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promoter of non-alcoholic fatty 
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Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disorder. With 
the improvement in human living standards, the prevalence of NAFLD has been 
increasing in recent years. Endocrine-disrupting chemicals (EDCs) are a class of 
exogenous chemicals that simulate the effects of hormones in the body. There 
has been growing evidence regarding the potential effects of EDCs on liver health, 
especially in NAFLD. This paper aims to summarize the major EDCs that contribute 
to the growing burden of NAFLD and to raise public awareness regarding the 
hazards posed by EDCs with the objective of reducing the incidence of NAFLD.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is an important public health issue that affects a 
large portion of the global population. Estimates indicate that the worldwide prevalence of 
NAFLD ranges from 13% in Africa to 42% in Southeast Asia (1). NAFLD encompasses a 
spectrum of liver conditions, including simple steatosis or non-alcoholic fatty liver (NAFL), 
which has a milder course, and non-alcoholic steatohepatitis (NASH), with potential progression 
to fibrosis or cirrhosis and hepatocellular carcinoma (HCC) (2, 3). The hallmark of NAFLD is 
the accumulation and deposition of excessive fat in liver cells, which may be related to genetic, 
dietary, and environmental factors (4). These factors promote the onset of insulin resistance (IR) 
in adipose tissue, leading to adipocyte dysfunction and increased influx of free fatty acids (FFAs) 
into the liver (5). These FFAs and their consequent lipotoxic intermediates have been shown to 
have adverse effects such as abnormal lipids metabolism, oxidative stress, and chronic liver 
inflammation, all of which contribute to the progression of NAFLD (6, 7).

Environmental endocrine disrupting chemicals (EDCs) are a class of exogenous chemicals 
that mimic the effects of hormones in the body, causing hormonal dysregulation and mediating 
various metabolic disorders. The liver, an organ crucial to metabolism and detoxification (8), 
has been shown to be impacted by EDCs, with studies suggesting exposure to these chemicals 
can lead to metabolic changes and liver disease (9–12). Because of the difficulty in getting 
biopsy-confirmed NAFLD histological specimens, the liver injury is typically assessed using 
serum biomarkers of hepatoxicity of NAFLD. Alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), alkaline phosphatase (ALP) and γ-glutamyl transferase (GGT) are 
considered specific biomarkers of liver injury, they are widely used to evaluate the progression 
of NAFLD. Given the role of EDCs in the worldwide deterioration of metabolic health, it is 
imperative that the scientific community continues to study and understand their effects. 
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We aimed to provide an overview of EDCs and summarize the effects 
of EDC exposure on NAFLD.

1.1. Overview of EDCs

Environmental endocrine disruptors (EDCs) are a heterogenous 
group of chemicals that are widely distributed and easily enriched, 
present in many forms. In daily life, an increasing number of 
substances have been identified as EDCs; they enter the body through 
the digestive tract, respiratory tract, or skin, and produce adverse 
effects. EDCs can be classified as natural or synthetic, based on their 
origin. Natural EDC include phytoestrogens and mycotoxins, while 
synthetic EDCs include chemicals used as industrial solvents and their 
byproducts (polychlorinated biphenyls, polybrominated biphenyls, 
and dioxins), plastics (bisphenol A), plasticizers (phthalates), 
fungicides (vinclozolin), pesticides (methoxychlor and chlorpyrifos), 
heavy metals (mercury and lead), and pharmaceutical agents present 
in human and animal foods (11, 13–16).

Studies have shown that EDCs can interfere with various aspects 
of hormone regulation in the body, including production, release, 
transport, metabolism, binding, action, and elimination, leading to 
hormonal dysregulation and contributing to various metabolic 
disorders (17, 18). It’s also been found that EDCs play a potential role 
in the regulation of genomic expression, promoting epigenetic 
modifications that result in the development of pathologies by 
mediating carcinogenic, neurotoxic, hepatotoxic, and immunotoxic 
effects (19–21). The challenge in understanding the impact of EDCs 
is compounded by the fact that humans are exposed, not to a single 
environmental pollution compound, but to a cocktail of EDCs, 
making it even more difficult to predict the net effect and evincing the 
association between a specific EDC and disease (13, 22). Moreover, 
exposure to persistent EDCs may initiate and promote the 
pathogenesis of NAFLD (23). EDCs affect the progression of NAFLD 
through the interaction of nuclear receptors. Activating transcription 
factors, triggering the imbalances between lipid flow/outflow in the 
liver, promoting mitochondrial dysfunction, and mediating the 
hepatic inflammatory are the possible mechanism of NAFLD (17).

