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Purpose: One possible way to quantify each individual’s response or damage

from ionizing radiation is to estimate their accelerated biological age following

exposure. Since there is currently no definitive way to know if biological age

estimations are accurate, we aim to establish a rad-age association using

genomics as its foundation.

Methods: Two datasets were combined and used to empirically find the age cuto�

between young and old patients. With age as both a categorical and continuous

variable, two other datasets that included radiation exposure are used to test the

interaction between radiation and age. The gene lists are oriented in preranked lists

for both pathway and diseases analysis. Finally, these genes are used to evaluate

another dataset on the clinical relevance in di�erentiating lung disease given

ethnicity and sex using both pairwise t-tests and linear models.

Results: Using 12 well-known genes associated with aging, a threshold of

29-years-old was found to be the di�erence between young and old patients. The

two interaction tests yielded 234 unique genes such that pathway analysis flagged

IL-1 signaling and PRPP biosynthesis as significant with high cell proliferation

diseases and carcinomas being a common trend. LAPTM4Bwas the only genewith

significant interaction among lung disease, ethnicity, and sex, with fold change

greater than two.

Conclusion: The results corroborate an initial association between radiation and

age, given inflammation and metabolic pathways and multiple genes emphasizing

mitochondrial function, oxidation, and histone modification. Being able to tie

rad-age genes to lung disease supplements future work for risk assessment

following radiation exposure.
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1. Introduction

Biological aging is an ever-evolving field of study. While the

need exists in detaching from concepts of simple chronological

age (CA), a standard cannot exist without a consensus on what is

being estimated. The Klemera–Doubal (KD) method in computing

biological age (BA) emerged as an early standard in 2006 as

an improvement over MLR and PCA by evaluating biomarkers

according to their impact on life expectancy and treating CA as

another independent variable instead of as the criteria (1). Since

then, great strides have been made on expanding its accuracy

and building on the understanding of aging mechanisms by

employing deep learning techniques for estimation (2), exploring

multiomic approaches (3), and integrating for both wellness

and disease predictability (4, 5). Arguably the most significant

advancement in aging theory has been the development of the

epigenetic clock using 353 methylation-based biomarkers as a

means to estimate biological age (6). During literature review of

BA estimation, a plethora of studies claim great yet unrelated

success and lack of consensus for the sake of publication

culture in science and academia. Before proposing yet another

biological age estimator, this study instead takes a step back to a

precursor requirement in identifying a reference variable to gauge

relative accuracy.

Exposure to ionizing radiation (IR) is known to have

similarities with aging. IR was thought to cause accelerated aging

in an organism since it induced a large amount of diseases

closely related to natural aging such as cardiovascular diseases,

cancers, autoimmune diseases, cognitive impairment, cataracts,

and a shortened life span (7). At first, the association was dismissed

since radiation exposuremostly caused genetic damage and affected

proliferating cells. But recent advances in understanding the

overlap between the fields of aging and the biological effects of

ionizing radiation (IR) are largely related to oxidative stress and

inflammation, genomic instability, stem cell exhaustion, and cell

senescence. In one such study, Campisi and d’Adda di Fagagna

discuss the role of cellular senescence in aging and disease,

including its relationship to oxidative stress and inflammation.

The authors also highlight the effects of ionizing radiation (IR) on

cellular senescence and the potential for IR to induce cellular stress

responses, such as genomic instability and stem cell exhaustion

(8). This study concludes that while there is still much to be

learned about the connection among aging, cellular senescence,

and IR, it is clear that these processes are closely related and

require further investigation. However, limited data do not support

a direct correlation between IR and changes in telomere length

as reported by Sabatino et al., where IR may contribute but other

factors are likely to play a more significant role (9). Along with the

nine hallmarks of aging, the three processes of aging can be seen

as the accumulation wear and tear, antagonistic pleiotropy, and

disposable soma—we found Richardson’s article to be thoroughly

informative on these concepts and reviewing mentioned overlap

between age and IR (10).

Biological effects of radiation are still a large field of study in

dealing with dose, dose-rate, type of radiation, age of individuals,

types of cells or tissues in question, underlying conditions, nutrition

or lifestyle, and even calibratingmeasurements for these mentioned

variables. While there is still some need for understanding the

workforce dealing with nuclear materials, renewed interest has

been seen in applications in space. Beyond low-Earth orbit (LEO),

astronauts will face significantly more radioactivity than on Earth

due to solar particle events (SPEs), galactic cosmic rays (GCR),

and solar wind. GCR dose-rates can be 50–100 mGy/year at solar

maximum and 150–300 mGy/year at solar minimum, while SPEs

can fluctuate wildly and achieve 1,400–2,837 mGy/h. On top of

high levels of radiation, no studies have successfully emulated the

intravehicular radiation spectrum that astronauts are exposed to

during space travel (11, 12). While acute exposure is understood

and avoided by any means, there is a gap in consensus with

low-dose, chronic exposure. In 2021, the Nuclear Regulatory

Commission (NRC) upheld its linear, no-threshold model as a

sound basis to protect against radiation and is endorsed by the U.S.

Environmental Protection Agency. The United Nations Scientific

Committee on the Effects of Atomic Radiation no longer supports

the model for very low radiation doses as well as disputes have been

submitted to the NRC to officially move beyond such a model (13–

15). However, theremay exist some threshold to exceed, or evidence

of radiation hormesis in the longterm, to contradict thoughts of

linear, no-threshold assumptions (16–18). While there are some

experimental and plant studies showing benefit from radiation

exposure, it is a complex network of variables in an undeveloped

field that would need a number of dedicated studies and controls

that are out of scope at this time (19, 20).

Instead, we focused on gathering publicly available data from

original studies that exposed blood to gamma radiation. Our

hypothesis is that genomics can serve as a foundation in creating

an association between effects of ionizing radiation and natural

aging processes. To test this, we must make a few compromising

assumptions given that previously collected data for secondary

analysis will have static and limiting clinical information. Since

biological age is understood to relatively follow chronological

age with some variation, CA is used to assess commonality with

radiation exposure (21–23). This allows us to initially study the rad-

age association with genetics focus without having to implement

a biological age estimator. This lays a large assumption that BA is

dependent on CA which is an accepted risk for this study. Should

the two rad-age variables correlate and therefore supplement

effects, biomarkers can be used to indicate conditions closely

related to the two separately. Cells with high proliferation rate are

particularly susceptible to damaged DNA that may accumulate over

time (age) or environmental factors (radiation), thus leading to

using disease diagnosis as a case point (10, 24). Lungs were chosen

as an initial organ of interest because of its overlap in disease with

increased age or radiation damage. While findings have potential

benefits to other organs or systems, this serves as a starting point

for future studies.

2. Materials and methods

A known limitation of secondary analysis is data availability for

target factors. Because of this, we use various datasets to evaluate

different pieces of our intended hypothesis while maintaining

control on a few variables such as organism (human), tissue

Frontiers in PublicHealth 02 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1161124
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ruprecht et al. 10.3389/fpubh.2023.1161124

(blood), radiation type (gamma rays), and dose (within CDC

categories). We use two datasets of otherwise healthy individuals

to study age, one dataset of radiation only, two other datasets that

capture both age and radiation exposure, and finally one dataset

involved with a number of lung diseases. The intent of the first

five datasets is to generate a list of statistically significant genes

that can be used for (a) functional pathway and disease analysis

and (b) used for predictability of the various lung diseases of the

sixth dataset. The rest of this section is structured to introduce

the reader to these datasets, the statistical processes for evaluating

age, the interaction tests for radiation and age, and applicability to

predicting lung disease.

