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Background: Frailty is a dynamic and complex geriatric condition characterized 
by multi-domain declines in physiological, gait and cognitive function. This study 
examined whether digital health technology can facilitate frailty identification and 
improve the efficiency of diagnosis by optimizing analytical and machine learning 
approaches using select factors from comprehensive geriatric assessment and 
gait characteristics.

Methods: As part of an ongoing study on observational study of Aging, 
we prospectively recruited 214 individuals living independently in the community 
of Southern China. Clinical information and fragility were assessed using 
comprehensive geriatric assessment (CGA). Digital tool box consisted of wearable 
sensor-enabled 6-min walk test (6MWT) and five machine learning algorithms 
allowing feature selections and frailty classifications.

Results: It was found that a model combining CGA and gait parameters was 
successful in predicting frailty. The combination of these features in a machine 
learning model performed better than using either CGA or gait parameters 
alone, with an area under the curve of 0.93. The performance of the machine 
learning models improved by 4.3–11.4% after further feature selection using a 
smaller subset of 16 variables. SHapley Additive exPlanation (SHAP) dependence 
plot analysis revealed that the most important features for predicting frailty were 
large-step walking speed, average step size, age, total step walking distance, and 
Mini Mental State Examination score.

Conclusion: This study provides evidence that digital health technology can 
be used for predicting frailty and identifying the key gait parameters in targeted 
health assessments.
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Introduction

As the population ages, frailty is becoming a major challenge 
for public healthcare. Frailty is a condition that affects many older 
people and is characterized by a decline in physical function, 
decreased resilience to stressors, and a higher risk of negative 
health outcomes such as falls, hospitalization, and death (1). 
Patients with frailty commonly show multifaceted clinical 
symptoms, phenotypic heterogeneity, and fluctuating 
manifestations that challenge the comprehensive appraisal of the 
condition (2, 3). Undiagnosed frailty is common in older people, 
since it typically has no explicit connection to a defined medical 
issue; therefore, frailty frequently remains untreated until later 
stages. Early detection of the risk of frailty is essential especially in 
the early stages, as such identification would facilitate the 
implementation of treatments to slow down declines and reduce 
adverse outcomes.

Currently, the prediction of frailty is performed using 
questionnaires and tests of physical activity, muscle strength or gait. 
The most widely used assessment is the fried performance (FP) test 
(4), which includes measures of weight loss, exhaustion, low physical 
activity, weakness, and slow walking speed. However, the FP test only 
evaluates the physical aspects of frailty, while frailty is acknowledged 
to be a multifaceted state that includes not only physical dimensions, 
but also social, cognitive, and psychological dimensions (5, 6). Gait-
related mobility is a key physical ability that has been linked to frailty 
and is often used as a predictor of future health outcomes (7, 8).

During the aging process, the loss of function is intrinsic to all the 
physiological systems, including the Central and peripheral nervous 
systems, musculo-skeletal system, and cardiopulmonary system. The 
most dramatic and significant changes is the decline in limb muscle, 
which can lead to changes in gait parameters such as walking speed, 
cadence, and stride-length (9, 10). Gait speed, which is a quantifiable 
index of ambulatory ability and a major predictor of future health 
outcomes (11), is commonly used as an outcome in the research 
of frailty.

Advances in technologies associated with wearable devices has 
enabled the collection of more precise parameters regarding other 
spatial and temporal gait variables in addition to the commonly 
observed gait speed. These technologies are valid and practical, and 
they provide a promising, cost-effective digital method in 
standardizing the data collection and analysis of gait function with 
improved efficiency and accessibility both in the clinical setting and 
within seniors’ living communities (12–14).

With improved multidisciplinary diagnostic approaches, some 
researchers have predicted frailty status based on CGA, but this 
approach has several limitations. For example, questions within the 
CGA frequently require advanced knowledge and thus might not 
accurately reflect the mental status of subjects. Concurrently, with the 
evolution of computer science and artificial intelligence, many 
researchers would like to predict frailty using ML approaches (Table 1) 
(15–23). Previous studies in this regard have commonly utilized easy-
to-access epidemiological datasets or electronic health records to 
construct ML algorithms (24); the nature of these databases mean that 
these algorithms are potentially limited to the use of a single 
dimension. Furthermore, little research has analyzed Asian 
populations, which have very different socio-economic profiles as 
compared with Western populations (16).

