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Background: Mobility data are crucial for understanding the dynamics of 
coronavirus disease 2019 (COVID-19), but the consistency of the usefulness of 
these data over time has been questioned. The present study aimed to reveal the 
relationship between the transmissibility of COVID-19 in Tokyo, Osaka, and Aichi 
prefectures and the daily night-time population in metropolitan areas belonging 
to each prefecture.

Methods: In Japan, the de facto population estimated from GPS-based location 
data from mobile phone users is regularly monitored by Ministry of Health, 
Labor, and Welfare and other health departments. Combined with this data, 
we conducted a time series linear regression analysis to explore the relationship 
between daily reported case counts of COVID-19 in Tokyo, Osaka, and Aichi, and 
night-time de facto population in downtown areas estimated from mobile phone 
location data, from February 2020 to May 2022. As an approximation of the 
effective reproduction number, the weekly ratio of cases was used. Models using 
night-time population with lags ranging from 7 to 14 days were tested. In time-
varying regression analysis, the night-time population level and the daily change 
in night-time population level were included as explanatory variables. In the fixed-
effect regression analysis, the inclusion of either the night-time population level 
or daily change, or both, as explanatory variables was tested, and autocorrelation 
was adjusted by introducing first-order autoregressive error of residuals. In both 
regression analyses, the lag of night-time population used in best fit models was 
determined using the information criterion.

Results: In the time-varying regression analysis, night-time population level 
tended to show positive to neutral effects on COVID-19 transmission, whereas 
the daily change of night-time population showed neutral to negative effects. 
The fixed-effect regression analysis revealed that for Tokyo and Osaka, regression 
models with 8-day-lagged night-time population level and daily change were 
the best fit, whereas in Aichi, the model using only the 9-day-lagged night-time 
population level was the best fit using the widely applicable information criterion. 
For all regions, the best-fit model suggested a positive relationship between 
night-time population and transmissibility, which was maintained over time.
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Conclusion: Our results revealed that, regardless of the period of interest, a positive 
relationship between night-time population levels and COVID-19 dynamics was 
observed. The introduction of vaccinations and major outbreaks of Omicron BA. 
Two subvariants in Japan did not dramatically change the relationship between 
night-time population and COVID-19 dynamics in three megacities in Japan. 
Monitoring the night-time population continues to be crucial for understanding 
and forecasting the short-term future of COVID-19 incidence.

KEYWORDS

severe acute respiratory syndrome virus 2 (SARS-CoV2), mobility, public health and 
social measures, de facto population, cluster

1. Introduction

Since the severe acute respiratory syndrome virus 2 (SARS-
CoV-2) originated in Wuhan, China (1) and developed into a global 
pandemic that is still ongoing in many countries, closely monitoring 
the extent of human-to-human contact at a societal level has been a 
key issue in public health. Human mobility data in general are widely 
accepted as one of the most important sources of data for inferring the 
extent of human-to-human contact, because most contacts outside of 
households cannot be  made without people traveling or staying 
outside. In fact, several studies have provided evidence on the 
explanatory power of mobility data and its effectiveness on controlling 
COVID-19 dynamics (2–5).

Among many data sources on human mobility, the usefulness of 
mobile phone location data for understanding and predicting 
coronavirus disease 2019 (COVID-19) dynamics has been revealed by 
studies in countries with high rates of mobile phone ownership (3, 6, 
7). These data are also important for monitoring the effectiveness of 
non-pharmaceutical interventions by governments (8).

In Japan, several studies have examined the relationship between 
COVID-19 and mobility data. For example, two studies in Japan on 
COVID-19 dynamics in 2020 showed a positive relationship between 
COVID-19 spread and population volumes at several types of 
locations or time zones, particularly restaurant and bar usage (9, 10). 
This positive relationship was also observed in other empirical studies 
in Japan exploring different periods of time or using different sources 
of mobility data (11, 12).