2.1. Data characteristics

Datasets from multiple repositories were evaluated for

relevance and secondary analysis feasibility. While 34 sets were

initially identified with 1,869 samples, eliminating factors included

different tissues samples, underlying health concerns that would

have unknown effects on results, inconsistent radiation levels or

different types of radiation exposure, age or radiation levels not

collected or part of the experiment, and trimming outliers from our

final set to better capture the variance of expression. The flow of

datasets evaluation as well as this article’s research flow is shown

in Figure 1 with clinical information on chosen data in Tables 1, 2.

To best capture and combine different data, five identifiers from

GEO platform GPL6480 were used that included samples exposed

to a range of gamma radiation and healthy controls: GSE20173,

GSE21240, GSE23515, GSE42488, and GSE53351. All datasets are

studies previously conducted on human cohorts and blood samples

collected for respective analysis. They are publicly available and

are used here as secondary analysis for the purpose of studying

the genetic interaction between age and radiation exposure. The

distribution of gene expression along with the principal component

analysis is calculated and provided in Supplementary material for

descriptive purposes to support unbiased processing and data

usage. However, for the most precise analysis, GSE identifiers

were combined and processed depending on the category being

evaluated using R package limma v3.52.1. Datasets were for both

independent and dependent analyses of chronological age and

ionizing radiation to capture a genomics-based foundation for

association and indirect benefit to disease differentiation. To better

reference these datasets, nomenclature follows “A” for datasets

used to analyze solely age, “B” for the radiation-age interaction

(or “Both”), “D” for the disease dataset, and “R” for radiation

only analysis.

From the combined sets of GSE42488 (Data-A1) (25) and

GSE53351 (Data-A2) (26), the original studies includes 377 samples

taken from otherwise healthy, control patients of chronological age

ranging from 21 to 69 years of age. The study that yielded the Data-

A1 dataset involved collecting whole blood from 76 individuals in

Japan to study peripheral bloodmRNA expression. Data-A2 dataset

was collected from 301 apparently healthy individuals residing in

Japan to study the transcriptional profile in peripheral blood cells.

Outliers were detected and excluded fromData-A1 (2 samples) and

Data-A2 (1 sample). We preprocessed, combined, and removed

the batch effect of studies using R package limma v3.52.1 on

this data to continue with our secondary analysis of original data

to empirically evaluate an age threshold between old and young

patients. A recognized limitation of this approach is the region of

the original studies as ethnicity is not taken into account due to

data availability.

Interaction analysis was conducted on the combined sets of

GSE21240 (Data-B1) and GSE23515 (Data-B2) (27), where a total

of 143 originally collected samples were taken with a chronological

age range from 21 to 64 years exposed to various levels of ionizing

radiation to include 0 Gy (controls), 0.1 Gy, 0.5 Gy, and 2 Gy. Data-

B1 was a study of peripheral blood mononuclear cells (PBMCs)

from six individuals, following two different blood preservation

methods, performing RNA extraction immediately or 3 h after an

ex vivo exposure to 0.5 Gy of Cesium-137 gamma rays for 1 min

totaling 48 samples. Data-B2 studied peripheral blood cells from 24

different donors (95 samples due to one sample being lost) exposed

ex vivo to 0 Gy (controls), 0.1, 0.5, and 2 Gy at a dose rate of 0.82

Gy/min from Cesium-137 gamma radiation to study radioactive

responses between sex and smoking behavior.

Combined with Data-B1 and Data-B2, GSE20173 (Data-R1)

(28) was included for ionizing radiation only analysis to capture

20 additional samples collected during its original study. Data-

R1 analyzed the miRNA expression profile of peripheral blood

lymphocytes incubated for 4 and 24 h in normal gravity (1 g) and

in modeled microgravity after irradiation with 0.2 and 2 Gy of

gamma rays (five participants across four conditions). From the

five datasets, Data-R1 was excluded when evaluating sex due to

this information not being collected at the time of the original

study being conducted. Data-B1, Data-B2, Data-A1, and Data-A2

result in 230 male and 290 female samples of varying age and

radiation exposure.

Finally, we use a dataset of patients with various diseases of the

lung. GSE42834 (Data-D1) (29) samples whole blood to compare

patients with tuberculosis (TB), sarcoidosis, pneumonia, and lung

cancer and is pre-categorized to train, test, and validation sets.

While initially 356 samples were involved in the original study,

missing demographics and focusing on separated data dwindles

down the used data in this article to 236 samples as shown in

Table 2. These data were used to explore statistical relevance of

identified rad-age genes in differentiating patients with regard to

their illness, ethnicity, and sex.

2.2. Statistical and functional analysis

To evaluate age as a categorical variable with regard to old vs.

young patients, a cutoff threshold needed to be defined. While 16

known genetic indicators of age were initially of interest to analyze

thresholds, four were not in the aging datasets but were included

here for a thorough review: GATA6 (30), RIPK1 (31), CDKN1A

(P21) (32), and RIPK3 (33). The remaining 12 were available and

used to analyze threshold from 21 to 65 years of age, which are as

follows: CDKN2A (P16) (34), FOXO1 (35), SIRT1 (36), IL6 (37),

TFAM (38), mTOR (39), TSC1 (40), TP53 (41), SIRT6 (42), MLKL

(43), ALOX15B (44), and TNFAIP3 (TNFα) (45).

As mentioned above, the raw data of Data-A1 and Data-A2

from GPL6480 were combined and processed using R package

limma to produce 374 of otherwise healthy, control patients to
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FIGURE 1

Flow of study identification and elimination. (A) Continued breakdown to show study consideration and assignment of original studies to categories

of analysis. We show stages of dwindling down the 34 identified studies with reasoning for eliminating and eventual choosing five studies for each

area of interest. (B) Detailed look at the completed process for this article with color-coded separation for each analysis category. This is an

integrated look at our overall approach given various datasets, methodology applied, and a few results in identified figures.
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TABLE 1 Demographics of the five datasets we use to analyze the association between radiation exposure and aging processes.

Radiation

Age Interaction models

GSE42488 GSE53351 GSE20173 GSE21240 GSE23515

Data-A1 Data-A2 P Data-R1 Data-B1 Data-B2 P Total

Sex
Male 38 102 0.670 - 40 48

0.018
228

Female 36 198 - 8 47 289

Age as a categorical variable (yrs) Young (≤ 29) 16 0 0.001 - 24 24
0.823

64

Old (>29) 58 300 - 24 71 453

Radiation exposure levels (Gy) Control (DT = 0) 74 300 - 10 24 24 0.222 432

Low Rad (0 < DT < 0.5) 0 0 - 0 0 24 0.293 24

Med Rad (0.5 ≤ DT < 1) 0 0 - 0 24 24 0.873 48

High Rad (1 ≤ DT ) 0 0 - 10 0 23 0.042 33

Gravity 0.1 g - - - 10 - -
0.076

10

1 g - - - 10 - - 10

Smoking behavior Smoker - - - - - 47
0.479

47

Non- smoker - - - - - 48 48

Total 74 300 20 48 95 537
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TABLE 2 Demographics of the “disease” dataset to evaluate potential applications of our findings from rad-age association.

