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Background: On September 28, 2022, the first case of Omicron subvariant 
BF.7 was discovered among coronavirus disease 2019 (COVID-19) infections 
in Hohhot, China, and then the epidemic broke out on a large scale during the 
National Day holiday. It is imminently necessary to construct a mathematical 
model to investigate the transmission dynamics of COVID-19 in Hohhot.

Methods: In this study, we first investigated the epidemiological characteristics 
of COVID-19 cases in Hohhot, including the spatiotemporal distribution 
and sociodemographic distribution. Then, we  proposed a time-varying 
Susceptible-Quarantined Susceptible-Exposed-Quarantined Exposed-Infected-
Asymptomatic-Hospitalized-Removed (SQEIAHR) model to derive the epidemic 
curves. The next-generation matrix method was used to calculate the effective 
reproduction number (Re). Finally, we explored the effects of higher stringency 
measures on the development of the epidemic through scenario analysis.

Results: Of the 4,889 positive infected cases, the vast majority were asymptomatic 
and mild, mainly concentrated in central areas such as Xincheng District. People in 
the 30–59 age group primarily were affected by the current outbreak, accounting 
for 53.74%, but females and males were almost equally affected (1.03:1). 
Community screening (35.70%) and centralized isolation screening (26.28%) were 
the main ways to identify positive infected cases. Our model predicted the peak 
of the epidemic on October 6, 2022, the dynamic zero-COVID date on October 
15, 2022, a number of peak cases of 629, and a cumulative number of infections 
of 4,963 (95% confidential interval (95%CI): 4,692 ~ 5,267), all four of which were 
highly consistent with the actual situation in Hohhot. Early in the outbreak, the 
basic reproduction number (R0) was approximately 7.01 (95%CI: 6.93 ~ 7.09), and 
then Re declined sharply to below 1.0 on October 6, 2022. Scenario analysis 
of higher stringency measures showed the importance of decreasing the 
transmission rate and increasing the quarantine rate to shorten the time to peak, 
dynamic zero-COVID and an Re below 1.0, as well as to reduce the number of 
peak cases and final affected population.

Conclusion: Our model was effective in predicting the epidemic trends of 
COVID-19, and the implementation of a more stringent combination of measures 
was indispensable in containing the spread of the virus.
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Introduction

As the most widespread and severe public health crisis in the last 
100 years, coronavirus disease 2019 (COVID-19) has affected more 
than 200 countries to varying degrees (1, 2), with 600 million people 
infected and 6.5 million deaths to date. At present, Omicron has 
replaced Delta as the predominant strain worldwide, accounting for 
approximately 58.5% ~ 80.6% of cases (3). From March 1 to April 22, 
2022, more than half a million local Omicron cases were reported in 
almost all provinces across China (4). In the UK, the prevalence of the 
Omicron variant and its multiple subvariants has led to high infection 
rates across all age groups, particularly among young children (5). The 
monthly incidence rate of COVID-19 infections (new cases per 1,000 
persons per day) in the US increased substantially when Omicron 
became the dominant strain compared to Delta (3.8–5.2 vs. 0.5–0.7) 
(6). The sheer number of Omicron cases has strained health care 
systems worldwide.

Recent outbreaks of COVID-19  in mainland China were 
distributed in multiple locations, with wide coverage and frequent 
occurrences, involving many provinces, cities, counties and districts 
nationwide, so the epidemic prevention and control situation remains 
severe and complex. On September 28, 2022, one new indigenous 
confirmed case of COVID-19 was reported in Hohhot, Inner 
Mongolia Autonomous Region. This was the first time that the 
Omicron subvariant BF.7 had appeared in China. The variant, called 
BA.5.2.1.7 or BF.7 for short, is an offshoot of the Omicron subvariant 
BA.5, which has the characteristics of extremely strong transmissibility, 
pathogenicity and immune escape capacity. As of October 3, 2022, the 
cumulative number of COVID-19 cases reported in Hohhot has 
exceeded 500, suggesting that the anti-epidemic situation is not 
optimistic. A serious concern at present is that there is no clear 
description or consensus on the epidemiological characteristics and 
future course of the current outbreak. There is an urgent need to 
explore the epidemiological characteristics of COVID-19 in Hohhot 
and to develop a prediction model to estimate the incidence trend and 
determine the priorities of prevention and control measures to provide 
a scientific basis for an effective response to subsequent outbreaks.