Although a positive relationship between mobility and 
COVID-19 upsurge was observed for a specific period of time in 
Japan, it remains to be  determined whether the effects of social 
contacts are relatively stable or are highly variable over time, because 
previous studies in Japan did not analyze data throughout the 
COVID-19 pandemic from 2020. This issue is particularly important 
because, if we know in advance about the periods during which the 
social contact level affects the dynamics of COVID-19, that 
knowledge could inform how we implement non-pharmaceutical 
interventions against COVID-19. Moreover, it is possible that the 
effect of mobility has changed because of vaccinations against 
COVID-19 or behavioral changes since the emergence of COVID-
19. However, to the best of our knowledge, no previous study has 
tackled the predictive ability of mobility data over a long time-
course. It is difficult to correctly estimate the effect throughout a 
long period of an epidemic, because in the early stages of the 

pandemic there is no way to know whether the effects are highly 
time-varying or not. Simply applying linear regressions to explain 
the dynamics of COVID-19 via mobility data may lead to erroneous 
results showing high time-dependent variability of the effect of 
mobility (Tokyo: right column of Figure  1; see 
Supplementary Figure S1 for Aichi and Osaka), and adequately 
considering serial correlation in statistical models may cause the 
results to differ.

One of the key public interests in Japan throughout the 
COVID-19 pandemic has been on eating and drinking activities 
that elevate the risk of COVID-19 transmission, and it is widely 
recognized that such activities are particularly intense in 
downtown areas at night. Motivated by the insufficiency of 
evidence on the relationship between night-time drinking or 
eating activity and COVID-19 dynamics, and the need for such 
evidence for future rises in COVID-19 caused by novel variants or 
the emergence of pandemics caused by other pathogens, the 
objective of the present study was to clarify the relationship 
between night-time population in the downtown area in three 
metropolitan areas in Japan and the transmission dynamics of 
COVID-19. Two linear regression models were employed to 
appropriately account for the time-dependent relationship between 
these two datasets.

2. Materials and methods

2.1. Epidemiological dataset of COVID-19

In Japan, COVID-19 has been designated as a notifiable disease 
according to The Infectious Disease Control Law, and all confirmed 
cases are mandatorily reported to the government via local health 
centers. Confirmatory diagnoses were made either by reverse 
transcription polymerase chain reaction or rapid diagnostic testing of 
nose or throat swabs. On the basis of this notification system, daily 
COVID-19 case count data are openly shared by Japan’s Ministry of 
Health, Labor, and Welfare, as a function of the reporting date, and 
we used the open data for the following analyses (13). The dataset 
shows the daily number of reported COVID-19 cases in each 
prefecture, created by aggregating the reports from the local health 
departments in each prefecture. From this dataset, COVID-19 case 
counts from Tokyo, Osaka, and Aichi were extracted (shared as 
Supplementary Data).
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The day-of-the week-effect observed in the original time series 
of case counts was intense. To exclude such an effect, as it makes the 
regression model too complex and less interpretable, for the 
subsequent analysis we  used the 7-day moving average of 
case counts
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where C ta ( ) is the 7-day moving average of I ta ( ), which is the 
reported case counts on day t  in prefecture a . Data from February 
26th, 2020, to May 18th, 2022 were used in our study to match the 
span with the mobility data described below, and to exclude periods 
with very few COVID-19 case counts.

2.2. Mobile phone location data

In the present study, “LocationMind xPop” data on the hourly 
population volume estimates in selected areas in the Tokyo, Nagoya, 
and Osaka metropolitan areas were provided by LocationMind Inc. 
(14). These data were also used in a previous study on COVID-19 and 
night-time population in Japan (10).

“LocationMind xPop” data refers to people flow data collected by 
individual location data sent from mobile phones with users’ consent 
through applications such as “docomo map navi” service (map navi, 
local guide) provided by NTT DOCOMO, INC. The data are 
processed collectively and statistically in order to conceal private 
information. Original location data come from GPS data (latitude, 

longitude) sent at a frequency of every 5 min at the shortest interval 
and do not include information that specifies individuals. NTT 
Docomo, Inc. accounts for about 36.3% of total mobile phone 
subscribers in Japan (12).

For each metropolitan area, mobile phone trajectories were used 
to selectively collect population volume that did not involve stay-at-
work and stay-at-home behaviors. The areas of interest in this study 
were selected on the basis of designated areas for monitoring of people 
flow data by the Cabinet Office (15).