GSE42834

Data-D1

Train Test Val Total

Disease

Control 46 52 23 121

Pneumonia - 6 - 6

TB 16 11 8 35

Active sarcoidosis 15 16 6 37

Non-active sarcoidosis 8 9 4 21

Lung cancer 8 8 - 16

Ethnicity

Central Asia - - 1 1

SE Asia - 3 - 3

Indian subcontinent 15 15 6 36

Middle Eastern - 2 - 2

Caucasian 56 60 19 135

African 21 22 15 58

Sex
Male 46 47 13 106

Female 47 55 28 130

Total 93 102 41 236

explore age threshold cutoffs. The intent was to implement a for-

loop through the range of chronological ages to evaluate each as a

cutoff for age classification. During the first loop, set all samples

of 21 years of age or less to the “young” category or labeled

“1” and all other samples greater than those just identified to

“old” or “0” class, then iterating through to 65 years of age. With

these two classes, perform a student t-test and generalized linear

model to evaluate the significant differences and predictability

using those aging genes just described. A student t-test was

conducted for each gene of interest at each age year to capture

the respective p-value and fold change. Additionally, a generalized

linear model was fit using the genes individually on each year to

calculate the area under the curve (AUC) of the receiver operating

characteristic (ROC) to evaluate the accuracy of the model with

respect to specificity and sensitivity. For modeling, the data were

split into train/test subsets using a 60/40 ratio while maintaining

distribution of age as a continuous variable. Interpreting the

significance and AUC-ROC of the genes led to a cutoff age used

for defining young vs. old in all future analysis. As the age cutoff

progressed, the number of young and old samples would change.

Supplementary Figure 2A depicts our approach to accounting for

an uneven distribution. With a lower cutoff, there would be less

“young” samples compared to those classified as “old.” We would

randomly sample patients from the larger class in order to have

a 50/50 split in an effort to create an unbiased dataset from

modeling. We did 1,000 permutations of this approach to get

an average AUC for each gene at each age threshold. At some

point, the age cutoff would reach a point where there were less

“old” patients than “young,” in which case, our approach remains

the same in sampling the larger patient set (young) to match the

lesser (old) for a 50/50 split and run 1,000 times. This ensures an

even ratio of each class while randomly sampling to capture the

entire population.

For radiation classification, Data-R1, Data-B1, and Data-B2

were similarly combined and processed using the same R package

and processed to produce 163 samples with controls or levels of 0

Gy exposure labeled as “control” or “0”, low/1 for 0< DT <0.5

Gy, medium/2 for 0.5≤ DT <1 Gy, and high/3 for 1 Gy ≤ DT

exposure levels. These radiation bins fall in line with the radiation

hazard scale set forth by the Centers for Disease Control and

Prevention (CDC). Our low category is equivalent to a CDC

Category 3, medium to a Category 4, and high to a Category 5.

Since our bins were chosen based on the available data ranges

for the sake of initial studies, a larger distribution will be needed

to capture very low exposure that may exist. For evaluating sex,

samples were the combined datasets of Data-B1, Data-B2, Data-

A1, and Data-A2 with males as class 1 and females as class 0. Only

datasets that included a factor of interest were used to analyze

that factor, for example, Data-A1 and Data-A2 were used to study

only age and had no influence on our methodology or results

for studying radiation exposure. Student t-test was performed on

the six combinations of radiation exposure and sex to capture

significant genes with regard to t-statistic, FDR adjusted p-value,

and log2FC. The results were used for pre-ranked enrichment

analysis using Ingenuity Pathway Analysis (IPA). Results of the

gene level analysis via t-test and pathway analysis via IPA are

recorded and discussed.

A linearized model was implemented to conduct an interaction

test between age and radiation exposure (general form of genes ∼

age ∗ rad and referred to as interaction models). As mentioned,

Data-B1 and Data-B2 were processed together since the original

studies collected both age and radiation information. With the age
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cutoff in mind, models were created for both age as a categorical

(young/old) and as a continuous variable. Similarly, data were split

into train/test subsets using a 60/40 ratio maintaining distribution

of chronological age as a continuous variable (and therefore classes)

and ionizing radiation exposure levels. The significantly changing

genes with an Age*Rad p < 0.05 were used for functional analysis

via IPA while also looking at other clinical factors.

2.3. Clinical applicability

The intent was to see if the genes just identified to associate

aging process to radiation exposure have application potential

when looking at disease along with demographic separation of

ethnicity and sex. A successful finding would mean that direct

association of rad-age also has an indirect association to lung

diseases. Therefore, preventing/monitoring radiation exposure or

aging would have the secondary benefit to preventing such diseases.

After the linear models to test the interaction between radiation

exposure and age (both as a continuous and categorical variable),

the combined significant gene list comprised of 234 genes. We

conducted a pairwise comparison of these genes from Data-D1 to

look at differentiation among ethnicity (i.e., Caucasian vs. others,

African vs. others, and Indian vs. others), disease (i.e., Control vs.

others, lung cancer vs. others, etc.), and sex. Again, being secondary

analysis, we are limited to evaluate factors that were originally

collected only. We filtered results by genes that were significantly

different (p < 0.05) in at least two of these test cases across all

train, test, and validation sets, as well as a log2FC greater than 2.

With these genes that are now validated on independent analysis of

demographics, we then do an interaction test to capture dependent

significance using a linear model in R with the general form of

gene ∼ disease ∗ ethnicity ∗ sex. Three genes had significant

differentiation and were presented for discussion.

3. Results

3.1. Chronological age threshold

The first topic of debate to clarify was the threshold between

what’s considered an old or young patient. With these datasets

including a large chronological range, linearized models fit to each

year as a cutoff was evaluated by looking at the respective p-value,

fold change, and accuracy with regard to AUC-ROC. The heatmaps

for the p-values and log2FC from the t-test along with the train/test

AUC-ROC heatmaps of the 12 previously mentioned genes are

shown in Figure 2. Especially looking at the averaged AUC-ROC

heatmaps (Figure 2A), it shows an increase in predictability at a

younger age before dipping at middle-aged cutoffs and returning

to a significant level with older values. Since no gene at any tested

age cutoff showed a significant fold change with an absolute value

greater than 2 (Figure 2B), the decision relied on the AUC-ROC

of significantly different genes. The main portion to draw the

reader’s attention to is Figure 2D, this overlays the p-value with

the average test AUC values to highlight the predictability of only

the genes that were significantly changing at those age cutoffs.

There were more genes of significant p-value (5 of 12 shown in

Supplementary Figure 2B) as well as a higher average AUC (0.672)

when “young” is classified as those with a chronological age equal

to or less than 29 years and “old” classified as greater than young.

This is our empirical definition of age cutoff or threshold that will

be used to treat age as a categorical variable.

3.2. Statistical analysis and interaction
modeling

With a young/old threshold of 29 years old, a student’s t-

test was conducted as described on respective datasets comparing

means of two populations: control vs. any radiation, control

vs. low radiation, low vs. medium radiation, medium vs. high

radiation, and young vs. old. Interaction models were created

using age as a categorical and continuous variable with radiation

to explore dependent changes in gene expression. The significant

genes with a false discovery rate (FDR) adjusted p-value of less

than 0.05 of the seven described cases (combined 234 unique genes

from the interaction models) were compared to see if there is

any overlap in areas of interest in Figure 3A. Given numerous

combinations of test conditions, comparisons are shown in an

alternative representation to Venn Diagrams using the UpSetR

v1.4.0 package within R. In Figure 3B, we viewed gene regulation

direction for the 17 genes (18 probes) common amongst the t-

test. From it, we see a trend of continued upregulation in gene

expression as radiation levels increase in 15 of the 17 genes, the

other two (SYNPO and EBI3) saw initial downregulation with low

levels of radiation exposure before a continual upregulation with

increased exposure levels. Of note with changes in expression for

radiation and age are ASCC3 and SYNPO. ASCC3 is involved in

nucleic acid unwinding and associated with homology directed

repair and was observed to increase with age to corroborate this

association (46). SYNPO is involved in actin-based cell shape

and motility and was downregulated with age and from no- to

low-radiation levels exposure (47). The other 15 genes show no

directional change with age. Additionally, there are seven genes

with various combinations of overlap between the t-test results

and the interaction models that seem to support our association:

ANKRA2 is involved in enzyme binding activity and regulates

histone deacetylases (48); BRMS1L is a breast cancer suppressor

gene that is also a component of histone deacetylase complexes

(49); HADH functions in mitochondria to catalyze oxidation (50);

POPDC2 is a membrane-associated protein in skeletal and cardiac

muscle that is associated with regulating heart rate (51); SAMD3,

SLC4A11, and VAMP4 with lesser supporting literature.