Since the outbreak of COVID-19, scholars have carried out related 
research from various perspectives, including mathematical modeling, 
epidemiology, and spatial analysis. Infectious disease dynamic models 
are regarded as important tools to forecast the prevalence of COVID-
19, among which Susceptible-Infected-Removed (SIR) and 
Susceptible-Exposed-Infected-Removed (SEIR) compartmental 
models are particularly popular (7–9). Huarachi Olivera RE et al. 
applied the SIR model to characterize the epidemic evolution of 
COVID-19 and found that stringent measures can effectively prevent 
the spread of COVID-19 (10). Hao X et al. used the SAPHIRE model 
to reconstruct the full-spectrum dynamics of COVID-19 (11). Cai J 
et al. developed an age-structured stochastic compartmental SLIRL 
model to project the COVID-19 burden under mitigation scenarios 
(4). Shin HY conducted multi-stage estimations of the COVID-19 

transmission dynamics using SEIR(D) epidemic models, and the 
results showed that the SEIR(D) is useful and informative (12). Kuniya 
T estimated the basic reproduction number (R0) for the epidemic in 
Japan based on the SEIR compartmental model using a least-square-
based method with Poisson noise (13). A Bayesian approach has also 
been proposed to monitor the COVID-19 pandemic and to estimate 
the proportion of people who died or became infected with SARS-
CoV-2 (14). Some studies have investigated the epidemiology and 
spatial distribution of COVID-19, for example, examining the 
associations of self-reported COVID-19 infection and SARS-CoV-2 
serology test results with persistent physical symptoms and analyzing 
the spatiotemporal variations of cases and deaths of COVID-19 
(15, 16).

Although the above models have achieved rather good prediction 
results, the SEIR model and its parameters still need to be further 
modified in due course because the transmission characteristics of the 
mutant strains differ considerably from those of past strains, and the 
speed and intensity of implementation of prevention and control 
measures are inconsistent across regions. Our objectives were to (1) 
establish a dynamic model based on the current epidemiological 
situation in Hohhot, (2) predict the development trends of COVID-
19, including the peak, size, and reproduction number, and (3) 
evaluate the effectiveness and priority of different non-pharmaceutical 
interventions in halting the spread of COVID-19.

Methods

Data sources

Daily COVID-19 report data were obtained from the Inner 
Mongolia Autonomous Region Health and Health Commission,1 
including newly confirmed cases, newly asymptomatic infections and 
newly asymptomatic infections converted to confirmed cases. 
Epidemiological survey data of positive infected cases included age, 
sex, place of residence, disease severity (asymptomatic/mild/
moderate/severe/critical) and identification methods (community 
screening/centralized isolation screening/home quarantine screening/
mass screening/risk region screening/close contact screening/others).

Time-varying SQEIAHR model

In the study of dynamic models of infectious diseases, individuals 
are abstracted into several compartments: Susceptible (S), Exposed 
(E), Infected (I) and Removed (R), and transitions between individuals 
constitute different transmission models. The classical transmission 

1 http://wjw.nmg.gov.cn/.
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models include SI, SIR, SIS and SEIR, of which SIR and SEIR occupy 
a central place in epidemiology (17–19). Given the existence of a latent 
period for COVID-19 and the ability of patients to acquire some 
immunity after healing, a modified SEIR model was selected for 
analysis in this study.

