition to the Apple Watch and iPhone, 
participants were also given additional devices capable of collecting 
other data, such as the Withings Blood Pressure Monitor and the 
Empatica E4. Since this is not the focus of the paper we  will not 
describe the use of these devices further, but more information on 
these expanded protocols is provided in Velmovitsky et al. (12–14) 
and Benchekroun et al. (20).
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3.3. Stress questionnaires

As there are a limited number of validated stress questionnaires 
for the EMA with a validation period relevant to this study, we used 
the stress subscale of the Depression, Anxiety, and Stress Scale (DASS-
21) for our stress questionnaire. While the DASS-21 is usually applied 
over a week, there is promising evidence of using DASS-21 with EMA 
(35). In addition, Wang et al. (36) used a single-item measure that, 

while lacking validation in the literature, was used successfully for 
stress prediction and is moderately correlated with robust stress 
questionnaires. The following questionnaire on a LIKERT-type scale 
was used for our study. Questions 1–7 are related to the DASS-21 and 
question 8 comprises the single-item measure used by Wang et al.

 1. I found it hard to wind down
 2. I felt that I was using a lot of nervous energy
 3. I found myself getting agitated
 4. I found it difficult to relax
 5. I tended to over-react to situations
 6. I was intolerant of anything that kept me from getting on with 

what I was doing
 7. I felt that I was rather touchy
 8. Right now, I am…

Questions 1–7 have the options: “Not at all,” “To some degree,” 
“To a considerable degree,” and “Very much,” while Question 8 has 
“Stressed Out,” “Definitely stressed,” “A little stressed,” “Feeling good,” 
and “Feeling great.” The questions were displayed to the user in a 
random order each time the questionnaire was filled in the MHP, and 
compose the perceived stress, i.e., the degree to which a stressfull 
situation affects an individual, is measured.

In addition to self-reporting stress throughout the day, participants 
were asked to self-report their stress levels at the beginning of the 
study with the single-item measure (results shown in Table 1).

3.4. Data pre-processing

To obtain the HRV features from the ECG readings, we made use of 
Kubios Premium 3.5.0, a widely used software that analyzes and extracts 
features from several heart-related signals (17, 37). The JSON ECG data 
was exported into a CSV format and each voltage measurement was 
sorted by timestamp. The CSV file was imported into Kubios.

Kubios automatic beat correction feature was used and any 
samples that contained more than 5% of corrected beats were 
removed. In addition, any ECG sample classified as Poor Recording 
or Inconclusive by the ECG app was also removed from the analysis 
(16). Frequency features were calculated using both the Fast Fourier 
Transform (FFT) and Autoregressive Spectral Analysis (AR). A list of 
the features generated by Kubios based on the 30-s ECG signal is 
presented in Table 2 (17, 37).

The scores of the DASS-21 questions summed together were 
multiplied by 2. If the score was bigger than 14, the sample was 
classified as “stress” according to DASS-21 guidelines (38). For the 
single-item measure, the sample was classified as “stress” if the score 
was bigger than 2, as that would represent the user being at least “a 
little stressed.” If the DASS-21 score or the single-item score were 
classified as “stress,” the measurement was classified as the 
“stress” state.

3.5. Statistical analysis

Statistical analyses were performed through the Statistical Package 
for Social Sciences (v. 28.0; SPSS, Chicago, IL, United States). Using 
baseline stress scores from the Single-Item measure at the beginning 

TABLE 1 Study population characteristics.

Participants 
(N = 36)

Frequency Percentage

Age

18–24 12 33

25–34 10 28

35–44 10 28

45–64 3 8

Above 65 1 3

Gender

Male 13 36

Female 23 64

SES

Low (0-$30,000) 16 44

Medium ($30,000– 

$100,000)

13 36

High (above $100,000) 4 12

Do not wish to disclose 3 8

Profession

Full-time 17 47

Part-time 3 8

Student 13 36

Self-employed/other 2 6

Retired 1 3

Ethnicity

Black or African American 3 8

Black and Southeast Asian 1 3

Chinese 4 11

Indian 1 3

Latin American 7 19

South Asian 11 31

White 9 25

Self-reported stress level, beginning of study

1. Great 0 0

2. Good 8 22

3. A little stressed 15 42

4. Definitely stressed 11 31

5. Stressed out 2 6
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of the study, repeated measures ANOVA analyses were conducted 
followed by Tukey’s Post-Hoc test in case of statistically significant 
features. In addition, Spearman’s non-parametric correlation test was 
applied to detect the correlation between each ECG variable with the 
quantitative DASS-21 and single Item questionnaire scores. For all 
analyses, p < 0.05 was considered statistically significant. While 
correlations were performed for every feature, to limit the potential of 
biases ANOVA analyses were conducted with a subset of the features 
(Table 3) as seen in other works (21, 22). In addition, for the analyses, 

we considered 13 days of data for each participant (the minimum days 
of all participants in the study).