3.3. Functional analysis

The two interaction models generated separate gene lists that

were used for functional analysis following Figures 3C–E. When

using age as a continuous variable, there were 64 significant

genes, and 197 genes were significant with age as a categorical

variable (Figure 3C). The respective p-value, log2FC(radiation),

and log2FC(age) were all used to create a preranked list

entering IPA. The results were 33 significantly expressed pathways
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FIGURE 2

Empirical age threshold determination of 29 years old. (A) shows the average training and test area under the curve (AUC) results when using each

genes (x-axis) to predict old/young with the cuto� equal to each year (y-axis). This orientation (genes/age on x-/y-axis) is used in each heatmap. (B)

shows the log2 fold change of each gene at each age. With no magnitude greater than 2, we rely on AUC and p-value to determine age cuto�. (C) is

the p-value of each gene at each age using the student t-test comparison. (D) is overlapping the test AUC and p-value so it is easier to see which

genes are both significant and predictable of age. This is the heatmap used to choose 29-years-old as our cuto� given the most amount of

significant genes that are also able to accurately predict young vs. old.
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FIGURE 3

Resulting Venn diagrams and trend plot. Because of the large number of test cases, bar plots via UpSetR are used in place of traditional Venn

Diagrams where applicable. (A) shows the multi-category overlap in significant genes between t-tests of increasing radiation exposure, age as a

categorical variable, and the rad-age interaction test. While no gene was found in all test cases, 17 genes were common in many and explored more

in the discussion as well as the next plot. (B) shows the up- and downregulation of the 17-overlapping t-test genes from (A) to emphasize fold

change trend with increasing radiation exposure in relation to age. With yellow showing increasing gene expression, we mainly see an increase in

expression with an increase in radiation exposure save a few genes which have a more detailed discussion in the manuscript. (C) shows the overlap

between interaction models to identify 234 unique genes. This gene list is the basis for functional analysis in IPA to produce the remainder of these

subfigures. (D) shows the overlap in significant pathways from the interaction test gene lists using IPA. PRPP biosynthesis and IL-1 signaling are the

two common and discussed in detail in the text body. (E) shows the overlap in significant diseases from the same gene lists using IPA. A common

theme of diseases deal with health issues in high proliferating cells and cancers of multiple tissue types.
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(Figure 3D) associated with 782 diseases with list intersection

(Figure 3E). We show dot plots for both pathways and diseases

in Supplementary Figure 3. Of the 19 overlapping pathways, the

two captured regardless of ranked list are IL-1 signaling and PRPP

biosynthesis while other reoccurring pathways included dolichyl-

diphosphooligosaccharide and creatine-phosphate biosynthesis. Of

the 79 overlapping significant diseases, we see a common trend of

cancers among high proliferating cells that can be expected from

both older age and radiation exposure separately. While the top 20

diseases are shown to primarily be cancers of the digestive system,

other diseases flagged as significant include non-melanoma tumors,

extracranial tumors, head and neck tumors, pelvic cancer, breast

cancer, and general carcinoma.

3.4. Clinical potential

From the 234 unique genes generated from the rad-age

interaction tests, 10 genes were statistically significant when

either looking at pairwise disease, ethnicity, or sex comparison

across train, test, and validation subsets of Data-D1: ASTE1,

ATP2A3, CDYL2, LAPTM4B, PMS2P1, PXYLP1, ROM1, SLC37A3,

SRPK1, and ZNF469. Tables of these comparisons are given in

the Supplementary material. When looking at a more detailed

interaction between clinical factors, three showed significant

relations: LAPTM4B, ROM1, and SRPK1. We want to highlight

LAPTM4B (probe ID ILMN_1680196) which was the only gene

to have a significant p-value (p = 0.004) when looking at the

interaction among all three variables: disease, ethnicity, and sex. A

box plot breakdown of this gene is shown in Figure 4 to highlight

pairwise p-value and significance across each clinical factor.

Meanwhile, SRPK1 (probe ID of ILMN_1798804) was significant

with disease and sex and ROM1 (probe ID ILMN_1723743) was

only significant with disease differentiation.

4. Discussion

Let us emphasize the importance that chronological age is used

for this study under the assumption that biological age is relatively

close to chronological age and attempting to estimate biological age

is out of the scope of this article. Instead, finding a reasonable cutoff

for chronological age gives a statistically significant foundation

for future study starting points. The reasoning behind empirically

defining a cutoff age is due to the lack of consensus on what a

chronological cutoff age would be. For that purpose, these results

support a continued use of a 29-year-old threshold delineating

young from old for subsequent analysis. We admit this process

is limited and an initial generalization of defining such a term.

However, it provided a baseline to allow continuous and categorical

analysis of a rad-age interaction. Ideally, a future study would run

an identical approach on a much larger sample population while

adjusting for clinical factors that were unavailable to our dataset

such as sex and ethnicity. A multi-category cutoff of biological age

depending on the patient is more reasonable given the changes in

estimation with respect to such factors.

After defining a chronological age cutoff, the following becomes

an effort to corroborate a rad-age association without necessarily

identifying anything new or unknown to the community. This

is done using a genomics only foundation to understanding

functional relevance via pathway and disease analysis. Capturing

234 statistically significant genes are used for pathway and

disease discussion, while the subset of 17 presented earlier

starts painting the picture. Of the 15 genes that changed with

radiation level but not age, seven were found amongst t-tests

and four are mentioned to have supporting literature in their

association to radiation exposure. Interestingly, ANKRA1 and

BRMS1L are involved in histone deacetylation while HADH

functions in mitochondria to catalyze oxidation. While the gene

expressions did not show change with age in our dataset, their

functions are closely tied to biological aging processes. Both

histone modification and oxidative stress are ongoing fields

of study in aging with recent studies on using findings for

understanding subpopulation aging and cancer therapy (52–54).

It could be part of a future study with additional resources to

see if these genes are a point of epigenetic change for biological

age estimation.

As we aim to supplement a rad-age association, lets take some

time to dig into the two genes that saw change in expression

with respect to both age and radiation exposure: SYNPO and

ASCC3. Although SYNPO is loosely involved, it’s role in cell

motility has an association with biological aging. As cells age,

they may experience a decline in the ability to move, migrate,

and respond to stimuli in their environment. This decline in

cell motility can contribute to changes in tissue organization

and function, as well as to the development of age-related

diseases (55). Several factors are thought to contribute to the

decline in cell motility with aging, including changes in the

cytoskeleton and the cellular microenvironment. In particular,

changes in the levels of matrix metalloproteinases (MMPs) and

their inhibitors, as well as changes in the levels of extracellular

matrix (ECM) components, can affect cell motility (56). In

addition, oxidative stress, which is a hallmark of aging, can

also lead to changes in cell motility. For example, oxidative

stress can damage the cytoskeleton and the cellular machinery

that is necessary for cell migration (57). With regard to the

role of ASCC3, the relationship between nucleic acid unwinding

and biological aging is not well-understood. However, there is

some evidence to suggest that changes in the regulation of DNA

unwinding and replication may contribute to aging and age-

related diseases. Nucleic acids, such as DNA, are tightly wound

and packaged in the nucleus of cells, and must be unwound to

be transcribed and replicated. The process of DNA unwinding

is tightly regulated and controlled by a variety of enzymes

and factors, including helicases and topoisomerases (58). Aging

can lead to changes in the regulation of DNA unwinding and

replication, which can contribute to genomic instability, cellular

senescence, and age-related diseases (59). For example, aging can

result in changes in the levels of enzymes involved in DNA

unwinding, leading to alterations in the rate and accuracy of DNA

replication (60). Additionally, oxidative stress can cause DNA

damage and lead to alterations in the activity of enzymes involved

in DNA unwinding and replication (61). While the genes alone

give us confidence in a basic genetics-based association, it also

lends a hand to continued research on epigenetics to look at

histone modification.
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FIGURE 4

P-value boxplots of our most significant lung disease predictor gene: LAPTM4B. When using our rad-age gene list to attempt to di�erentiate lung

disease of a separate dataset (p = 4e-14), this gene had a significant interaction (p = 0.004) when also accounting for sex (p = 0.01) and given

ethnicities (p = 0.021). While this is not intended to have immediate e�ect on the community for biomarker identification, this does show that

rad-age genes can supplement disease risk assessment in areas that may be independently associated with radiation exposure or aging while also

accounting for external clinical factors.