Figure  1 provides a comprehensive description of the time-
varying Susceptible-Quarantined Susceptible-Exposed-Quarantined 
Exposed-Infected-Asymptomatic-Hospitalized-Removed (SQEIAHR) 
model established under the actual epidemic characteristics in 
Hohhot, such as the large number of asymptomatic infections and the 
changing transmission rate. The model has eight compartments  
(S, Q_s, E, Q_e, I, A, H, R) and 14 parameters 
(β θ λ σ δ µ γ γ γt q t k v h p I A H( ) ( ), , , , , , , , , , , , , ), of which β t( ) and q t( ) 
are related to intervention strategies. It is important to note that 
compartment I  did not include those who moved from an 
asymptomatic infection to a confirmed case during isolation.

In the SQEIAHR model, we  have the constraint 
N = S + Q_s + E + Q_e + I + A + H + R with the following set of 
differential equations:

 

dS
dt

t t q t S I E kA
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+ − +
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dR
dt

I A H vS hRI A H= + + + −γ γ γ .
 

(8)

The compartments and parameters in the above equations are 
described in Table 1.

In this study, β t( ) and q t( ) are piecewise functions that represent 
the time-varying transmission rate and time-varying quarantine rate, 
respectively. The function expression was split into two segments 
using October 3, 2022, as the turning point. Since October 3, 2022, 
Hohhot has upgraded its level of management and control, applied 
more rigorous measures and paid greater attention to the hardest-hit 
and high-risk areas. In Eq. (9), β0 represents the initial transmission 
rate, w stands for the exponential decline rate of the transmission rate 
after taking preventive and control measures, and t1 refers to October 
3, 2022. In Eq. (10), q0 and q1 represent the initial quarantine rate and 

FIGURE 1

The structure of the SQEIAHR model.
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the maximum quarantine rate after the implementation of preventive 
and control measures, respectively, r  stands for the exponential 
increase rate of the quarantine rate, and t1 refers to October 3, 2022.
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The transmission process of COVID-19 in the SQEIAHR model 
is as follows:

The model assumes that S enters E, Q_s, and Q_e with probabilities 
β t q t( ) − ( )( )1 , 1− ( )( ) ( )β t q t , and β t q t( ) ( ) after exposure to 
infectious sources such as E, I, and A. If S acquires specific immunity 
through vaccination, then it will enter R with probability v. If no 
abnormality is found at the end of the quarantine period 1 / λ , then 
Q_s will re-enter S. E enters A and I at rates pσ  and 1−( )p σ . I, A, and 
Q_e enter H for treatment at rates δ , δ , and .µ  The cured I, A, and H 
enter R at rates γ I , γ A, and γH . Regarding R, as the antibody level 
decreases, it re-enters S at rate h.

Estimation of model parameters

The Markov Chain Monte Carlo (MCMC) method has become 
very popular for Bayesian computation in complex statistical 
models. The basic idea is to first construct a Markov Chain whose 
desired distribution is close to its equilibrium distribution, and 
then generate samples of the posterior distribution through this 
Markov Chain, and finally perform Monte Carlo integration based 
on the valid samples when the Markov Chain reaches its 
equilibrium. To compensate for the low acceptance probability  
of MCMC sampling, we  used the Metropolis-Hastings  
(M-H) algorithm to sample the posterior distribution of 
β θ δ µ γ γ γ0 0 1, , , , , , , , , , ,w q q r k I A H (20, 21). We ran this algorithm 
for 60,000 iterations with a burn-in period of 55,000. The 
posterior means and 95% Bayesian credible intervals for 12 
parameters are displayed in Table 2, and the model compartments 
and remaining parameters were derived from actual epidemic or 
literature reports.

Time-varying reproduction number of 
disease-free equilibrium

The basic reproduction number (R0) is defined as the number 
of second-generation cases caused by an individual infected in a 
fully susceptible population without any intervention. It is a 
threshold indicator for measuring the transmission capacity of 
infectious diseases and determining the point of disease-free 
equilibrium. Notably, the effective reproduction number (Re) is 
more appropriate than R0 for assessing the effectiveness of 
vaccines or other non-pharmaceutical interventions. It can 
be used to track changes in the reproduction number, and whether 
the epidemic is controlled depends on whether Re is consistently 
less than 1.