Therefore, the objectives of this study were to (A) obtain the 
relevant gait parameters using wearable sensor and to analyze their 
association with deterioration of physical function and evolution into 
frailty, and to (B) develop an ML frailty risk prediction model suited 
for an Asian population, using a combination of both wearable sensor-
based gait analysis and CGA.

Materials and methods

Study design, participants, and features

In total, we consecutively recruited 214 community-dwelling 
volunteers from the course of the anti-aging study, a prospective 
cohort study conducted to investigates the association of frailty 
with health. All subjects were recruited through advertisements in 
two ways. First, recruitment was conducted at four communities 
centers in Guangzhou (the capital of the Guangdong Province in 
the southeastern region of China). Second, with the assistance of 
the District Health Center and GPs clinics, recruitment invitations 
was handed out via online announcement to older individuals on 
Wechat platforms. Eligibility criteria for participants were: aged 
60–95 years, having adequate auditory and visual acuity, and the 
ability to ambulate with or without any walking aids or assistance 
of others. Exclusion criteria included orthopedic or neurological 
complications or other relevant medical conditions that might 
restrict walking speed and natural movement. All subjects were 
required to complete CGA including but not limited to a 
standardized questionnaire that collected demographic 
information, medical and medication records, as well as 
multidimensional clinical assessment, including anthropometric 
evaluation, emotional evaluation, and neuropsychological  
evaluation.

The parameters of CGA included the patients’ demographic data, 
including age, gender, education level, marital status, employment 
position and measurement data. The clinical measurement data 
involved multimorbidity (defined by the coexistence of >2 chronic 
conditions), polypharmacy (defined as currently using >5 drugs), 
depression disorder (25) (defined by scores ≥10 on the 9-item Patient 
Health Questionnaire, PHQ-9), anxiety disorder (26) (defined by 
scores ≥10 on the 7-item Generalized Anxiety Disorder, GAD-7), 
cognitive function (27, 28) (assessed by the Mini-Mental State 
Examination, MMSE and the Chinese versions of the Montreal 
Cognitive Assessment, MoCA-BC) and neuropsychiatric function (29, 
30) (assessed by the Mild Behavioral Impairment Checklist, [MBI-C]). 
A detailed description of how these features were defined is also 
provided in Table 2.

Walking test

To obtain an objective and quantitative assessment of gait 
parameters, all participants were instructed to complete a 6-min walk 
test (6MWT) using a wearable sensor (Ambulosono Sensor System) 
(13, 31). The sensor was connected to the iOS Gait Reminder App, 
which can issue auditory instructions while continuously recording 
step size via an iOS gyroscope and accelerometers, after corrections 
for limb length, angular excursion, signal filtering, and drift. 
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Participant were instructed to walk independently if possible, and 
were permitted to use walking aid (e.g., walker or cane) if needed.

Frailty assessment

The outcome measures used to categorize no-frailty and frailty 
was assessed utilizing the five components specified in the FP test (4), 
including: self-reported unintentional weight loss of 10 pounds or 
more within the last year; self-reported exhaustion; slowness stratified 
by gender and height; weakness via grip strength test using a hand 
dynamometer; and low physical activity based on the short version 
Minnesota Leisure Time Activity questionnaire (32). FP scores range 
from 0 to 5 points, with higher scores indicating more severe frailty. 
Based on the results, individuals with scores of 0 through 2 were 
categorized into the no-frailty group, and those with scores of 3 or 
more were included in the frailty group. This scale has exhibited high 

validity and has become a gold standard for classifying frailty in older 
adults (33).