For subsequent analysis, for the same reason as for COVID-19 
case counts, we calculated the 7-day moving average of de facto night-
time population in downtown areas

 
NP t

np t i
a

i a( ) =
−( )=∑ 0

6

7
,

where NP ta ( ) is the 7-day moving average of np ta ( ), which is the 
population staying in the areas of interest between 10:00 PM and 
11:59 PM on day t  in prefecture a. This particular time of night (i.e., 
22:00–00:00) has been specifically used for routine monitoring 
purposes in Tokyo and for all of Japan on the basis of earlier successful 
improvements of predictive capability (10).

2.3. Variables used in regression analysis

We used the variables mentioned above in natural logarithmic 
form to ensure equivariance. Our analysis was performed using the 
1-week change in log C ta ( )( ), i.e.,

FIGURE 1

Time series plots showing the daily reported case counts of COVID-19 and daily downtown population from 10:00 PM to 11:59 PM in Tokyo, 2020–22. 
Tokyo’s (A) daily reported COVID-19 case counts and (B) Night-time population in designated areas from 10:00 PM to 11:59 PM are shown in the left 
column (light blue lines show 7-day moving averages). The results of Markov switching linear regressions assuming two hidden states (C) and time-
varying linear regression (D) are shown in the right column. In all figures, light orange shading corresponds to four publicly declared “State of 
Emergency” periods. For technical details of (C,D), see Supplementary material. The same figures for Aichi and Osaka are shown in the 
Supplementary material.
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as a response variable. For explanatory variables, we considered 
the log NP ta ( )( ) as well as the daily difference of log NP ta ( )( ), i.e.,

 
∆ log log log .NP t NP t NP ta a a( )( ) = ( )( ) − −( )( )1

For all locations, all three variables tested negative for unit roots 
using the augmented Dickey–Fuller test using R package CADFtest, 
to ensure that the whole series of each dataset was valid for 
regression analysis.

2.4. Time-varying regression analysis

First, the following state space model with exogenous variables 
was applied to conduct time-varying regression analysis, where L was 
the lag to be determined by exploring the best-fit model:
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Eq. (1) is the observation process with state S t( ) and observation 
error ε t( ), which is assumed to follow a normal distribution with mean 
0 and standard deviation σε . Eq. (2) is the state equation consisting of 
time-varying level β0 t( ) and exogenous variables log NP t La −( )( )  
and ∆ log NP t La −( )( )  with time-varying coefficients β1 t( ) and 
β2 t( ), respectively. Intercepts and coefficients βi t i( ) =, , ,0 1 2 , are 
modeled to follow the time-varying process as described in (3) and (4), 
where £ is the variance–covariance matrix. The lag ranging from 7 to 
14 days was specifically examined, because the mean time delay from 
infection to reporting was estimated at 13 days during the first wave of 
the pandemic from March to May 2020, and was then shortened to 
11 days from June 2020 and 9 days when the Omicron variant 
(B.1.1.529) began to spread from January 2022 (16–18) [also see 

Supplementary material for symptom onset to reporting on the basis 
of publicly available data from the website managed by the Tokyo 
Metropolitan Government (18)]. Best-fit models (lag L) were selected 
on the basis of the Akaike information criterion (AIC).

2.5. Fixed-effect regression model

On the basis of the time-varying regression results, linear 
regression analysis by generalized least squares assuming fixed effects 
of log NP t La −( )( )  and ∆ log NP t La −( )( )  was also conducted 
throughout the study period. Below is the model description:
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where L is the lag to be  determined by exploring the best fit 
model, ε t( ) is the autocorrelated error with coefficient ρ , and ω t( ) is 
white noise following the normal distribution with mean 0 and 
standard deviation σω . Models including either log NP t La −( )( )  
(fixing β2 to zero) or ∆ log NP t La −( )( ) (fixing β1 to zero) or both 
were tested. The estimation of model parameters was performed via a 
Bayesian approach employing the Markov Chain Monte Carlo 
(MCMC) method. We  used weakly informative priors (see 
Supplementary material) and ran five chains and 3,000 iterations with 
1,000 warmups each. Convergence was confirmed with trace plots and 
the potential scale reduction factor (Gelman-Rubin statistics) Rhat as 
well as traceplots, and the widely applicable information criterion 
(WAIC) was used for selection of the best fit model.