The next-generation matrix method (24, 25) was applied to 
calculate Re:

 
R t q t p kp
e

I A
= ( ) − ( )( ) +

−
+

+
+









β

θ
σ δ γ δ γ

1 1

 
(11)

Statistical analysis

The calculations of the SQEIAHR compartmental model were 
performed using Python software (version 3.7.1, Python Software 

TABLE 1 Descriptions of the model compartments and parameters.

Category Description

Compartments

S susceptible individuals

Q_s quarantined susceptible individuals

E
exposed individuals with no symptoms who 

transmit the virus

Q_e quarantined exposed individuals

I
confirmed cases that show typical clinical 

symptoms

A

asymptomatic infections that do not show 

typical clinical symptoms or corresponding 

CT imaging manifestations

H
hospitalized individuals undergoing 

treatment

R
recovered individuals who are still at risk of 

becoming susceptible

Parameters

v
immunity threshold (vaccination rate × 

vaccine protection rate)

p
proportion of asymptomatic infections 

among infected cases

σ incubation rate

h reduction rate of the antibody level

λ quarantine release rate

β t( ) time-varying transmission rate

q t( ) time-varying quarantine rate

θ infectivity coefficient of exposed individuals

k
infectivity coefficient of asymptomatic 

infections

δ hospitalization rate of positive infected cases

µ
hospitalization rate of quarantined exposed 

individuals

γ I recovery rate of confirmed cases

γ A recovery rate of asymptomatic infections

γH recovery rate of hospitalized individuals
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Foundation, Python Language Reference). The figures were produced 
by GraphPad Prism software (version 9.0, La Jolla, CA, United States). 
The coefficient of determination (R2) was used to evaluate the 
goodness-of-fit of the model.

Results

Epidemiological characteristics of 
COVID-19

As of October 18, 2022, a total of 4,889 positive infected cases have 
been reported in Hohhot. Among them, 4,160 cases were 
asymptomatic, 727 were mild, 2 were moderate, and there were no 
severe or critical cases.

Spatiotemporal distribution

From September 28, 2022, the daily number of new infections 
showed a fluctuating growth trend, reaching the first peak 
(n = 653) on October 6, 2022, and then rapidly decreasing after 
arriving at the second peak (n = 645) on October 10, 2022 
(Figure  2). A spatial distribution map of cumulative infected 
cases in Hohhot is shown in Figure 3. Among the information 
officially released by the Hohhot government on the activity 
trajectories of the 1,941 indigenous positive infected cases,  
nearly half of the cases were found in Xincheng District, followed 
by Huimin, Yuquan, and some other nearby districts, while 
southern areas such as Tuoketuo, Helingeer and Wuchuan had 
extremely low infection rates, accounting for a total of  
0.72%.

Sociodemographic distribution

People with COVID-19 had broad age-specific variation, ranging 
from 3 days to 89 years of age. People in the 30–59 age group were the 
main victims of the current outbreak, accounting for 53.74% of the total 
cases. In terms of sex, females (n = 984) and males (n = 957) were almost 
equally affected, and the sex ratio was approximately 1.03:1 (Figure 4). In 
addition, community screening (35.70%) and centralized isolation 
screening (26.28%) were the main ways to detect cases, suggesting that 
the focus should be on the social transmission of the epidemic (Figure 5).

Transmission dynamics of COVID-19

Prediction of COVID-19 cases
During the epidemic, the four most important indicators were the 

time to reach the peak, the time to achieve dynamic zero-COVID, the 

TABLE 2 The values and sources of model compartments and parameters.