Machine learning models

In this study, five widely accepted and extensively used supervised 
ML models were applied: random forests (RF); decision trees (DT); 
naïve Bayes; neural network (NN) and stochastic gradient descent (SGD).

DT is a powerful ML algorithm capable of performing 
classification tasks. Advantages of DT include simplicity, 
interpretability, ability to model nonlinear data and ability to handle 
outliers during training (34), but weaknesses of the simple decision 
tree are instability and a risk of over fitting. RF, a popular ensemble 
classification method, combines multiple learning algorithms to 
achieve better performance. RF models generally outperform those 
generated by DT in terms of accuracy. Naive Bayes is a supervised 

TABLE 1 Previous researches regarding frailty risk prediction by machine learning.

Reference Number of 
variables

Machine learning 
model

Data type Outcome

Ambagtsheer et al. (15) 70 SVM, DT, and KNN Administrative records SVM (sensitivity of 97.8%, specificity of 89.1%), DT (sensitivity of 

63.0%, specificity of 21.4%), and KNN (sensitivity of 63.0%, 

specificity of 71.7%)

Aponte-Hao et al. (16) 75 ENLR, SVM, KNN, NB, 

DT, RF, XGBoost, and 

ANN

Administrative records In terms of AUROC, ENLR (0.82), SVM (0.80), KNN (0.66), NB 

(0.74); DT (0.77), RF (0.81), XGBoost (0.83), and ANN (0.78)

Le Pogam et al. (17) 18 LR, RF, and SVM Electronic medical records In terms of AUROC, best-subsets LR (0.71), RF (0.66), SVM (0.58)

Tarekegn et al. (18) 58 ANN, GP, SVM, RF, LR, 

and DT

Administrative records ANN classifier generated the optimal prediction results for 

mortality: Accuracy within ANN (0.78),SVM (0.79), RF (0.78), LR 

(0.78), DT (0.75)

Koo et al. (19) 27 SVM, RF, and GB Electronic medical records SVM (Precision of 88.9%), RF (Precision of 92.3%), and GB 

(Precision of 88.0%)

Williamson et al. (20) 3,761 LR Electronic medical records Sensitivity of 36.1%, specificity of 62.9%, PPV of 17.3%, and NPV 

of 82.1%

Park et al. (21) 16 LR Pendant Sensor data AUROC of 0.80, sensitivity of 72.2%, specificity of 70.0%, and 

accuracy of 71.3%

Kraus et al. (22) 9 RF, KNN, RF Insole Sensor data In terms of AUROC, RF (0.92), KNN (0.80)

Minici et al. (23) 25 RF, NB, LR, SVC, MLPC Wrist Sensor data In terms of AUROC, RF (0.80), NB (0.87), LR (0.73), SVC (0.64), 

MLPC (0.71)

SVM, support vector machine; DT, decision tree; KNN, K-nearest neighbors; ENLR, elastic net logistic regression; NB, naive bayes; XGBoost, extreme gradient boosting; LR, logistic 
regression; BS-LR, best-subsets logistic regression; RF, random forest; ANN, artificial neural network; MLPC, multilayer perceptron classifier; KFACS, Korean Frailty and Aging Cohort Study.

TABLE 2 Features of cohort characteristics used for machine learning.

Demographics Data type Clinical measures Data type Walking test Data type

Age Numeric Exhaustion Binary Total step walking distance Numeric

Education level Categorical Sleep quality Binary Average walking speed

Gender Binary Anxiety Binary Total cadence

Marital status/partnerships Categorical Depression Binary Large step distance

Employment position Categorical Cognition test Numeric Large step walking time

Medical history Energy expenditure Binary Large step walking speed

Medical record Binary Anthropometry Large step cadence

Medications/supplements Binary Grip strength Numeric Average step size

Unintentional weight loss Binary Body mass index (BMI) Numeric Average step time
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FIGURE 1

Overall data acquisition, feature extraction, feature selection, data classification analysis and machine learning flow for the classification of frailty.

probabilistic machine learning algorithm for probabilistic 
classification that relies on Bayes’ theorem with an assumption of 
strong independence between the input features (35). Neural network 
is a mathematical computing model that imitates the construction of 
biological neural networks and that is commonly used in classification 
tasks with various applications (36).We also attempted to apply SGD 
(37), an algorithm for optimization problems arising in high-
dimensional inference tasks.