After running IPA, the respective dot plots showed high gene

ratio and significant pathways of mention to be IL-1 signaling,

PRPP biosynthesis, and RhoA signaling. Seeing IL-1 signaling

is a catch-all pathway in our associative study since IL-1 is

a pro-inflammatory cytokine that plays a central role in the

regulation of the immune response and the maintenance of

tissue homeostasis. IL-1 signaling pathway is activated by the

binding of IL-1 to its receptor (IL-1R), leading to the activation

of several intracellular signaling pathways, including the NF-κB,

MAPK, and JAK-STAT pathways. In the context of aging, IL-1

signaling pathway has been implicated in the regulation of various

aging processes, including cellular senescence, oxidative stress, and

inflammation. Cellular senescence is a state of irreversible growth

arrest that occurs in cells as a result of various stressors, including

oxidative stress and DNA damage. IL-1 signaling pathway has

been shown to play a role in the induction of cellular senescence

by activating pro-inflammatory cytokine production and oxidative

stress (62). We see that oxidative stress is mentioned again here

with various age-related diseases, including cardiovascular disease,

neurodegeneration, and cancer. IL-1 signaling pathway has been

shown to contribute to oxidative stress by inducing the production

of reactive oxygen species (ROS) and activating oxidative stress-

responsive signaling pathways. Inflammation is another hallmark

of aging and is associated with various age-related diseases,

including cardiovascular disease, neurodegeneration, and cancer.

IL-1 signaling pathway has been shown to play a central role in the

regulation of inflammation by activating immune cells, inducing

the production of pro-inflammatory cytokines, and triggering the

release of various chemical mediators (63). While there was some

variation, GNA12 and TOLLIP were common in all gene lists that

triggered a significant response via IPA in flagging this pathway

being involved in regulating TOR and inflammation signaling.

Additionally, PRPP biosynthesis was also significant as it is

an important intermediate in cellular metabolism. The PRPP

biosynthesis pathway is an important metabolic process that

involves the production of Phosphoribosyl pyrophosphate (PRPP),

which is a key molecule involved in the synthesis of purines and

pyrimidines, the building blocks of DNA and RNA. The pathway

is regulated by multiple enzymes and factors, including PRPP

synthase and inosine monophosphate dehydrogenase (IMPDH).

The relationship between the PRPP biosynthesis pathway and aging

processes is not well-understood, but some studies suggest that

alterations in the pathway can contribute to aging-related cellular

changes and diseases. For example, changes in the expression

or activity of PRPP synthase or IMPDH can affect the balance

between PRPP production and consumption, leading to imbalances

in purine and pyrimidine metabolism and potentially contributing

to age-related cellular dysfunction. However, more research is

needed to fully understand the role of PRPP biosynthesis in aging

processes, and to determine the specific mechanisms by which

changes in the pathway might contribute to cellular aging and

age-related diseases. PRPS2 was in all gene lists and encodes a

phosphoribosyl pyrophosphate synthase that plays a central role in

the synthesis of purines and pyrimidines that catalyzes the PRPP

reaction. Another pathway that overlapped many (but not all)

cases was RhoA signaling which is key in cytokinesis, proliferation,

and adhesion to MEF cells with multiple genes of this pathways

being flagged.

As mentioned and expected, the majority of emphasized

diseases included various cancers. The association between aging

and radiation exposure with respect to cancer has been extensively

studied. Radiation exposure is known to increase the risk of

developing certain types of cancer, and this risk increases with

age. The mechanisms underlying this association are not fully

understood, but several potential mechanisms have been proposed,

including oxidative stress, genomic instability, and inflammation.

For example, one study showed that ionizing radiation can induce

oxidative stress and DNA damage, leading to an increased risk of

cancer (64). Another found that exposure to ionizing radiation

can increase inflammation, which is known to play a role in the
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development and progression of cancer (65). Finally, another study

explored the impact of radiation exposure on the genomic stability

of cells by showing that exposure to ionizing radiation can cause

DNA double-strand breaks, leading to chromosomal instability and

an increased risk of cancer (66).

When looking to use the 234 genes to differentiate among

lung diseases including cancer, 10 were statistically significant

with one (LAPTM4B) being relevant across all ethnicity, sex, and

diseases. LAPTM4B, also known as Lysosomal-associated protein

transmembrane 4 beta, has been associated with various lung

diseases. LAPTM4B is a lysosomal protein that plays a role in

regulating the function of lysosomes, which are cellular organelles

involved in the degradation and recycling of cellular waste. Studies

have shown that alterations in the expression of LAPTM4B are

associated with various lung diseases, including chronic obstructive

pulmonary disease (COPD) and idiopathic pulmonary fibrosis

(IPF). One such study found that LAPTM4B is upregulated in

the lung tissues of patients with IPF, and that this upregulation

is associated with increased oxidative stress and cellular injury

(67), while another found that LAPTM4B is also upregulated in

the lung tissues of patients with COPD and that this upregulation

is associated with increased inflammation and oxidative stress

(68). LAPTM4B has been shown to regulate the accumulation of

oxidative stress and inflammation in vitro, as well as modulating the

activity of enzymes involved in cellular senescence (69). However,

more research is needed to fully understand the role of LAPTM4B

in aging processes. Also of no great surprise is seeing SRPK1 when

evaluating lung disease relevance since this gene is associated with

lung cancer and RNA binding and protein kinase activity. Future

studies in this field would involve validating findings on a wider and

larger population for potential use in a biosensor for monitoring

lung disease development following radiation exposure.

5. Conclusion

The intent of this study was to use publicly available data from

previously conducted, original studies to do secondary analysis

with regard to associating aging processes with exposure to ionizing

radiation. To avoid biological bias to underlying health conditions

(cancer patients undergoing radiation therapy), we used datasets

focused on blood samples from otherwise healthy patients who

were exposed to radiation. Due to a lack of consensus or support

from literature, a large number of control samples were used to

define an age cutoff to create two populations between young and

old which was empirically found to be 29 years old. With the

combined datasets, student’s t-tests were performed on a number

of test conditions and more importantly a linearized model on

the interaction test between age (both continuous and categorical)

and radiation.

These statistical tests identified 15 overlapping genes with

continued upregulation with increased radiation exposure, the

interaction models identified 234 unique genes used for preranked

analysis via p-value and fold change, and seven genes overlapped

the interaction and statistical results emphasizing critical factors

such as mitochondrial function, oxidation, histone acetylation, and

cardiac function. From IPA via the preranked lists, two pathways

were significant across our redundant preranked lists involving IL-

1 signaling and PRPP biosynthesis; both of which corroborate a

rad-age association. There’s a multitude of overlaps in significant

diseases with a fairly common trend being those associated with

high proliferating cells as expected. Finally, evaluating these rad-

age genes for indirect collaboration with other disease (namely

those of the lung), 10 genes had significant independent pairwise

comparison results, three of which with significant interactions

and one with statistically significant differentiation, with disease,

ethnicity, and sex taken into account, LAPTM4B.