2. Methods

In this study, we focused on several key EDCs that are closely 
related to human health, including per−/polyfluorinated substances, 
bisphenol A, polychlorinated biphenyls, and phthalates (as outlined in 

Table 1). Systematic search of PubMed and Embase databases was 
conducted from January 1, 2010, to December 28, 2022, to identify 
human studies investigating the relationship between non-alcoholic 
liver disease and these EDCs. Detailed search strategies are presented 
in Table 2. After screening the retrieved studies based on their titles 
and abstracts, we excluded studies without human data, case reports, 
non-original reports, studies without NAFLD outcomes, and 
pharmacological or ecological studies.

3. Relationship between NAFLD and 
EDCs

3.1. Per-/polyfluorinated substance

Per-/polyfluorinated substance (PFAS) is a series of organic 
compounds containing at least one perfluorinated carbon atom, it is 
lipophobic and hydrophobic that are useful for manufacturing wide 
ranges of consumer products (24, 25). PFASs have a stable chemical 
structure with a half-life of about 2–8 years, allowing them to persist 
and accumulate in the environment (10, 26). Because of these 
properties, PFASs are classified as “persistent organic pollutants” 
(POPs), and their delayed-elimination feature may cause long-term 
harmful health effects. PFASs have been detected in drinking water, 
various foods (meat, vegetables, milk, eggs), air, and early life placental 
or breast milk, and are able to accumulate in biological tissues and 
organs with high protein content (27–29). Nearly all adults in the 
U.S. have been found to have accumulated PFAS in their body tissues 
(10). Current studies have indicated that four congeners account for 
most human exposure: perfluorooctanesulfonic acid (PFOS), 
perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid 
(PFHxS), and perfluorononanoic acid (PFNA) (10, 30, 31). Compared 
to the general population, worker in certain occupations (e.g., 
professional ski-waxers, firefighters, fluorochemical plant workers) 
experience high PFAS serum concentrations based on their occupation 
(32). The median concentrations were 24-27 ng/ml (PFOS), 50-57 ng/
ml (PFOA), 1.4–1.6 ng/ml (PFHxS) and 12-13 ng/ml (PFNA) in 
professional ski-waxers (33). And the median concentrations in the 
general population were 3.59–24.22 ng/mL (PFOS) (34, 35), 0.99–
28.0 ng/mL (PFOA) (36, 37), 0.59–1.80 ng/mL (PFHxS) (38, 39), and 
0.24–1.60 ng/mL (PFNA) (34, 37), respectively.

The liver is one of the main target organs of PFAS toxicity (40). 
However, the exact mechanism of PFAS hepatotoxicity remains 
unclear. PFAS are thought to act as ligands for peroxisome proliferator-
activated receptors (PPARs), which promote liver inflammation and 

TABLE 1 Characteristic of major endocrine-disrupting chemicals (EDCs).

Substance Abbreviation Source Characteristic

Per-/polyfluorinated 

substance
PFAS Contaminated drinking water, foods, air, etc

Environmental persistence, bioaccumulation, potential 

hazards

Polychlorinated Biphenyls PCBs
Electrical equipment, soil, aquatic sediments, 

contaminated food, etc

Thermodynamically stable, degradation-resistant, 

bioaccumulation

Bisphenol A BPA
Plastic containers and toys, food packaging materials, 

dental sealants, etc
Low lipophilicity, rapid degradation, short half-time

Phthalates DEPH
Plasticizers in food wrapping and packaging, 

coatings, cosmetics, adhesives, medical tubes, ect
Rapid metabolism, strong adsorption
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triglyceride accumulation through the activation of PPARα and lead 
to liver injury or NAFLD (41–43). The complementary mechanism 
also includes activation of the constitutive androstane receptor (CAR) 
(42, 44), downregulation of nuclear factor erythroid 2-related factor 2 
(NRF2) (45, 46), and upregulation of nuclear factor kappa-light-
chain-enhancer of activated B cells nuclear factor-kappa B (NF-ĸ B) 
(47). Animal and epidemiological studies have shown that PFAS can 
cause an obviously increase in liver lipid volume, induce mitochondrial 
dysfunction and oxidative stress, and promote inflammatory 
responses in NAFLD progression (41, 48, 49).