Experimental setting

An overview of the ML approach used in this study is shown in 
Figure 1. After imputation of missing values by multiple interpolation, 
the values of input features were standardized to ensure that each 
feature had the same influence on the cost function in designing the 
ML models. In this study, the data were randomly divided, with 70% 
used for training and the remaining 30% used as test data. Within the 
70% training set, the data was split into ten random folds for cross 
validation to guard against overfitting. The rigorous use of holdout 
method with random resampling and stratified k-fold cross-validation 
ensured the validity and generalizability of the findings, and helped to 
mitigate potential biases in the analysis. We used average values as 
they are robust to outlying predictions.

Feature selection

When not all features have significant class discrimination 
information, using feature selection methods can help to remove the 
irrelevant and redundant features. This method can reduce the 

computational time and improve classification performance. To 
determine the lowest number of demographic features, clinical 
features and sensor-derived gait sequence features required to best 
identify frailty, optimal feature selection using either the independent 
samples t-test or the chi-square test was applied, depending on each 
feature’s types. Sixteen of the features showed a significant difference 
between the no-frailty and frailty groups, and thus they were used as 
independent variables for optimal feature selection.

Performance measures

The performance of the ML models was evaluated using AUC 
score, sensitivity, specificity, precision, F1-score and accuracy. 
We  aimed to find the simplest model that achieves the highest 
accuracy. As the original training data were imbalanced (13.1% 
frailty), such data can result in biased estimates of training 
performance; hence, with the best performing model chosen by 
average AUC score, which can be understood as the probability that a 
randomly chosen no-frailty patient will have a score lower than a 
randomly chosen frailty patient. SHapley Additive exPlanation 
(SHAP) values were used to provide consistent and locally accurate 
attribution values for each feature within each prediction model (38).

Statistical analyses

All statistical analyses and calculations were performed using R 
software and Python (version 3.9.7; Python Software Foundation). 
The categorical variables were expressed as total numbers and 
percentages, with the chi-square test used for comparison between 
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groups. Normally continuous variables were expressed as x̅ ± s, and 
the independent samples t-test for was used for comparisons between 
groups; non-normally continuous variables were expressed as median 
and IQR, with a Mann–Whitney U test used for comparisons between 
groups. The inspection level α = 0.05, and we considered any difference 
statistically significant if p < 0.05.

Results

Demographic and clinical characteristics

Table  3 compares the detailed demographic and clinical 
characteristics of each group. A total of 214 subjects were included in 
the study, among which 28 (13.1%) subjects were classified into the 
frailty group. Compared with the no-frailty group, subjects in the 
frailty group were of older age (74.3 ± 8.4 vs. 68.1 ± 6.1 years) and had 
lower BMI (22.2 ± 2.7 vs. 23.5 ± 2.9). Moreover, the frailty group had a 
higher proportion of comorbid conditions (74.4% vs. 31.7%), 
polypharmacy (35.7% vs. 8.6%) and depression (32.1% vs. 14.0%) with 
significant difference. The results also showed that the scores on the 
Mini Mental State Examination (MMSE) and the Montreal Cognitive 
Assessment from subjects in the frailty group were significantly lower 
than those of subjects in the no-frailty group (p < 0.01). There were no 
significant differences in gender or education between two groups 
(Table 3).

Characteristics of the gait features in each 
study group

Table 4 shows gait parameters in relation to the presence of frailty. 
In comparison to subjects in the no-frailty group, those in the frailty 
group had slower gait speed (57.3 ± 17.6 vs. 70.1 ± 15.2 m/min), lower 
step walking distance (338.6 ± 96.7 vs. 420.5 ± 91.3 m), lower total 
cadence (113.5 ± 11.7 vs. 120.4 ± 15.2 step/min), shorter step size 
(0.508 ± 0.143 vs. 0.593 ± 0.107 m), and higher average step time 
(0.533 ± 0.059 vs. 0.502 ± 0.051 s).