The significant functional analysis along with the success rate

using genes from the interaction model supplement theories on

an association between ionizing radiation exposure and aging.

These findings support the need for further association studies to

confirm and serve as a foundation for biological age estimation and

space studies. Should radiation have significant enough correlation,

persons of the same chronological age will have a biological age

variance explainable by measured radiation differences, and now

a reference point to estimate BA without direct measurement.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

and accession number(s) can be found in the

article/Supplementary material.

Ethics statement

Ethical review and approval was not required for the

study on human participants in accordance with the

local legislation and institutional requirements. Written

informed consent for participation was not required for this

study in accordance with the national legislation and the

institutional requirements.

Author contributions

NR performed the study conception and designing,

collection of data, preprocessing of data, bioinformatic analysis

and interpretation, and manuscript writing. SS performed

bioinformatic analysis and contributed to the writing of the

manuscript. KS contributed to collection of data and manuscript

writing. JG contributed to preprocessing data. BB contributed

to manuscript writing. DS provided guidance and financial

support. SKS provided guidance to design study, collection

of data, analyzed data, and contributed to the writing of the

article. All authors contributed to the article and approved the

submitted version.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

Frontiers in PublicHealth 12 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1161124
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ruprecht et al. 10.3389/fpubh.2023.1161124

that could be construed as a potential conflict of

interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may

be evaluated in this article, or claim that may be made

by its manufacturer, is not guaranteed or endorsed by

the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fpubh.2023.

1161124/full#supplementary-material

References

1. Klemera P, Doubal S. A new approach to the concept and computation of
biological age.Mech Ageing Dev. (2006) 127:240–8. doi: 10.1016/j.mad.2005.10.004

2. Ashiqur Rahman S, Giacobbi P, Pyles L, Mullett C, Doretto G, Adjeroh DA.
Deep learning for biological age estimation. Brief bioinform. (2021) 22:1767–81.
doi: 10.1093/bib/bbaa021

3. Solovev I, Shaposhnikov M, Moskalev A. Multi-omics approaches to
human biological age estimation. Mech Ageing Dev. (2020) 185:111192.
doi: 10.1016/j.mad.2019.111192

4. Earls JC, Rappaport N, Heath L, Wilmanski T, Magis AT, Schork NJ, et al.
Multi-omic biological age estimation and its correlation with wellness and disease
phenotypes: a longitudinal study of 3,558 individuals. J Gerontol Ser A. (2019)
74(Suppl_1):S52–60. doi: 10.1093/gerona/glz220

5. Armanious K, Abdulatif S, Shi W, Salian S, Küstner T, Weiskopf D, et al. Age-Net:
an MRI-based iterative framework for brain biological age estimation. IEEE Trans Med
Imaging. (2021) 40:1778–91. doi: 10.1109/TMI.2021.3066857

6. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock
theory of ageing. Nat Rev Genet. (2018) 19:371–84. doi: 10.1038/s41576-018-0004-3

7. Parihar VK, Allen BD, Caressi C, Kwok S, Chu E, Tran KK, et al. Cosmic
radiation exposure and persistent cognitive dysfunction. Sci Rep. (2016) 6:1–14.
doi: 10.1038/srep34774

8. Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to
good cells. Nat Rev Mol Cell Biol. (2007) 8:729–40. doi: 10.1038/nrm2233

9. Sabatino L, Picano E, Andreassi MG. Telomere shortening and ionizing
radiation: a possible role in vascular dysfunction? Int J Radiat Biol. (2012) 88:830–9.
doi: 10.3109/09553002.2012.709307

10. Richardson RB. Ionizing radiation and aging: rejuvenating an old idea. Aging.
(2009) 1:887. doi: 10.18632/aging.100081

11. Rodman C, Almeida-Porada G, George S, Moon J, Soker S, Pardee T, et al.
In vitro and in vivo assessment of direct effects of simulated solar and galactic
cosmic radiation on human hematopoietic stem/progenitor cells. Leukemia. (2017)
31:1398–407. doi: 10.1038/leu.2016.344

12. Chancellor JC, Blue RS, Cengel KA, Auñón-Chancellor SM, Rubins
KH, Katzgraber HG, et al. Limitations in predicting the space radiation
health risk for exploration astronauts. NPJ Microgravity. (2018) 4:1–11.
doi: 10.1038/s41526-018-0043-2

13. Wojcik A. Reflections on effects of low doses and risk inference based on the
UNSCEAR 2021 report on “biological mechanisms relevant for the inference of cancer
risks from low-dose and low-dose-rate radiation”. J Radiol Protect. (2022) 42:023501.
doi: 10.1088/1361-6498/ac591c

14. Cardarelli JJ, Ulsh BA. It is time to move beyond the linear no-threshold
theory for low-dose radiation protection.Dose Response. (2018) 16:1559325818779651.
doi: 10.1177/1559325818779651

15. Calabrese EJ, O’Connor MK. Estimating risk of low radiation doses–a critical
review of the BEIR VII report and its use of the linear no-threshold (LNT) hypothesis.
Radiat Res. (2014) 182:463–74. doi: 10.1667/RR13829.1

16. Feinendegen L. Evidence for beneficial low level radiation effects and radiation
hormesis. Brit J Radiol. (2005) 78:3–7. doi: 10.1259/bjr/63353075

17. Luckey TD. Radiation hormesis: the good, the bad, and the ugly. Dose Response.
(2006) 4. doi: 10.2203/dose-response.06-102.Luckey

18. Tong J, Hei TK. Aging and age-related health effects of ionizing radiation. Radiat
Med Protect. (2020) 1:15–23. doi: 10.1016/j.radmp.2020.01.005

19. Tang FR, Loke WK. Molecular mechanisms of low dose ionizing radiation-
induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic
instability. Int J Radiat Biol. (2015) 91:13–27. doi: 10.3109/09553002.2014.937510

20. Volkova PY, Bondarenko EV, Kazakova EA. Radiation hormesis in plants. Curr
Opin Toxicol. (2022). doi: 10.1016/j.cotox.2022.02.007

21. Jylhävä J, Pedersen NL, Hägg S. Biological age predictors. EBioMedicine. (2017)
21:29–36. doi: 10.1016/j.ebiom.2017.03.046

22. Pavanello S, Campisi M, Fabozzo A, Cibin G, Tarzia V, Toscano G, et al. The
biological age of the heart is consistently younger than chronological age. Sci Rep.
(2020) 10:1–10. doi: 10.1038/s41598-020-67622-1

23. Elliott ML, Caspi A, Houts RM, Ambler A, Broadbent JM, Hancox RJ,
et al. Disparities in the pace of biological aging among midlife adults of the same
chronological age have implications for future frailty risk and policy. Nat Aging. (2021)
1:295–308. doi: 10.1038/s43587-021-00044-4

24. Podolskiy DI, Lobanov AV, Kryukov GV, Gladyshev VN. Analysis of cancer
genomes reveals basic features of human aging and its role in cancer development.
Nat Commun. (2016) 7:1–12. doi: 10.1038/ncomms12157

25. Sasayama D, Hori H, Nakamura S, Miyata R, Teraishi T, Hattori K, et al.
Identification of single nucleotide polymorphisms regulating peripheral blood mRNA
expression with genome-wide significance: an eQTL study in the Japanese population.
PLoS ONE. (2013) 8:e54967. doi: 10.1371/journal.pone.0054967

26. Narahara M, Higasa K, Nakamura S, Tabara Y, Kawaguchi T, Ishii M, et al. Large-
scale East-Asian eQTLmapping reveals novel candidate genes for LDmapping and the
genomic landscape of transcriptional effects of sequence variants. PLoS ONE. (2014)
9:e100924. doi: 10.1371/journal.pone.0100924