4. Results

To determine whether HRV data collected from an Apple Watch 
ECG was associated with perceived stress level, we  recruited 36 
healthy participants to participate in a real-life study. Using the Apple 
Watch ECG app and an iPhone app developed for this study, users 
were instructed to collect ECG readings and complete a stress 
questionnaire 6 times during the day in approximately three-hour 
intervals for 2 weeks, as well as fill an initial survey about perceived 
stress levels prior to data collection. Table 2 lists the HRV features 
captured by the Apple Watch ECG. Questionnaires comprised 8 
questions based on the DASS-21 (38) and the measure used by Wang 
et al. (36) as mentioned in the previous section.

Participants were predominantly female (64%; Table 1). 61% were 
employed and 36% were students. Participants were mostly South 
Asian, White, or Latin American (31, 25, and 19% respectively), and 
reported low to medium income (44 and 36%, respectively) the 
average of days a participant had in the study was 17.1 (±2.5), and an 
average of 59 (±16.0) ECG recordings. Participants were also asked to 
self-report their stress levels at the beginning of the study with the 
single-item measure (results shown in Table 1).

As described in the previous section, using the questionnaire 
score, measurements were designated as self-perceived “stress” if (a) 
the DASS-21 questions were classified as “stress” according to a 
DASS-21 greater than 14; or (b) the single-item measure was classified 
as “stress” if the score was greater than 2. Measurements that did not 
meet this cut-off were designated as “no stress.”

Repeated measures ANOVA test was performed to compare 
differences recorded by the Apple Watch ECG and self-perceived 
stress. No statistical significance was revealed (Table 3).

To determine which ECG variables correlated with stress, 
we  applied a Spearman’s non-parametric correlation analysis 
between HRV features and self-perceived stress, divided by each of 
the stress scores (DASS-21 and Single-Item measure). Spearman 
correlation coefficients (r) and p-values were calculated and shown 
in Table 4.

Regarding DASS-21, several features were shown to have a weak 
correlation including: SNS Index, Stress Index, SDNN, SD HR, Min 
HR, RMSSD, NN50, pNN50, RR Tri Index, TINN, DC, DC mod, AC, 
AC mod, FFT Absolute Power VLF, FFT Absolute Power LF, FFT 
Absolute Power HF, FFT Absolute Power VLF log, FFT Absolute 
Power LF log, FFT Absolute Power HF log, AR Absolute Power VLF, 
AR Absolute Power LF, AR Absolute Power HF, AR Absolute Power 

FIGURE 1

Study protocol.

FIGURE 2

MHP interface.
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VLF log, AR Absolute Power LF log, AR Absolute Power HF log, FFT 
Total Power, AR Total Power, SD1, SD2.

The Single-Item measure significant correlations were: Stress 
Index, SDNN, SD HR, TINN, DC, AC, FFT HF, FFT Absolute Power 
VLF, FFT Absolute Power LF, FFT Absolute Power VLF log, FFT 
Absolute Power LF log, AR Absolute Power LF, AR Absolute Power LF 
log, FFT Total Power, SD2, SD1/SD2.

5. Discussion

Overall, some HRV features captured by the Apple Watch weakly 
correlate to the stress questionnaires. Repeated measures ANOVA test 
and Tukey’s Post-Hoc test indicated that Apple Watch ECG features 
in the current study design cannot statistically differentiate between 
stress states in a real-world setting. Therefore, the answer of “can Heart 

TABLE 2 Kubios HRV features derived from Apple Watch ECG.