Performance of machine learning 
approaches

We performed feature selection analyses among the various 
feature categories to investigate and identify crucial feature signatures 
for our models. The input data used were the gait features based on 
the outputs from wearable sensor and the demographic and clinical 
features derived from CGA. As illustrated in Table 5, the ML models 
achieved up to 63.5% accuracy, 88.2% specificity, 56.5% sensitivity, 
98.4% precision and an F1-score of 65.0% using demographic and 
clinical features. When using the gait features, the ML models 
achieved up to 65.6% accuracy, 83.8% specificity, 65.3% sensitivity, 
97.8% precision and F1-score of 65.6%. In comparison, the ML 
models that employed all features achieved the highest performance, 

TABLE 3 Demographics and clinical characteristics of participants stratified by frailty status.

Variable
Frailty status

All (n = 214) No-frailty (n = 186) Frailty (n = 28) p-value

Age, mean (SD) 68.9 (6.7) 68.1 (6.1) 74.3 (8.4) <0.001

Female 156 (72.9) 139 (74.7) 17 (60.7) 0.120

Education 0.212

Primary or lower 119 (55.6) 104 (55.9) 15 (53.6)

Completed high school 69 (32.2) 57 (30.6) 12 (42.9)

At least some college 26 (12.1) 25 (13.4) 1 (3.6)

Marital status 0.782

Married 173 (80.8) 152 (81.7) 21 (75.0)

Divorced 32 (15.0) 24 (14.5) 5 (17.9)

Widowed 9 (4.2) 7 (3.8) 2 (7.1)

Comorbid conditions >2 79 (36.9) 59 (31.7) 20 (71.4) <0.001

Polypharmacy 26 (12.1) 16 (8.6) 10 (35.7) <0.001

BMI, mean (SD) 23.3 (2.9) 23.5 (2.9) 22.2 (2.7) 0.026

Insomnia(PSQI>7) 121 (56.5) 104 (55.9) 17 (60.7) 0.633

Depression (PHQ-9 ≥ 10) 9 (8.4) 26 (14.0) 9 (32.1) 0.015

Anxiety (GAD-7 ≥ 10) 15 (7.0) 13 (7.0) 2 (7.1) 0.976

MBI-C, mean (SD) 5.1 (3.8) 5.0 (3.8) 5.9 (3.6) 0.208

MMSE, mean (SD) 26.2 (3.0) 26.6 (2.8) 23.7 (3.5) <0.001

MoCA-B, mean (SD) 24.2 (3.4) 24.5 (3.2) 22.2 (3.6) 0.001

SD, standard deviation; BMI, body mass index; PSQI, Pittsburgh Sleep Quality Index; PHQ-9, Patient Health Questionnaie-9; GAD-7, General Anxiety Disorder Screener-7; MBI-C, Mild 
Behavioral Impairment Checklist; MMSE, Mini-mental State Examination; MoCA-B, Chinese versions of the Montreal Cognitive Assessment; Results presented as n (%) unless otherwise 
noted. Chi-square tests were used for categorical variables, whereas t-tests were used for continuous variables.
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TABLE 5 Performance summary of ML models for frailty classification using different features set.