A large number of nuclear receptors (NRs) were expressed in liver, 
making it a critical target for PFAS. In this review, we noticed that a 
few studies have evaluated the hepatic enzyme abnormalities 
associated with PFAS exposure. PFOA and PFNA exposure is usually 
positively associated with higher ALT and GGT levels, suggesting that 
changes in serum biomarkers are often accompanied by 
histopathological changes or liver disease (34, 39, 50–53). However, 
for AST, studies have reported different outcomes in different crowds. 
Khalil (37) found that there was no relationship between serum PFAS 
and AST levels in obese children, while PFOA and PFOS were 
positively correlated with AST in Japanese children (52). In addition, 

Attanasio et  al. reported sex-specific histological effects of PFAS 
exposure and found positive associations between PFAS and ALT in 
female adolescents, but conversely in male adolescents, which could 
be  mediated by sex hormones (54). Evidence for sex-specific 
differences was also found in rats, with ALT increasing more 
frequently in male rats (55–57). The authors suggest that PFAS 
exposure may play an important role in the development of NAFLD 
and carcinoma (Table 3). The PFAS was positively associated with 
lobular inflammation in adults undergoing bariatric surgery in 
Northern Europe, however, the reason for this association is unclear. 
It may be related to changes in lipid and bile acid metabolism (9, 59). 
In animal models, exposure to subchronic PFOS has been found to 
enhance hepatic stellate cell (HSC) activation and exacerbate carbon 
tetrachloride (CCl4)-induced liver fibrosis (60), consistent with the 
outcomes of Sen’s study, which showed that PFOS was positively 
associated with hepatic fibrosis in adults (9). In contrast, a study 
including adults from the C8 Health Project in the USA showed that 
cumulative PFOA exposure had no effect on all liver diseases, enlarged 
liver, or cirrhosis (58). Additionally, a study included 1,105 mother–
child pairs from the European Human Early-Life Exposome (HELIX) 
cohort showed that higher exposure to PFAS during pregnancy was 

TABLE 2 Literature review search terms.

Substances Database Search terms

NAFLD

PubMed
NAFLD OR NASH OR “nonalcoholic fatty liver disease” OR “nonalcoholic steatohepatitis” OR “nonalcoholic fatty liver” OR 

“fatty liver” OR steatosis OR “liver enzymes” OR“liver damage” OR “liver injury” OR “liver fibrosis”

Embase

nafld OR nash OR ‘nonalcoholic fatty liver disease’/exp. OR ‘nonalcoholic fatty liver disease’ OR ‘nonalcoholic steatohepatitis’/

exp. OR ‘nonalcoholic steatohepatitis’ OR ‘nonalcoholic fatty liver’/exp. OR ‘nonalcoholic fatty liver’ OR ‘fatty liver’/exp. OR 

‘fatty liver’ OR ‘steatosis’/exp. OR steatosis OR ‘liver enzymes’/exp. OR ‘liver enzymes’ OR ‘liver damage’/exp. OR ‘liver damage’ 

OR ‘liver injury’/exp. OR ‘liver injury’ OR ‘liver fibrosis’/exp. OR ‘liver fibrosis’

Per-/polyfluorinated 

substance

PubMed
Perfluoroalkyl OR Polyfluoroalkyl OR Perfluorinated OR polyfluorinated OR perfluoro* OR polyfluoro* OR PFAS OR PFAS* 

OR “Perfluorinated chemicals” OR Perfluorocarbons OR Polyfluorocarbons OR “Per- and Polyfluoroalkyl Substances”