Name Description

ECG_Mean HR Mean of heart rate from ECG(ms)

ECG_ SD HR Standard deviation of instantaneous heart rate from ECG (1/min)

ECG_Min HR Minimum instantaneous heart rate calculated using 5 beat moving average from ECG(1/min)

ECG_Max HR Maximum instantaneous heart rate calculated using 5 beat moving average from ECG (1/min)

HRV-1 Heart rate variability collected as SDNN with the Apple Watch

ECG_PNS Index Parasympathetic nervous system activity compared to normal resting values

ECG_SNS Index Sympathetic nervous system activity compared to normal resting values

ECG_Stress Index Square root of Baevsky’s stress index

ECG_Mean RR Mean of R-R intervals (ms)

ECG_SDNN Standard deviation of R-R intervals (ms)

ECG_RMSSD Square root of the mean squared differences between successive RR intervals f(ms)

ECG_DC Heart rate deceleration capacity (ms)

ECG_DCMod Modified DC computer as a two-point difference (ms)

ECG_AC Heart rate acceleration capacity (ms)

ECG_ACMod Modified AC computer as a two-point difference (ms)

ECG_FFT LF Fast Fourier Transform Low Frequency band components (Hz)

ECG_FFT HF Fast Fourier Transform High Frequency band components (Hz)

ECG_AR LF Autoregressive Low Frequency band components (Hz)

ECG_AR HF Autoregressive High Frequency band components (Hz)

ECG_FFT Absolute Power LF Fast Fourier Transform Absolute Power of Low Frequency band components (ms2)

ECG_FFT Absolute Power HF Fast Fourier Transform Absolute Power of High Frequency band components (ms2)

ECG_AR Absolute Power LF Autoregressive Absolute Power of Low Frequency band components (ms2)

ECG_AR Absolute Power HF Autoregressive Absolute Power of High Frequency band components (ms2)

ECG_FFT Relative Power LF Fast Fourier Transform Relative Power of Low Frequency band components (%)

ECG_FFT Relative Power HF Fast Fourier Transform Relative Power of High Frequency band components (%)

ECG_AR Relative Power LF Autoregressive Relative Power of Low Frequency band components (%)

ECG_AR Relative Power HF Autoregressive Relative Power of High Frequency band components (%)

ECG_FFT Normalized Power LF Fast Fourier Transform Normalized Power of Low Frequency band components (n.u)

ECG_FFT Normalized Power HF Fast Fourier Transform Normalized Power of High Frequency band components (n.u)

ECG_FFT Total Power Fast Fourier Transform Total Power (ms2)

ECG_FFT LF/HF Fast Fourier Transform ratio between low and high frequency

ECG_AR Normalized Power LF Autoregressive Normalized Power of Low Frequency band components (n.u)

ECG_AR Normalized Power HF Autoregressive Normalized Power of High Frequency band components (n.u)

ECG_AR Total Power Autoregressive Total Power (ms2)

ECG_AR LF/HF Autoregressive ratio between low and high frequency

ECG_SD1 The standard deviation perpendicular to the line-of-identity in Poincaré plot (ms)

ECG_SD2 The standard deviation along the line-of-identity in Poincaré plot (ms)

ECG_SD2/SD1 Ratio between SD2 and SD1 (ms)
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Rate Variability data from the Apple Watch ECG Quantify Stress” with 
the use of the statistical methods investigated in this work seems 
to be no.

Regarding Spearman correlations, while several features in the 
domains (time domain, frequency domain, non-linear) were shown 
to have a significant correlation with the DASS-21 and single-item 
measure, all were weak. Nevertheless, interesting points can be made 
by comparing the differences between the two questionnaires.

In general, the significant correlations between HRV features and 
the single-item measure are a subset of the ones from DASS-21. One 
of the main differences in the correlations between the DASS-21 and 
the single-item measure is that the latter does not seem to 
be  significantly correlated to the absolute power high frequency 
components (FFT Absolute Power HF and AR Absolute Power HF). 
In this way, the use of both questionnaires for the study seem to 
complement each other in capturing differing dimensions of self-
perceived stress, although it should be noted that the weak correlations 
may limit the validity of these results.

Interestingly, Silva et  al. (26), also found weak to moderate 
correlations using the Spearman test while comparing HRV metrics 

with stress from the PSS-14 questionnaire but failed to find any 
significant correlations except for the LF band. Given that 
participants’ measurements were taken at rest and the PSS-14 stress 
scores were in the mid to low range, it is possible that physiological 
changes owing to stress affected the correlation values in our 
current work.

Indeed, several factors may have affected the quality of the data. 
First, being a “real-life” experiment, data may be subjected to noise 
and errors in measurements. For example, respondents may forget 
to take measurements throughout the day, take the measurements 
incorrectly, or be  influenced by the Hawthorne Effect in which 
respondents change their behaviour because they are being 
monitored. On the same token, elements such as sweat, or 
movement may affect the measurement. These factors may have 
influenced the results, leading to potentially inaccurate data. Future 
work should explore data collection of ECG in controlled 
conditions, potentially with an intervention (e.g., applying stressors 
in a lab) to evaluate the robustness of this data. This recommendation 
is also in line with Martinez et al. conclusions that HRV may be best 
represented in controlled environments with specific stressors (25). 