Compartments Value Source Parameters Value Source

S(0) 3,495,944 Actual epidemic v 0.699 Actual epidemic

Q_s(0) 0 Actual epidemic p 0.851 Actual epidemic

E(0) 54 Actual epidemic σ 1/4 Actual epidemic

Q_e(0) 0 Actual epidemic h 0.730 Literature reports (22)

I(0) 1 Actual epidemic λ 1/14 Literature reports (23)

A(0) 0 Actual epidemic β0 1.500 (1.496 ~ 1.503) MCMC

H(0) 1 Actual epidemic w 1.001 (0.998 ~ 1.004) MCMC

R(0) 0 Actual epidemic q0 0.085 (0.081 ~ 0.088) MCMC

q1 0.499 (0.496 ~ 0.503) MCMC

r 0.999 (0.996 ~ 1.003) MCMC

θ 1.000 (0.996 ~ 1.003) MCMC

k 1.000 (0.996 ~ 1.004) MCMC

δ 0.801 (0.798 ~ 0.804) MCMC

µ 0.799 (0.796 ~ 0.803) MCMC

γ I 0.101 (0.096 ~ 0.104) MCMC

γ A 0.100 (0.096 ~ 0.103) MCMC

γH 0.100 (0.096 ~ 0.103) MCMC

FIGURE 2

The daily number of new infections in Hohhot.
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number of peak cases, and the cumulative number of infections (26). 
We plotted the actual daily number of new infections up to October 
18, 2022, onto our forecasted curve and found that there was an 
overall good fit between our projected and reported data (R2 = 0.739, 
p < 0.001) (Figure 6A). The number of newly confirmed cases and 
newly asymptomatic infections was expected to reach an inflection 

point on October 6, 2022 (n = 629), with the sum of the two dropping 
below 100 cases on October 15, 2022, after which the epidemic 
gradually died out (Figures 6B,C). Our model predicted that the final 
affected population in Hohhot would reach 4,963 (95% confidential 
interval (95%CI): 4,692 ~ 5,267), including 740 (95%CI: 699 ~ 786) 
confirmed cases and 4,224 (95%CI: 3,993 ~ 4,481) asymptomatic 
infections (Table 3). The above projections demonstrated the reliability 
of our model in assessing COVID-19 trends (actual peak date: 
October 6, 2022; actual dynamic zero-COVID date: October 14, 2022; 
actual number of peak cases: 653; actual cumulative number of 
infections: 4,889).

Prediction of the effective reproduction number
The effective reproduction number can be  discussed in two 

stages. During the first stage, from September 28, 2022, to October 
3, 2022, the risk of virus transmission increased as population 
mobility increased during the National Day holiday, with an R0 of 
approximately 7.01 (95%CI: 6.93 ~ 7.09). The second stage occurred 
after October 4, 2022. Following the implementation of a series of 
measures, such as multiple rounds of nucleic acid testing and 
resident travel control, Re began to decline rapidly until it dropped 
below 1.0 on October 6, 2022, and has since maintained a steady 
trend (Figure 7).

FIGURE 3

The spatial distribution of COVID-19 cases in Hohhot.

FIGURE 4

The distribution of age and sex of positive infected cases in Hohhot.
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Scenario analysis of higher stringency 
measures

In this study, higher stringency measures were aimed at curbing 
the spread of the epidemic by decreasing the transmission rate and 
increasing the quarantine rate. The scenario design of higher 
stringency measures was divided into three parts: (1) increasing the 
exponential decline rate of the transmission rate (2.000 vs. 1.001), (2) 
increasing the maximum quarantine rate (0.700 vs. 0.499) and the 
exponential increase rate of the quarantine rate (2.000 vs. 0.999), and 
(3) increasing the exponential decline rate of the transmission rate 
(2.000 vs. 1.001), the maximum quarantine rate (0.700 vs. 0.499), and 
the exponential increase rate of the quarantine rate (2.000 vs. 0.999). 

Our results showed that scenario design 3 was the optimal strategy: 
the time to reach the peak, the time to achieve dynamic zero-COVID, 
and the time for the Re curve to fall to 1.0 would be brought forward 
to October 5, 2022, October 13, 2022, and October 5, 2022, 
respectively, while the number of peak cases and final affected 
population would be  greatly reduced by 14.31% and 19.83%, 
respectively (Figures 8A–C; Table 4).