Embase

‘perfluoroalkyl’/exp. OR perfluoroalkyl OR ‘polyfluoroalkyl’/exp. OR polyfluoroalkyl OR perfluorinated OR polyfluorinated OR 

perfluoro* OR polyfluoro* OR pfas OR pfas* OR ‘perfluorinated chemicals’ OR perfluorocarbons OR polyfluorocarbons OR 

‘per- and polyfluoroalkyl substances’

Bisphenol A

PubMed
BPA OR “Bisphenol A” OR Bisphenol* OR “bisphenol A glycidyl methacrylate” OR “4,4-dihydroxy-2,2-diphenylpropane” OR 

“diphenylolpropane” OR “2,2-bis(4-hydroxyphenyl)propane” OR ‘bisphenol A, sodium salt” OR “bisphenol A, disodium salt”

Embase
bpa OR ‘bisphenol a’ OR bisphenol* OR ‘bisphenol a glycidyl methacrylate’ OR ‘4,4-dihydroxy-2,2-diphenylpropane’ OR 

‘diphenylolpropane’ OR ‘2,2-bis(4-hydroxyphenyl)propane’ OR ‘bisphenol a, sodium salt’ OR ‘bisphenol a, disodium salt’

Polychlorinated 

Biphenyls

PubMed

PCB OR PCB* OR “Polychlorinated Biphenyls” OR “Polychlorobiphenyl Compounds” OR “Polychlorinated Biphenyl” OR PBB 

OR PBB* or “Polybrominated biphenyls” OR “Polybromobiphenyl Compounds” OR “Polychlorinated terphenyls” OR PCN OR 

PCN* OR “Polychlorinated naphthalenes”

Embase

‘pcb’/exp. OR pcb OR pcb* OR ‘polychlorinated biphenyls’/exp. OR ‘polychlorinated biphenyls’ OR ‘polychlorobiphenyl 

compounds’ OR ‘polychlorinated biphenyl’/exp. OR ‘polychlorinated biphenyl’ OR pbb OR pbb* OR ‘polybrominated 

biphenyls’/exp. OR ‘polybrominated biphenyls’ OR ‘polybromobiphenyl compounds’ OR ‘polychlorinated terphenyls’ OR pcn 

OR pcn* OR ‘polychlorinated naphthalenes’

Phthalates

PubMed

“di-2-ethylhexyl phthalate” OR phthalate OR DEHP OR “Di(2-ethylhexyl) phthalate” OR “Phthalate” OR “Phthalates” OR 

“Dibutyl phthalate” OR “di-n-butyl phthalate” OR “di-isobutyl phthalate” OR DBP OR DiBP OR “mono (2-ethylhexyl) 

phthalate” OR “MEHP” OR “monomethyl phthalate” OR “mono (2-ethyl-5-carboxypentyl) phthalate” OR “MBP” OR “mono-

(3-carboxypropyl) phthalate”

Embase

‘di-2-ethylhexyl phthalate’/exp. OR ‘di-2-ethylhexyl phthalate’ OR phthalate OR dehp OR ‘di(2-ethylhexyl) phthalate’/exp. OR 

‘di(2-ethylhexyl) phthalate’ OR ‘phthalate’/exp. OR ‘phthalate’ OR ‘phthalates’ OR ‘dibutyl phthalate’/exp. OR ‘dibutyl phthalate’ 

OR ‘di-n-butyl phthalate’/exp. OR ‘di-n-butyl phthalate’ OR ‘di-isobutyl phthalate’ OR ‘dbp’/exp. OR dbp OR dibp OR ‘mono 

(2-ethylhexyl) phthalate’/exp. OR ‘mono (2-ethylhexyl) phthalate’ OR ‘mehp’ OR ‘monomethyl phthalate’/exp. OR ‘monomethyl 

phthalate’ OR ‘mono (2-ethyl-5-carboxypentyl) phthalate’ OR ‘mbp’ OR ‘mono-(3-carboxypropyl) phthalate’
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TABLE 3 Epidemiologic studies on the relationship between PFAS and NAFLD or carcinoma.