TABLE 3 Repeated measures ANOVA for HRV parameters with baseline self-perceived stress (p < 0.05).

Parameter Source Sum of squares Mean square F p-value

AC Days 1,293 108 0.656 0.794

Days × self-perceived stress 1,332 111 0.675 0.775

DC Days 2,119 177 0.733 0.719

Days × self-perceived stress 1,242 103 0.430 0.952

RMSSD Days 1,390 116 0.443 0.945

Days × self-perceived stress 2,293 191 0.731 0.721

SDNN Days 678 56.5 0.372 0.973

Days × self-perceived stress 667 55.6 0.366 0.975

Stress Index Days 150 12.5 0.856 0.592

Days × self-perceived stress 158 13.2 0.901 0.546

FFT Absolute Power LF Days 8.52e+6 710,175 0.672 0.779

Days × self-perceived stress 1.70e+7 1.41e+6 1.337 0.195

FFT Absolute Power HF Days 8.85e+6 737,302 0.600 0.843

Days × self-perceived stress 1.44e+7 1.20e+6 0.978 0.469

AR Absolute Power LF Days 3.24e+7 2.70e+6 0.787 0.664

Days × self-perceived stress 5.12e+7 4.27e+6 1.245 0.250

AR Absolute Power HF Days 1.08e+9 8.96e+7 0.956 0.491

Days × self-perceived stress 1.43e+9 1.19e+8 1.269 0.234

FFT Relative Power LF Days 1,591 132.6 0.895 0.552

Days × self-perceived stress 979 81.6 0.551 0.881

FFT Relative Power HF Days 2048 171 1.031 0.419

Days × self-perceived stress 1812 151 0.912 0.535

AR Relative Power LF Days 2,136 178 1.091 0.366

Days × self-perceived stress 1,431 119 0.731 0.721

AR Relative Power HF Days 2,258 188 1.056 0.396

Days × self-perceived stress 1829 152 0.856 0.593
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TABLE 4 Correlation coefficients (r) and p value for Spearman’s non-parametric correlation analysis.