Models Accuracy Specificity Sensitivity Precision F1-score

Demographic and clinical features

Random forests 60.56 88.21 54.42 98.35 65.01

Decision trees 63.50 71.37 56.53 90.17 64.30

Naive bayes 56.63 61.81 54.25 67.62 53.22

Neural network 52.53 65.23 51.75 84.59 53.82

Stochastic gradient descent 58.75 82.13 55.63 86.42 58.16

Gait sequence features

Random forests 63.22 83.80 54.81 97.84 65.57

Decision trees 63.60 70.81 56.27 91.17 64.57

Naive bayes 60.47 60.06 55.14 76.23 59.64

Neural network 47.49 56.37 47.12 74.54 44.96

Stochastic gradient descent 53.75 78.35 52.77 91.00 58.62

All features

Random forests 69.58 89.46 58.54 96.95 68.80

Decision trees 71.11 78.28 60.86 92.35 68.68

Naive bayes 67.98 66.74 61.30 75.38 63.06

Neural network 67.90 75.60 58.73 89.75 66.80

Stochastic gradient descent 58.42 78.22 53.30 92.54 62.69

Selected features

Random forests 66.58 95.69 57.38 98.76 67.74

Decision trees 68.74 80.14 59.45 93.10 67.88

Naive bayes 65.35 73.88 57.31 86.33 64.29

Neural network 51.46 61.74 50.51 77.42 48.27

Stochastic gradient descent 59.00 78.71 55.70 89.50 61.43

with up to 71.1% accuracy, 89.5% specificity, 61.3% sensitivity, 97.0% 
precision, and an F1-score of 68.0%.

The receiver operating characteristic (ROC) curves of each ML 
model using different features are shown in Figure 2. All ML models 
achieved significant improvements in discrimination by using selected 

features as compared to the indiscriminate use of all features. In 
particular, RF exhibited an AUC gain of 4.3% when using selected 
features as compared to using all features, a gain of 6.2% when using 
selected features as compared to all demographic and clinical features, 
and a gain of 11.4% when using selected features as compared to using 

TABLE 4 Characteristics of the gait sequence features in each study group.

Variable Unit

Frailty index status

All (n = 214)
No-frailty 
(n = 186)

Frailty (n = 28) p-value

Total step walking distance (m) m 409.8 (95.9) 420.5 (91.3) 338.6 (96.7) <0.001

Large step distance (m) m 402.5 (103.4) 413.7 (99.0) 328.6 (103.1) <0.001

Average gait speed (m/min) m/min 68.5 (16.2) 70.1 (15.2) 57.3 (17.6) <0.001

Large step walking speed m/min 69.0 (15.7) 70.8 (14.6) 57.4 (17.6) <0.001

Total cadence (step/min) Step/min 119.5 (14.9) 120.4 (15.2) 113.5 (11.7) 0.023

Large step cadence Steps/min 117.7 (15.4) 118.9 (15.4) 109.6 (13.1) 0.003

Average step size m 0.582 (0.115) 0.593 (0.107) 0.508 (0.143) <0.001

Average step time s 0.506 (0.053) 0.502 (0.051) 0.533 (0.059) 0.004

Step size variance (Median) n 0.007 [0.003–0.019] 0.006 [0.003–0.019] 0.010 [0.003–0.023] 0.184†

Step time variance (Median) n 0.012 [0.009–0.021] 0.012 [0.008–0.020] 0.018 [0.011–0.036] 0.002†

†Tested using the Mann–Whitney U test.

https://doi.org/10.3389/fpubh.2023.1169083
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Fan et al. 10.3389/fpubh.2023.1169083

Frontiers in Public Health 07 frontiersin.org

all gait sequence features. Since the RF model outperformed other ML 
models according to accuracy and AUC, it was selected for all 
downstream analyses.

Feature importance

Figure 3 shows the SHAP summary plot of RF using selected 
features, with the features contributing to the model in descending 
order of average absolute SHAP values. This plot depicts the 
relationships of values to SHAP values in the training dataset. 
According to the prediction model, the higher the SHAP value of a 
feature, the more likely frailty becomes. As observed in the plot, the 
five most important predictors in the prediction model were large step 
walking speed, average step size, age, total step walking distance, and 
MMSE score.

Discussion

Frailty is a common condition among older adults that is 
characterized by a decline in physical and cognitive function and an 

increased risk of adverse health outcomes. Identifying frailty on the 
early stage can help healthcare professionals implement hierarchical 
strategies to prevent or delay its onset and manage potential 
conditions. In this study, we adopted a set of analytical and machine-
learning approaches to analyze the relationship between frailty and a 
combination of CGA and wearable sensor-derived gait parameters in 
community-dwelling older adults.