2.6. Statistical analysis

All statistical and numerical analyses were performed using R 
version 4.1.2 (The R Project for Statistical Computing, Vienna, Austria) 
and Stan version 2.21.0. R package KFAS (19) was used in the time-
varying regression analysis, and the R package brms version 2.18.0 (20) 
was used for fixed-effect regression analysis with CmdStan 2.30.1 (21).

3. Results

3.1. Time-varying regression analysis

For each lag L = …7 8 14, , , days, models described in Eqs (1)–(5) 
were estimated. The lag L of the best-fit model was 8 days in Tokyo, 
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9 days in Aichi, and 8 days in Osaka (see Supplementary materials for 
AIC used for best fit model choice). In all locations, the time series of 
β1 t( ) and β2 t( ) are shown in Figure 2. For all locations, the confidence 
interval of β1 t( ) stayed above or straddled zero, but in Tokyo and 
Aichi, there were short periods around mid-2020 when β1 t( ) turned 
negative. Regarding β2 t( ), the confidence interval stayed below zero 
most of the time throughout the pandemic period. However, the 
confidence interval of β2 t( ) in Aichi and Osaka straddled zero most 
of the time and was sometimes in negative territory. Both β1 t( ) and 
β2 t( ) stayed within a relatively narrow and confined range most of 
the time.

3.2. Fixed-effect regression analysis

For each lag L = …7 8 14, , ,  days, models described in Eqs (6) to 
(9) are estimated. For each lag L, in addition to models including both 
log NP t La −( )( )  and ∆ log NP t La −( )( ) , models including either 
one of these variables were also estimated (see Supplementary materials 
for WAIC used for best fit model choice).

In Table 1, the summary of estimates from best fit models for 
Tokyo, Aichi, and Osaka are shown.

For Tokyo and Osaka, models with 8-day-lagged night-time 
population including both log NP ta −( )( )8  and ∆ log NP ta −( )( )8  
were chosen, whereas for Aichi, the model with 9-day-lagged night-
time population including only log NP ta −( )( )9  was chosen. For 
every location, the best-fit models suggested a positive correlation 
between weekly changes in COVID-19 case counts and night-time 
population with certain lags. For the daily difference in night-time 
population that was included in the best-fit models for both Tokyo 
and Osaka, a negative correlation was observed with the weekly 
change in case numbers. The residuals of fixed-effect models showed 

that the models were fitted well, but weak autocorrelation and 
heteroscedasticity in the earlier phases were observed (see 
Supplementary materials for residuals of these best fit models).

Using the fixed-effect model, the values of 1-week rate of changes 
in COVID-19 counts and the COVID-19 case counts of Tokyo, Aichi, 
and Osaka are shown in Figure 3, together with model predicted 
values with 95% prediction intervals. Because the models used in 
fixed-effect regression consider first-order autocorrelation of residuals, 
the prediction intervals for each time step are essentially a one-point-
ahead forecast with errors.

4. Discussion

To the best of our knowledge, the current study is the first in 
Japan to reveal the long-term relationship between COVID-19 
dynamics and night-time downtown populations in metropolitan 
urban areas where eating and drinking activity are intense. 
Although it is mechanistically obvious that activities such as 
drinking or eating indoors are positively linked to the transmission 
of COVID-19, the time-variability of this link has not been 
comprehensively explored. The current findings revealed that the 
effect of night-time population on COVID-19 dynamics was 
positive to neutral most of the time, and rarely negative over time. 
The lag considered for night-time population in the best-fit models 
also appeared to be reasonable, considering that, for major variants 
of SARS-CoV-2, the mean incubation period of COVID-19 was 
around 3–7 days (16), and the average lags between symptom onset 
and reporting in Japan have been estimated to be approximately 
3–7 days (17, 18) (also see Supplementary materials). The minor 
heterogeneity of lags determined through the model fitting process 
among the three prefectures cannot be explained explicitly based 

FIGURE 2

Time series of coefficients of night-time population and its daily change estimated by the time-varying regression models for Tokyo, Aichi, and Osaka, 
2020–22. The change of β1 t( ) and β2 t( ) over time observed in time-varying regression analysis for Tokyo, Aichi, and Osaka. The shaded areas show 
the 95% confidence intervals for each estimated value.
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on our result, but it is possible that they root in unknown 
behavioral differences or differences in the diagnosis-to reporting 
process of COVID-19 data by local healthcare institutions 
or governments.