27. Paul S, Amundson SA. Gene expression signatures of radiation exposure in
peripheral white blood cells of smokers and non-smokers. Int J Radiat Biol. (2011)
87:791–801. doi: 10.3109/09553002.2011.568574

28. Girardi C, De Pittà C, Casara S, Sales G, Lanfranchi G, Celotti L, et al. Analysis
of miRNA and mRNA expression profiles highlights alterations in ionizing radiation
response of human lymphocytes under modeled microgravity. PLoS ONE. (2012)
7:e31293. doi: 10.1371/journal.pone.0031293

29. Bloom CI, Graham CM, Berry MP, Rozakeas F, Redford PS, Wang
Y, et al. Transcriptional blood signatures distinguish pulmonary tuberculosis,
pulmonary sarcoidosis, pneumonias and lung cancers. PLoS ONE. (2013) 8:e70630.
doi: 10.1371/journal.pone.0070630

30. Sun Z, Yan B. Multiple roles and regulatory mechanisms of the transcription
factor GATA6 in human cancers. Clin Genet. (2020) 97:64–72. doi: 10.1111/cge.13630

31. Degterev A, Ofengeim D, Yuan J. Targeting RIPK1 for the treatment of human
diseases. Proc Natl Acad Sci USA. (2019) 116:9714–22. doi: 10.1073/pnas.1901179116

32. Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein
S, et al. Cdkn1a deletion improves stem cell function and lifespan of mice with
dysfunctional telomeres without accelerating cancer formation. Nat Genet. (2007)
39:99–105. doi: 10.1038/ng1937

33. Qiao S, Hong L, Zhu Y, Zha J, Wang A, Qiu J, et al. RIPK1-RIPK3 mediates
myocardial fibrosis in type 2 diabetes mellitus by impairing autophagic flux of cardiac
fibroblasts. Cell Death Dis. (2022) 13:1–11. doi: 10.1038/s41419-022-04587-1

34. Martin N, Beach D, Gil J. Ageing as developmental decay: insights from
p16INK4a. Trends Mol Med. (2014) 20:667–74. doi: 10.1016/j.molmed.2014.09.008

35. Lee KI, Choi S, Matsuzaki T, Alvarez-Garcia O, Olmer M, Grogan SP,
et al. FOXO1 and FOXO3 transcription factors have unique functions in meniscus
development and homeostasis during aging and osteoarthritis. Proc Natl Acad Sci USA.
(2020) 117:3135–43. doi: 10.1073/pnas.1918673117

36. Chen C, Zhou M, Ge Y, Wang X. SIRT1 and aging related signaling pathways.
Mech Ageing Dev. (2020) 187:111215. doi: 10.1016/j.mad.2020.111215

37. Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR,
Brito MA, et al. Towards frailty biomarkers: candidates from genes and pathways

Frontiers in PublicHealth 13 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1161124
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1161124/full#supplementary-material
https://doi.org/10.1016/j.mad.2005.10.004
https://doi.org/10.1093/bib/bbaa021
https://doi.org/10.1016/j.mad.2019.111192
https://doi.org/10.1093/gerona/glz220
https://doi.org/10.1109/TMI.2021.3066857
https://doi.org/10.1038/s41576-018-0004-3
https://doi.org/10.1038/srep34774
https://doi.org/10.1038/nrm2233
https://doi.org/10.3109/09553002.2012.709307
https://doi.org/10.18632/aging.100081
https://doi.org/10.1038/leu.2016.344
https://doi.org/10.1038/s41526-018-0043-2
https://doi.org/10.1088/1361-6498/ac591c
https://doi.org/10.1177/1559325818779651
https://doi.org/10.1667/RR13829.1
https://doi.org/10.1259/bjr/63353075
https://doi.org/10.2203/dose-response.06-102.Luckey
https://doi.org/10.1016/j.radmp.2020.01.005
https://doi.org/10.3109/09553002.2014.937510
https://doi.org/10.1016/j.cotox.2022.02.007
https://doi.org/10.1016/j.ebiom.2017.03.046
https://doi.org/10.1038/s41598-020-67622-1
https://doi.org/10.1038/s43587-021-00044-4
https://doi.org/10.1038/ncomms12157
https://doi.org/10.1371/journal.pone.0054967
https://doi.org/10.1371/journal.pone.0100924
https://doi.org/10.3109/09553002.2011.568574
https://doi.org/10.1371/journal.pone.0031293
https://doi.org/10.1371/journal.pone.0070630
https://doi.org/10.1111/cge.13630
https://doi.org/10.1073/pnas.1901179116
https://doi.org/10.1038/ng1937
https://doi.org/10.1038/s41419-022-04587-1
https://doi.org/10.1016/j.molmed.2014.09.008
https://doi.org/10.1073/pnas.1918673117
https://doi.org/10.1016/j.mad.2020.111215
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ruprecht et al. 10.3389/fpubh.2023.1161124

regulated in aging and age-related diseases. Ageing Res Rev. (2018) 47:214–77.
doi: 10.1016/j.arr.2018.07.004

38. Picca A, Fracasso F, Pesce V, Cantatore P, Joseph AM, Leeuwenburgh C, et al.
Age-and calorie restriction-related changes in rat brainmitochondrial DNA and TFAM
binding. Age. (2013) 35:1607–20. doi: 10.1007/s11357-012-9465-z

39. Van Skike CE, Lin AL, Roberts Burbank R, Halloran JJ, Hernandez SF, Cuvillier
J, et al. mTOR drives cerebrovascular, synaptic, and cognitive dysfunction in normative
aging. Aging Cell. (2020) 19:e13057. doi: 10.1111/acel.13057

40. Mehta MS, Vazquez A, Hirshfield KM. Polymorphic variants in TSC1
associate with breast cancer phenotypes. Breast Cancer Res Treat. (2011) 125.
doi: 10.1007/s10549-010-1062-1

41. ChappellWH, Candido S, Abrams SL, Akula SM, Steelman LS,Martelli AM, et al.
Influences of TP53 and the anti-aging DDR1 receptor in controlling Raf/MEK/ERK
and PI3K/Akt expression and chemotherapeutic drug sensitivity in prostate cancer cell
lines. Aging. (2020) 12:10194. doi: 10.18632/aging.103377

42. Liao CY, Kennedy BK. SIRT6, oxidative stress, and aging. Cell Res. (2016)
26:143–4. doi: 10.1038/cr.2016.8

43. Deepa SS, Unnikrishnan A, Matyi S, Hadad N, Richardson A. Necroptosis
increases with age and is reduced by dietary restriction. Aging Cell. (2018) 17:e12770.
doi: 10.1111/acel.12770

44. Wang F, Yang J, Lin H, Li Q, Ye Z, Lu Q, et al. Improved human age prediction
by using gene expression profiles from multiple tissues. Front. Genet. (2020) 11:1025.
doi: 10.3389/fgene.2020.01025

45. Matmati M, Jacques P, Maelfait J, Verheugen E, Kool M, Sze M, et al.
A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling
rheumatoid arthritis. Nat Genet. (2011) 43:908–12. doi: 10.1038/ng.874

46. Dango S, Mosammaparast N, Sowa ME, Xiong LJ, Wu F, Park K, et al.
DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA
alkylation repair and cancer cell proliferation. Mol Cell. (2011) 44:373–84.
doi: 10.1016/j.molcel.2011.08.039

47. Mundel P, Heid HW, Mundel TM, Krüger M, Reiser J, Kriz W. Synaptopodin:
an actin-associated protein in telencephalic dendrites and renal podocytes. J Cell Biol.
(1997) 139:193–204. doi: 10.1083/jcb.139.1.193

48. Wang AH, Grégoire S, Zika E, Xiao L, Li CS, Li H, et al. Identification of the
ankyrin repeat proteins ANKRA and RFXANK as novel partners of class IIa histone
deacetylases. J Biol Chem. (2005) 280:29117–27. doi: 10.1074/jbc.M500295200