To achieve this, we used statistical methodologies to extract a 
subset of uncorrelated components associated with frailty predictors, 
which were then used to independently identify and visualize multiple 
dimensions associated with frailty. Our results indicate that machine 
learning methods are effective in predicting frailty and that using a 
combination of both CGA characteristics and wearable sensor data 
improved the performance of our model compared to using either 
features separately. This multifaceted combination of features provides 
a comprehensive perspective on frailty, allowing the model to capture 
the intricate relationship between various factors.

Our final model, which was processed using a random forest 
machine learning method, achieved an impressive area under the 
curve (AUC) score of 0.926, indicating a high level of accuracy 
compared with previous estimates, ranging from 0.58 up to 0.92 
(15–23). In contrast to other traditional predictive formulas, such as 

FIGURE 2

Predictive performance of different feature selection in predict the outcomes of frailty model. The RF model demonstrated the most favorable 
performance. (A) Demographic and clinical prediction (AUC = 0.907), (B) gait sequence prediction (AUC = 0.855), (C) all feature prediction (AUC = 0.926), 
(D) selected feature prediction (AUC = 0.969).
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the electronic medical records-based model, administrative records-
based model, and sensor-based model, the classification results of 
our model outperformed other traditional models. This enhanced 
performance may be  attributed to our study design and to the 
synergistic approach that combined CGA and wearable sensor data, 
accompanied by rigorous feature selection and 
optimization processes.

Furthermore, we also calculated the accuracy of each model when 
processing different complements of patient characteristics, in 
addition to overall model performance. We  found that using a 
narrower set of carefully selected features achieved significant 
improvements in discrimination relative to models that included all 
available features. This reduced the dimensionality of our dataset and 
allowed our model to focus on the most relevant features for predicting 
frailty. In previous study, Williamson and colleagues (20) reported that 
frailty was predicted using a large number of features of electronic 
medical record database without feature selection as effectively, which 
can lead to overfitting and reduced generalization of the model.

This limitation of the number of features needed would be helpful 
in clinical settings due to difficulties in collecting consistent data from 
older patients, especially with functional data or data indicating 
cognitive and emotional status. Notably, the top five features found to 
be important in predicting frailty were step walking speed, average 
step size, age, total step walking distance, and MMSE score. These 
results are consistent with previous research that has identified gait 

and physical activity parameters measured by wearable sensors as 
being associated with physical frailty and has found that certain gait 
parameters, such as percentage time standing, percentage time 
walking, walking cadence, and longest walking bout, are effective 
digital biomarkers for identifying frailty (21, 39). Gait stability, as 
determined by double-limb support time, step time and stride time, 
and long short-term memory have also been found to produce the 
highest discriminative power in identifying frailty using the RF model 
(40). Accordingly, our findings suggest that healthcare professionals 
treating older patients should focus on these five features, as they may 
indicate the risk of future frailty.

In particular, the strength of the gait parameters in our analysis, 
accounting for 50% of the predictive power, demonstrates the 
importance of these motor characteristics as a measure of frailty. The 
6MWT is a valid, reliable and sensitive measure of functional 
performance capacity that has been found to be useful in evaluating 
frailty in older adults (41). Using digital methods to perform the 
6MWT, such as wearable sensors or GPS devices, an economical and 
convenient way to provide diagnostic and clinical information, can 
significantly improve the accuracy and reliability of the test results 
compared to manual methods (42, 43).