The time-varying regression results revealed that, in addition to 
the level of night-time population, a neutral to negative correlation 
was observed between daily difference of night-time population level 
and COVID-19 transmission for most of the study period. The 
mechanism underlying this result is not entirely clear. One explanation 
might be  the behavioral changes at the societal level based on 
expectations of COVID-19 case counts in the near future, or it might 
also be  the reflection of changes in social contact patterns that is 
characteristic of specific seasons (such as the New Year holiday 
season). These are no more than guesses, but future research on this 
topic is of interest.

Fixed-effect regression also revealed that the night-time 
population level is the key driver of COVID-19 throughout the 
pandemic period. Although this result is consistent with previous 
studies in Japan on human mobility and COVID-19 (9–12), the 
current findings revealed that this positive link between night-time 
population and COVID-19 transmission was not only limited to a 
short period but was consistently maintained for a long time over the 
course of the epidemic. When overviewed as fixed effects, the daily 
difference in night-time population increased the explainability of 
best-fit models in Tokyo and Osaka with negative effects. Although 
this was not true for Aichi, it is possible that, in some locations, the 
change in night-time population level may account for behavioral 
changes linked to COVID-19 transmission to some extent, either 
directly or indirectly.

The current study involved several limitations. The two 
regression models revealed the correlation between COVID-19 
dynamics and explanatory variables such as night-time population 
and its daily change. It might be  possible that any spurious 
relationship exists between COVID-19 and the explanatory 
variables included in our models, and that there are other variables 
not included in our model that may also affect COVID-19 

dynamics. About the former issue, generally it is difficult to deny 
any spurious relationship completely, but due to the definition of 
lags for variables in our model, there is little chance that the 
chronological order of possible effects is opposite compared with 
what we observed in the present study. About variables, several 
other types of variables are also suggested to affect COVID-19 
dynamics. For example, populations staying in other type of 
locations, residential areas or workplaces, as considered by Nagata 
et al. (9), were not included in our study. The results of Nagata et al. 
(9) indicated that the night-time population was the best predictor 
of COVID-19 dynamics, suggesting that our results may not have 
been substantially changed by considering other types of locations. 
However, further analysis considering these locations is warranted 
if these data are available. The current study also did not include 
meteorological factors such as temperature and humidity as 
explanatory variables, which have been suggested to have negative 
impact on COVID-19 transmission (11, 22) Because these 
meteorological factors may also exhibit interactions with social 
contact patterns, we  excluded them from consideration. Risk 
awareness was also considered in previous studies (11) but is 
difficult to quantify. It is likely that night-time population reflects 
risk awareness at a societal level to some extent.

The second limitation of the present study is that, in our models, 
the lags for night-time population were assumed as constants 
throughout the study period. Not only the substitution of major 
variants of SARS-CoV-2 but also factors such as the accessibility to 
hospitals (which might differ among periods or among different 
epidemic waves) may change the effective lag through which the 
night-time population affects COVID-19 transmission. It is difficult 
to adjust for these kinds of changes on the basis of available data 
when we consider not only known or observable factors but also 
unmeasured factors. However, the fact that the lag period chosen for 
best fit models matched that of the fixed-effect regression model in 
each location suggests that similar underlying correlation structures 
were maintained throughout the study period. Stepwise regression 
with sliding windows might also have been an option for our 

TABLE 1 Summary of results from best fit models for Tokyo, Aichi, and Osaka, 2020–2022.

Covariate Estimate 95% Confidence Interval

Lower Upper

Tokyo Intercept −8.676 −12.089 −5.21

log(NP with 8-day-lag) 0.692 0.427 0.955

Daily change of log(NP with 8-day-lag) −2.527 −3.345 −1.713

First order autoregression coefficient 0.968 0.95 0.986

Aichi Intercept −20.165 −27.325 −13.172

log(Night Population with 9-day-lag) 1.61 1.067 2.168

First order autoregression coefficient 0.959 0.938 0.979

Osaka Intercept −17.167 −28.262 −8.663

log(NP with 8-day-lag) 1.254 0.638 2.044

Daily change of log(NP with 8-day-lag) −3.398 −4.92 −1.843

First order autoregression coefficient 0.976 0.949 0.997

For Tokyo and Osaka, models with 8-day-lagged night population as well as its daily change were the best fit model, whereas the best fit model for Aichi does not include daily change in night-
time population. The estimates for intercept, coefficients of explanatory variables, and the first-order autocorrelation coefficients are shown with 95% confidence intervals.
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analysis, but we believe that the choice of windows tends to be rather 
arbitrary, and that temporal dynamics are better elucidated by time-
varying regression.