Substance Reference Country Population Sample 
size

Biological 
materials

Measurement Exposure 
assessment

Outcomes Results Adjustment 
factors

PFAS Sen et al. (9) Sweden

Adults undergoing 

laparoscopic 

bariatric surgery 

(18–75 years)

105 Serum UPLC-QTOFMS
PFHxS, PFNA, PFOA, 

PFOS

NASH, hepatic 

fibrosis, 

macrosteatosis

PFOS, PFOA were 

positively associated 

with NASH 

(necroinflammatory 

grades), while PFOS 

was positively 

associated with 

hepatic fibrosis

NR

PFAS Jin et al. (35)
USA 2007–

2015

Children with 

NAFLD
74 Plasma HRMS

ORs and 95%CI for 

liver histology in 

relation to PFOA, 

PFOS, PFHxS, PFAS 

score (per IQR 

increase)

Histologic severity 

of NAFLD

The odds of having 

NAFLD was 

significantly increased 

with each IQR 

increase of PFOS and 

PFHxS. Each IQR 

increase of PFHxS was 

associated with 

increased OR for liver 

fibrosis, lobular 

inflammation and 

higher NAFLD 

activity score.

NR

PFAS Darrow et al. (58)
USA 2008–

2011

C8 Health Project 

(age ≥ 20 years)
28,047 Serum Exposure estimation

Median PFOA: 1.65 ng/

mL

Validated liver 

disease, medically 

validated enlarged 

liver, fatty liver, 

cirrhosis

No evidence of an 

effect of cumulative 

PFOA exposure on all 

liver disease, nor on 

enlarged liver, fatty 

liver, and cirrhosis.

Age, sex, BMI, 

alcohol 

consumption, race, 

regular exercise, 

smoking status, 

education, 

household income, 

fasting status, 

worker at plant, 

insulin resistance

PFAS
Rantakokko et al. 

(59)

Finland 2005–

2010

Kuopio Obesity 

Surgery Study
161 Serum NR

Median(5th, 95th) ng/

mL PFOA: 2.56(1.04, 

4.66) PFNA: 0.83(0.30, 

2.19) PFOS: 3.2(0.89–

10.3) PFHxS: 

1.18(0.54–2.90)

Steatosis, lobel 

inflammation, 

ballooning, 

fibrosis, liver 

phenotype

PFOA, PFNA, and 

PFHxS were inversely 

associated with lobular 

inflammation at 

baseline.

Age, fasting insulin, 

weight change

HRMS, high-resolution mass spectrometry; LC-HRMS, liquid chromatography with high-resolution mass spectrometry; UPLC-QTOFMS, ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry.
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associated with higher liver enzyme levels in children (38). PFAS can 
cross the placenta barrier efficiently and deposit in fetal tissues (61), 
they altered some amino acid (e.g., valine, leucine, phenylalanine) and 
lipid (e.g., glycerophospholipid) metabolism that related to NAFLD 
pathogenesis, which exerted adverse effects in liver (38).

3.2. Polychlorinated biphenyls

Polychlorinated biphenyls (PCBs) are also a type of POP that are 
manufactured and used commercially as dielectric fluids in 
transformers (62). They are thermodynamically stable polyhalogenated 
aromatic hydrocarbons consisting of up to ten chlorine substituents 
attached to a biphenyl ring (63). Based on their structures, PCB 
congeners have been subclassified into dioxin-like (DL) and 
nondioxin-like (NDL). DL PCBs have a coplanar structure, whereas 
NDL PCBs have a noncoplanar structure, which can be attributed to 
receptor-based modes of action. PCBs persist in the environment and 
accumulate in soil, aquatic sediments, and in species that consume 
these sources (fish, cows, dairy) (64). Despite a ban on their 
production and emission in 1979, human exposure to PCBs usually 
occurs through contaminated air, water, or food. As POPs, PCBs 
accumulate in adipose tissue and are gradually released into the 
bloodstream (65, 66).

The liver appears to be both a target and an effector organ for 
PCB-induced endocrine disruption. The occurrence of NAFLD is due 
to an imbalance between lipid production and elimination, which 
promotes excessive accumulation of hepatic lipids (17). PCBs have 
been documented to be  related to this phenomenon, as they can 
induce pathological fat aggregation, both in the DL and NDL groups 
(67). DLPCBs activate the aryl hydrocarbon receptor (AhR) and 
peroxisome proliferator-activated receptors alpha and gamma 
(PPARα/γ) (63, 68), exerting a multimodal effect on lipid accumulation 
and causing steatosis by disrupting liver lipid metabolism. NDL PCBs, 
on the other hand, activate the constitutive androstane receptor (CAR) 
and pregnane X receptor (PXR) (69), which could reduce the 
protective response of the liver to promote diet induced NAFLD (67).