CGA has also been used to identify risks of adverse events such 
as cognitive impairment, mortality, functional decline, surgical 
complications, and chemotherapy toxicity among frailty patients (44, 
45). This is the first study ever done to show the benefits of utilizing 

FIGURE 3

SHAP plot of top features influencing our model’s prediction of frailty using all features.
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a combination of CGA and wearable sensor data in predicting frailty. 
Our research adds to the existing knowledge by revealing the efficacy 
of employing an integrated approach, using both CGA and wearable 
sensor data in predicting frailty and a limited number of judiciously 
selected features in a machine learning model. It also highlights the 
importance of gait-related measures for frailty prediction. Previous 
studies have used various artificial intelligence (AI) models to 
analyze frailty and predict frailty risk in older adults using different 
types of data, including clinical records (15–18, 24, 46), physical 
function data (47, 48), and wearable sensor data (21, 22, 49). 
Additionally, the clinical implications of our method were 
summarized as follows:

A. The integration of both CGA and wearable sensors objectively 
measure gait parameters offers healthcare professionals comprehensive 
understand of frailty risk, enabling early intervention and better 
management of pre-clinical condition to prevent adverse 
health outcomes.

B. In terms of feature selection, our study identified the five most 
important indexs in the prediction model as large step walking speed, 
average step size, age, total step walking distance, and MMSE score. 
Clinicians can prioritize these factors when assessing frailty risk in 
older patients, allowing for a more effective and targeted approach that 
streamlines data collection and reduces the burden of frailty on 
patients and healthcare systems.

C. In terms of gait assessment, we depicted wearable sensors for 
auto digital gait data analysis such as the 6MWT that can provide 
more accurate and reliable results classification of frailty individuals 
compared to traditional manual methods, improving the overall 
quality of frailty evaluations.

D. In terms of the clinical setting, the application of ML techniques 
to analyze and predict frailty risk has proven beneficial in identifying 
at-risk individuals. These methods have shown promising results in 
identifying relevant features and interactions, particularly when 
numerous variables are involved, allowing for timely interventions 
and more personalized care plans.

Considering the implications of a future digital health approach, 
we aimed to capture pertinent gait components based on 6MWT that 
can be utilized to remotely predict the risk of frailty using wearable 
sensors. With this approach, patients would able to be  long-term 
digital monitored without having to undergo an in-person clinic visit 
to assess their physical frailty. However, this study is subject to several 
limitations that need to be addressed. Since, the 6MWT is a long-
distance walking test that places higher demands on the abilities, 
functional status, and reserves of older adults. Our recruitment 
threshold of walking behavior, a minimum test time of 6 min, was 
achievable for the vast majority of this population with or without 
any walking aids. However, the physical state of all senior persons 
cannot be  accurately represented by our community-sourced 
volunteer recruiting. While the physical condition of older adults in 
the community is generally acceptable, the degree of frailty may 
exhibit more pronounced manifestation within older institutions, 
such as nursing homes.

Throughout the research process, some patients were unable to 
complete the full test due to their limited capacity for sustained long-
distance walking. For safety reasons, these individuals had to 
be excluded from the study. While we would handle missing data 

appropriately, this may impact the experimental results and potentially 
weaken the test’s effectiveness. Consequently, the restricted source of 
the samples supply diminishes the representativeness, universality, 
and generalizability of our study findings, thereby reducing their 
therapeutic usefulness. Although there are some intrinsic limitations 
to the test, the 6MWT can be  potentially performed in the vast 
majority of geriatric population, thus key gait parameters can 
be served as an important tool for early frailty screening, diagnostic 
assessment, and early prevention in older adults (50).

Future study is warranted to validate and generalize these 
findings to other populations and settings, as well as to explore the 
potential of integrating additional data sources and advanced 
machine learning algorithms to further enhance the ability of ML to 
identify the risk of frailty. Ultimately, the insights gained from this 
study have the potential to significantly impact clinical practice, 
leading to improved identification and management of frailty in 
older adults, enhancing their quality of life and overall 
health outcomes.

Conclusion

Overall, our findings suggest that combining CGA and wearable 
sensor-derived gait parameters can improve the accuracy of frailty 
prediction models. The use of digital measures of gait, such as the 
6MWT, plays a crucial role in enhancing the model’s predictive power 
and should be considered by healthcare professionals when evaluating 
frailty risk in older patients. Due to the rapid rate at which wearable 
sensor-based data is being collected, high-performance data 
processing is becoming increasingly important. Further research is 
needed to determine the generalizability of these findings to other 
populations and settings.
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