49. Nikolaev AY, Papanikolaou NA, Li M, Qin J, Gu W. Identification of a novel
BRMS1-homologue protein p40 as a component of the mSin3A/p33ING1b/HDAC1
deacetylase complex. Biochem Biophys Res Commun. (2004) 323:1216–22.
doi: 10.1016/j.bbrc.2004.08.227

50. Molven A, Matre GE, Duran M, Wanders RJ, Rishaug U, Njølstad
PR, et al. Familial hyperinsulinemic hypoglycemia caused by a defect in the
SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes. (2004) 53:221–7.
doi: 10.2337/diabetes.53.1.221

51. Schindler RF, Scotton C, Zhang J, Passarelli C, Ortiz-Bonnin B, Simrick S,
et al. POPDC1 S201F causes muscular dystrophy and arrhythmia by affecting protein
trafficking. J Clin Investig. (2016) 126:239–53. doi: 10.1172/JCI79562

52. Huang JC, Yan LY, Lei ZL, Miao YL, Shi LH, Yang JW, et al. Changes in
histone acetylation during postovulatory aging of mouse oocyte. Biol Reproduct. (2007)
77:666–70. doi: 10.1095/biolreprod.107.062703

53. Michalak EM, Burr ML, Bannister AJ, Dawson MA. The roles of DNA, RNA and
histone methylation in ageing and cancer. Nat Rev Mol Cell Biol. (2019) 20:573–89.
doi: 10.1038/s41580-019-0143-1

54. Hussain F, Kayani HUR, Rashid Kayanib HU. Aging-Oxidative
stress, antioxidants and computational modeling. Heliyon. (2020) 6:e04107.
doi: 10.1016/j.heliyon.2020.e04107

55. Casas E, Vavouri T. Sperm epigenomics: challenges and opportunities. Front
Genet. (2014) 5:330. doi: 10.3389/fgene.2014.00330

56. Freitas-Rodriguez S, Folgueras AR, Lopez-Otin C. The role of matrix
metalloproteinases in aging: tissue remodeling and beyond. Biochim Biophys Acta Mol
Cell Res. (2017) 1864:2015–25. doi: 10.1016/j.bbamcr.2017.05.007

57. Gardiner J, Overall R, Marc J. The nervous system cytoskeleton under oxidative
stress. Diseases. (2013) 1:36–50. doi: 10.3390/diseases1010036

58. Khan I, Suhasini AN, Banerjee T, Sommers JA, Kaplan DL, Kuper J, et al. Impact
of age-associated cyclopurine lesions on DNA repair helicases. PLoS ONE. (2014)
9:e113293. doi: 10.1371/journal.pone.0113293

59. Burhans WC, Weinberger M. DNA replication stress, genome instability and
aging. Nucleic Acids Res. (2007) 35:7545–56. doi: 10.1093/nar/gkm1059

60. Castellucci E, He T, Goldstein DY, Halmos B, Chuy J. DNA polymerase ε

deficiency leading to an ultramutator phenotype: a novel clinically relevant entity.
Oncologist. (2017) 22:497–502. doi: 10.1634/theoncologist.2017-0034

61. Doreswamy K, Shrilatha B, Rajeshkumar T. Nickel-induced oxidative stress
in testis of mice: evidence of DNA damage and genotoxic effects. J Androl. (2004)
25:996–1003. doi: 10.1002/j.1939-4640.2004.tb03173.x

62. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age
and age-related diseases: role of inflammation triggers and cytokines. Front Immunol.
(2018) 9:586. doi: 10.3389/fimmu.2018.00586

63. Wooff Y, Man SM, Aggio-Bruce R, Natoli R, Fernando N. IL-1 family members
mediate cell death, inflammation and angiogenesis in retinal degenerative diseases.
Front Immunol. (2019) 10:1618. doi: 10.3389/fimmu.2019.01618

64. Goetz W, Morgan MN, Baulch JE. The effect of radiation quality on genomic
DNA methylation profiles in irradiated human cell lines. Radiat Res. (2011) 175:575–
87. doi: 10.1667/RR2390.1

65. McKelvey KJ, Hudson AL, Back M, Eade T, Diakos CI. Radiation, inflammation
and the immune response in cancer. Mammalian Genome. (2018) 29:843–65.
doi: 10.1007/s00335-018-9777-0

66. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the
cancer connection. Nat Genet. (2001) 27:247–54. doi: 10.1038/85798

67. Luzina IG, Salcedo MV, Rojas-Peña ML, Wyman AE, Galvin JR, Sachdeva
A, et al. Transcriptomic evidence of immune activation in macroscopically normal-
appearing and scarred lung tissues in idiopathic pulmonary fibrosis. Cell Immunol.
(2018) 325:1–13. doi: 10.1016/j.cellimm.2018.01.002

68. Billatos E, Vick JL, Lenburg ME, Spira AE. The airway transcriptome
as a biomarker for early lung cancer detection airway transcriptome as a
biomarker for lung cancer detection. Clin Cancer Res. (2018) 24:2984–92.
doi: 10.1158/1078-0432.CCR-16-3187

69. Mato-Basalo R, Lucio-Gallego S, Alarcón-Veleiro C, Sacristán-Santos M,
Quintana MdPM, Morente-López M, et al. Action mechanisms of small extracellular
vesicles in inflammaging. Life. (2022) 12:546. doi: 10.3390/life12040546

Frontiers in PublicHealth 14 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1161124
https://doi.org/10.1016/j.arr.2018.07.004
https://doi.org/10.1007/s11357-012-9465-z
https://doi.org/10.1111/acel.13057
https://doi.org/10.1007/s10549-010-1062-1
https://doi.org/10.18632/aging.103377
https://doi.org/10.1038/cr.2016.8
https://doi.org/10.1111/acel.12770
https://doi.org/10.3389/fgene.2020.01025
https://doi.org/10.1038/ng.874
https://doi.org/10.1016/j.molcel.2011.08.039
https://doi.org/10.1083/jcb.139.1.193
https://doi.org/10.1074/jbc.M500295200
https://doi.org/10.1016/j.bbrc.2004.08.227
https://doi.org/10.2337/diabetes.53.1.221
https://doi.org/10.1172/JCI79562
https://doi.org/10.1095/biolreprod.107.062703
https://doi.org/10.1038/s41580-019-0143-1
https://doi.org/10.1016/j.heliyon.2020.e04107
https://doi.org/10.3389/fgene.2014.00330
https://doi.org/10.1016/j.bbamcr.2017.05.007
https://doi.org/10.3390/diseases1010036
https://doi.org/10.1371/journal.pone.0113293
https://doi.org/10.1093/nar/gkm1059
https://doi.org/10.1634/theoncologist.2017-0034
https://doi.org/10.1002/j.1939-4640.2004.tb03173.x
https://doi.org/10.3389/fimmu.2018.00586
https://doi.org/10.3389/fimmu.2019.01618
https://doi.org/10.1667/RR2390.1
https://doi.org/10.1007/s00335-018-9777-0
https://doi.org/10.1038/85798
https://doi.org/10.1016/j.cellimm.2018.01.002
https://doi.org/10.1158/1078-0432.CCR-16-3187
https://doi.org/10.3390/life12040546
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	Establishing a genomic radiation-age association for space exploration supplements lung disease differentiation
	1. Introduction
	2. Materials and methods
	2.1. Data characteristics
	2.2. Statistical and functional analysis
	2.3. Clinical applicability

	3. Results
	3.1. Chronological age threshold
	3.2. Statistical analysis and interaction modeling
	3.3. Functional analysis
	3.4. Clinical potential

	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher's note
	Supplementary material
	References