Discussion

Overall, the peak of the epidemic in Hohhot has passed, and the 
number of new cases is steadily declining, indicating that the 

FIGURE 5

The distribution of identification methods of positive infected cases in Hohhot.

FIGURE 6

The predicted daily number of new COVID-19 cases in Hohhot; (A) Newly infected cases; (B) Newly confirmed cases. (C) Newly asymptomatic 
infections.

TABLE 3 The predicted cumulative number of COVID-19 cases in Hohhot in different time periods.

Time periods Cumulative infected cases Cumulative confirmed 
cases

Cumulative asymptomatic 
infections

9-28-2022 to 10-3-2022 613 (592 ~ 636) 92 (89 ~ 96) 521 (503 ~ 540)

9-28-2022 to 10-8-2022 3,361 (3,189 ~ 3,553) 501 (476 ~ 530) 2,859 (2,713 ~ 3,022)

9-28-2022 to 10-13-2022 4,605 (4,356 ~ 4,884) 686 (649 ~ 729) 3,919 (3,707 ~ 4,155)

9-28-2022 to 10-18-2022 4,963 (4,692 ~ 5,267) 740 (699 ~ 786) 4,224 (3,993 ~ 4,481)
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epidemic has been effectively controlled. The time-varying 
SQEIAHR compartmental model we  proposed in this study 
captured some important qualitative features and hence could 
provide guidance in policy-making. To the best of our knowledge, 
this is the most comprehensive report investigating the latest 

epidemiological characteristics and development trends of 
COVID-19 in Hohhot.

According to epidemiological investigations, the majority of 
cases in the current outbreak were asymptomatic and mild, which 
may be related to the fact that COVID-19 vaccination reduces the 
threat of serious illness and death (27). People aged 30–59 years were 
at particular risk of COVID-19, contrary to the finding that older 
people were the main vulnerable group (28). We conjectured that 
this might be because the middle-aged population has a wider range 
of activities and is more likely to be  exposed to the virus, for 
example, engaging in group work or recreation. The key to stopping 
the spread of the virus is to identify all infections quickly. In Hohhot, 
those who had positive nucleic acid test results were mainly derived 
from community screening, indicating that the efficiency and scope 
of nucleic acid testing should be further improved (29). Wu Zunyou, 
chief epidemiologist at the Chinese Center for Disease Control and 
Prevention, recommended that “each round of mass screening 
should be completed within one to three days and be guaranteed to 
cover all target groups.” Additionally, areas with a large number of 
cases were primarily concentrated in the central part of Hohhot, and 
therefore, more medical resources should be prepared in advance 
and allocated to Xincheng and surrounding districts as soon 
as possible.

FIGURE 8

Trends in the epidemic under different measure scenarios. (A) Newly infected cases. (B) Re. (C) final affected population.

TABLE 4 Values of epidemic indicators under different measure scenarios.

Category
Parameter 

(value)
Time to 

peak

Time to 
dynamic zero-

COVID

Time to Re 
below 1.0

Peak cases
Final affected 

population

Baseline

w (1.001)

10-6-2022 10-15-2022 10-6-2022 629 4,963q1 (0.499)

r (0.999)

Scenario design 1

w (2.000)

10-5-2022 10-14-2022 10-5-2022 561 4,181q1 (0.499)

r (0.999)

Scenario design 2

w (1.001)

10-5-2022 10-14-2022 10-6-2022 575 4,434q1 (0.700)

r (2.000)

Scenario design 3

w (2.000)

10-5-2022 10-13-2022 10-5-2022 539 3,979q1 (0.700)

r (2.000)

FIGURE 7

Change trend of Re in Hohhot.
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Dynamic model is an important method for the theoretical and 
quantitative study of infectious diseases. It can be used to describe the 
pattern of disease transmission, predict disease status and assess the 
effectiveness of prevention and control measures (30–32). The time-
varying SQEIAHR model we constructed is methodologically robust 
and built on the classical SEIR model previously applied to forecast 
the development trends of infectious diseases. In earlier studies, 
scholars did not consider the impact of asymptomatic infections, 
immune threshold, and antibody titer reduction on the spread of the 
epidemic in their modeling due to an inadequate understanding of the 
transmission mechanisms and clinical characteristics of COVID-19 
(33, 34). Our SQEIAHR model was inspired by the key factors 
mentioned above and accommodated the influence of the time-
varying transmission rate, time-varying quarantine rate and 
reinfection, so the prediction results were highly robust.