Variables DASS-21 Single item

r p r p

ECG PSN Index 0.039 0.070 −0.010 0.653

ECG SNS Index −0.075 0.001* −0.026 0.227

ECG Stress Index −0.105 0.001* −0.046 0.036*

ECG Mean RR 0.033 0.131 0.014 0.528

ECG SDNN 0.109 0.001* 0.044 0.041*

ECG Mean HR −0.033 0.131 −0.014 0.528

ECG SD HR 0.102 0.001* 0.048 0.027*

ECG Min HR −0.050 0.021* −0.022 0.303

ECG Max HR −0.014 0.522 −0.013 0.554

ECG RMSSD 0.077 0.001* 0.001 0.957

ECG NN50 0.064 0.003* −0.003 0.892

ECG pNN50 0.069 0.001* −0.002 0.925

ECG RR Tri Index 0.091 0.001* 0.034 0.120

ECG TINN 0.110 0.001* 0.045 0.038*

ECG DC 0.099 0.001* 0.058 0.008*

ECG Dcmod 0.076 0.001* 0.008 0.721

ECG AC −0.105 0.001* −0.073 0.001*

ECG ACmod −0.075 0.001* −0.014 0.528

ECG FFT VLF −0.016 0.449 0.003 0.872

ECG FFT LF 0.042 0.051 0.014 0.528

ECG FFT HF −0.061 0.005 −0.072 0.001*

ECG AR VLF 0.019 0.383 0.027 0.208

ECG AR LF −0.003 0.875 −0.039 0.071

ECG AR HF −0.082 0.001* −0.084 0.001*

ECG FFT Absolute Power VLF 0.081 0.001* 0.051 0.020*

ECG FFT Absolute Power LF 0.102 0.001* 0.047 0.030*

ECG FFT Absolute Power HF 0.099 0.001* 0.033 0.127

ECG FFT Absolute Power VFL log 0.081 0.001* 0.051 0.020*

ECG FFT Absolute Power LF log 0.102 0.001* 0.047 0.030*

ECG FFT Absolute Power HF log 0.099 0.001* 0.033 0.127

ECG AR Absolute Power VLF 0.088 0.001* 0.032 0.134

ECG AR Absolute Power LF 0.099 0.001* 0.044 0.041*

ECG AR Absolute Power HF 0.085 0.001* 0.016 0.472

ECG AR Absolute Power VLF log 0.088 0.001* 0.032 0.134

ECG AR Absolute Power LF log 0.099 0.001* 0.044 0.041*

ECG AR Absolute Power HF log 0.085 0.001* 0.016 0.472

ECG FFT Relative Power VLF −0.028 0.191 −0.003 0.903

ECG FFT Relative Power LF −0.009 0.685 0.010 0.658

ECG FFT Relative Power HF 0.025 0.247 −0.006 0.782

ECG AR Relative Power VLF −0.019 0.371 −0.009 0.684

ECG AR Relative Power LF −0.009 0.676 0.032 0.135

ECG AR Relative Power HF 0.022 0.304 −0.020 0.350

ECG FFT Normalized Powers LF −0.023 0.297 0.007 0.763

(Continued)
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While this would diminish the validity of ECG data to be used in 
real-life scenarios to identify stress, it could provide further clues 
as to how the relationship between these variables work and new 
directions of research. Further, future work on this dataset can 
consider the distribution of the data per day and HRV diurnal 
fluctuations, which could provide more significant and 
illuminating results.

In addition, a convenience sample was used in this pilot study, 
and as can be seen by Table 2, there is a predominance of females 
and participants with low to medium SES which may affect the 
external validity of the results. Finally, since we used the EMA 
methodology, we decided to combine both the DASS-21 and the 
single-item measure for stress classification, which can potentially 
affect how individuals report stress and may lead to some of the 
contradictory findings in terms of group differences presented 
here. On that note, this study focused on perceived stress, i.e., the 
degree to which a situation perceived as stressful affects 
individuals. In this context, subjective ratings of stress may 
be affected by each participant’s internalized definition of stress, 
which in turn may influence responses (39). Nevertheless, the fact 
that several significant – albeit weak – correlations were found are 
encouraging and additional, more controlled, and stratified 
experiments should be  conducted to confirm and clarify these 
relationships between the HRV features from the Apple Watch 
ECG and self-perceived stress.

As described in the Related Work section, there is promising 
but limited evidence on the reliability of ultra-short-term 
measurements and the Apple Watch ECG when compared to 
traditional measurement methods and data. It is possible that 
inaccuracies in the Apple Watch ECG led to a lack of statistical 
differences between stress states in this study. In addition to 
controlled experiments, future research could also consider using 
different methods of ultra-short-term data collection to verify the 
results. Given that weak correlations were found, the use of 
additional parameters in addition to simply the Apple Watch ECG 
might also help with quantifying stress. Indeed, several physiological 
and behavioural variables have been widely used in stress research. 
This could include brain activity measured through 
electroencephalogram (EEG), electrodermal activity (EDA), speech, 

mobile phone usage, among others (5). Physical activity (24, 40, 41) 
and sleep (40, 42, 43) could also be potentially used to discriminate 
stress and can also be collected passively with the Apple Watch 
sensors – if ECG and other Apple Watch data were successfully used 
in conjunction to differentiate between stressed states, potential 
solutions could focus simply on the Apple Watch for stress 
quantification, which would be  of great value in studying the 
prevalence of these conditions and providing feedback to users. 
Finally, the use of Machine Learning for prediction, as previously 
mentioned, has shown promising results (12), and further studies 
also using other parameters could help improve prediction accuracy 
and realize the potential of the Apple Watch for stress studies.

6. Conclusion

The use of an Apple Watch ECG to quantify individual stress was 
piloted in a real-world scenario. Significant but weak correlations were 
found between several HRV features and measures of self-perceived 
stress. This study highlights the potential usefulness of the Apple 
Watch ECG as a minimally invasive tool for stress monitoring, 
quantification, and intervention, although more robust evidence is 
needed to establish the relationships between the data and 
its relevancy.
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Variables DASS-21 Single item

r p r p

ECG FFT Normalized Powers HF 0.023 0.291 −0.006 0.788

ECG FFT Total Powers 0.110 0.001* 0.053 0.014*

ECG FFT LFHF −0.023 0.292 0.006 0.773

ECG AR Normalized Powers LF −0.019 0.393 0.025 0.254

ECG AR Normalized Powers HF 0.019 0.379 −0.024 0.267

ECG AR Total Power 0.099 0.001* 0.034 0.118

ECG AR LFHF −0.019 0.385 0.024 0.262

ECG SD1 0.077 0.001* 0.001 0.953

ECG SD2 0.115 0.001* 0.057 0.008*

ECG SD1SD2 0.021 0.330 0.081 0.001*
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