The third limitation is that we only considered three metropolitan 
areas in Japan using data that focus on social contacts in eating or 
drinking places. Because our results may not be valid in rural areas in 
Japan, further studies in other geographical locations are required. 
Also, unlike the openly accessible mobility data such as Google’s 
COVID-19 Community Mobility Reports (23), our night-time 
population data are not open and widely accessible, which might limit 
validations by other research groups. Nevertheless, the accuracy of our 
mobility data enabled us to focus almost purely on social contacts at 
eating or drinking places while excluding residential populations from 
our scope, which is the key strength of our study. Based on these data, 
current findings provide important insight for understanding the 
dynamics of COVID-19 transmission in highly and densely populated 
areas that represent major parts of the Kanto, Chubu, and Kinki 
regions of Japan.

Another limitation is that weak autocorrelation was still observed 
in the residuals of the fixed-effect model even with the inclusion of 
1st order autocorrelation structure for residuals. As for 
autocorrelation, we did not consider higher order autocorrelation 
considering the nature of COVID-19 transmission that usually 
occurs within the 1-week scope, but there is room to search candidate 
variables that might account for the remaining autocorrelation. In 

addition to autocorrelation, heteroscedasticity was observed mainly 
in the early phase, which is likely because weekly change rate in the 
early phase were volatile in all locations due to the relatively small 
number of COVID-19 cases. Even considering these issues, 
comparison with the result from time-varying regression suggests 
that the results from the fixed-effect regression model are also valid.

Despite the limitations mentioned above, we  successfully 
quantified the positive effects of night-time population in downtown 
areas on COVID-19 transmission using two statistical methods. In 
addition, we also found that, in Tokyo and Osaka, the daily difference 
in night-time population may also be  a predictor of COVID-19 
transmission. Our results emphasize the importance of human 
mobility data related to eating and drinking activities in society and 
offer evidence for the effectiveness of public health and social 
measures targeting high-risk activities or locations for COVID-19 
transmission. Specifically, our result shows that, if any dramatic 
change in population-level immune landscape may occur in the 
future due to the emergence of SARS-CoV-2 variants with significant 
immune evasiveness, public health policies should be designed so as 
to target social contacts that occur in eating or drinking settings 
including downtown areas. Moreover, this implication from our 
results can easily be expanded to other pandemics in the future that 
might be  caused by other novel respiratory pathogens including 
highly pathogenic avian influenza with transmissibility 
among humans.

FIGURE 3

Model estimates of weekly case counts (left column) and case counts (right column) by the fixed effect regression models for Tokyo, Aichi, and Osaka. 
Dots represent observed case count by Ministry of Health, Labor, and Welfare, while lines represent the expected value from our fixed-effect regression 
model. Shaded areas represent the region of 95% prediction intervals computed from the posterior distribution.
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5. Conclusion

Our results elucidated that night-time population has consistently 
been a significant predictor of COVID-19 dynamics. The consistency of 
the effect of night-time population throughout the COVID-19 pandemic 
up to mid-2022 is especially of note, considering the behavioral changes 
as well as vaccination campaigns rigorously carried out in Japan.

Even under circumstances where a diminished effort to contain 
and track COVID-19 paid for by public health officials, our finding 
encourages close monitoring of mobility indicators particularly 
focused on places with high levels of eating and drinking activities as 
a key predictor of surge in COVID-19 cases. Also, from a policy point 
of view, this finding implicates the importance of targeted financial 
support for restaurants or pubs that cooperatively close when the 
endemic situations are bad.

Though our results showed consistent validity throughout the 
COVID-19 pandemic so far, the validity might change, for example, 
due to the change in immunity levels at high-risk populations. Thus, 
future follow-up studies on this topic are warranted.
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