The four key indicators predicted by our model were (1) the 
epidemic peak on October 6, 2022, (2) dynamic zero-COVID on 
October 15, 2022, (3) the number of peak cases of 629, and (4) the 
cumulative number of infections of 4,963, all of which were in fairly 
good agreement with the actual situation in Hohhot. Compared to the 
outbreak also caused by Omicron BF.7, the number of infections in 
Beijing far exceeded that in Hohhot (35). The reason for this is that at 
the time of the outbreak in Hohhot, China was still employing the 
“dynamic zero-COVID policy,” whereas the outbreak in Beijing 
occurred during the transition stage from the announcement of 20 
measures to the gradual liberalization of the epidemic, so the 
intervention intensity was much more lenient than before, leading to 
a surge in infections. The effective reproduction number is a critical 
threshold parameter in epidemiology that can be used to measure the 
real-time transmissibility of an outbreak (36). Initially, R0 was a 
constant greater than 7. After the implementation of a series of control 
measures, Re showed a rapid downward trend, and it took only nine 
days from the discovery of the first case to achieve an Re below 1.0. 
After the outbreak of COVID-19 in Shanghai on March 1, 2022, Re did 
not drop below 1.0 until day 45 (37). This reflects the remarkable 
achievement of epidemic prevention and control efforts in Hohhot.

Non-pharmaceutical interventions such as decreasing the 
transmission rate and increasing the quarantine rate have been 
recommended in the battle against COVID-19. We  conducted a 
quantitative comparison of different intervention strategies and found 
significant effects of a combination of both in shortening the time to 
peak, the time to dynamic zero-COVID and the time to an Re below 
1.0, while substantially reducing the number of peak cases and 
accumulated cases. These results emphasized the importance of 
decreasing the transmission rate by travel restrictions and the necessity 
of increasing the quarantine rate by close-contact tracing. Liu W et al. 
also recommended that isolation measures be  implemented in 
communities and outbreak sites in a timely manner to ensure social 
distancing between people, thereby reducing the level of human 
contact (38). It is worth noting that the values of β t( ) and q t( ) in the 
scenario design only increased by a very small amount, and we have 
reason to believe that with the further strengthening of prevention and 
control measures, even better results will be achieved.

Limitations

Admittedly, this study has some limitations. First, our model did 
not take into account the difference between the rate of reinfection 

among recovered individuals and the rate of infection in the general 
population. Second, in addition to decreasing the transmission rate 
and increasing the quarantine rate, other interventions, such as 
promoting a social consensus on self-protection and expanding 
environmental decontamination, may also have a potential impact on 
the development of the epidemic. In reality, the end of the outbreak 
may come earlier than we predicted. In future work, efforts must 
be made to optimize the SQEIAHR model by introducing additional 
parameters that can reflect different infection rates and 
non-pharmaceutical interventions. Work is also needed to test the 
model in various geographical and demographic contexts.

Conclusion

In this paper, we  developed a time-varying SQEIAHR 
compartmental model to investigate the transmission dynamics of 
COVID-19. Our projections suggested that this model was well suited 
to capture key epidemic indicators, including the time to reach the 
peak, the time to achieve dynamic zero-COVID, the number of peak 
cases, and the cumulative number of infections. Moreover, decreasing 
the transmission rate by travel restrictions and increasing the 
quarantine rate by close-contact tracing could achieve remarkable 
results in curbing the spread of COVID-19. These findings can not 
only help health departments prepare in advance for a possible 
outbreak of COVID-19 but also provide an important reference for 
optimizing non-pharmaceutical intervention programs.
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