Studies have shown that PBC exposure can cause NAFLD related 
metabolic disorders, including insulin resistance, obesity, and lipid 
metabolic dysfunction. PCBs differentially regulate hepatic lipid 
metabolism and several related genes. PCB126 exposure increases 
hepatic lipids and causes toxicant-associated steatosis (mild small-
droplet macro vesicular steatosis) (63). Mono-exposure to either 
PCB126 or Aroclor1260 increased hepatic lipid uptake while 
decreasing lipid biosynthesis, but these effects were abrogated by 
exposure to the NDL/DL PCB mixture (63). Pnpla3, a lipase 
implicated in NAFLD (70), was significantly upregulated by 
Aroclor1260 exposure, but was suppressed by either PCB126 or 
Aroclor1260/PCB126 exposure, potentially due to activation of 
different receptors among NDL or DL PCBs. PCBs have also been 
associated with the promotion of toxicant-associated steatohepatitis 
(TASH), which can ultimately lead to secondary liver necrosis, 
potentially due to a loss of protein phosphorylation and 
downregulation of the hepatic kinome (71). Positive associations were 
also observed between PCB concentrations and NAFLD-related 
biomarkers (Table 4), with most PCB congeners positively correlated 
with elevated alanine aminotransferase (ALT) levels. A study of 4,582 
adults conducted by Cave et al. (76) showed that 10.6% of participants 

had unexplained ALT elevation, with older age significantly associated 
with total PCB levels in the highest quartile. Of those participants aged 
70 years or older, 71.7% had high PCB levels compared to only 2.2% 
of those aged under 30 years. A study of 1,108 mother–child pairs 
from six countries by Midya (72) discovered that prenatal exposure to 
PCBs is a potential risk factor for pediatric NAFLD, and were further 
associated with increased CK-18 levels (a novel marker of hepatocyte 
apoptosis and NAFLD). Notably, researchers have identified potential 
therapeutic targets for improving PCB-induced NAFLD, including the 
anti-fibrotic compound recombinant FGF21, which reduced the 
overexpression of hepatic lipocalin-2 (LCN2), a group of transporters 
of small lipophilic molecules that are upregulated in several liver 
diseases, and attenuated NAFLD (62, 77).

3.3. Bisphenol A

Bisphenol A (BPA), which consists of two phenol rings attached 
by a methyl bridge with two methyl groups (78), is a plasticizer mainly 
used for polycarbonate plastics and epoxy resins in many consumer 
products (79). BPA exposure can occur via various sources such as 
plastic containers, toys, water bottles, food packaging materials, office 
supplies, and dental sealants (80, 81). BPA has low lipophilicity and 
degrades rapidly with a half-life of 4–5 h (82). Due to its broad 
application, BPA is detected in more than 90% of people, and the 
median urine BPA concentration in adults is 2.24–6.17 ng/mL (83, 84).

The liver is the main organ that metabolizes and transforms BPA 
into glucuronidation; therefore, it is more susceptible to BPA than 
other organs (85). BPA increases the risk of NAFLD owing to fat 
accumulation, obesity, and oxidative stress. Upregulation of lipogenic 
enzymes and transcription factors, such as sterol regulatory element 
binding protein-1c (srebp-1c), the carbohydrate responsive element 
binding protein (ChREBP), and liver X receptor (LXR) (86), promotes 
de novo lipogenesis (DNL) (87), increasing the risk of lipid 
accumulation and obesity. In addition, exposure to high doses of BPA 
decreased the activities of antioxidant indicators, such as superoxide 
dismutase (SOD) and glutathione (GSH), causing excessive 
accumulation of free radicals, such as reactive oxygen species (ROS), 
promoting liver damage and hepatotoxicity (88).

Aminotransferases are the most widely used biomarkers in 
experiments, and are released into the bloodstream following liver 
injury (89). Epidemiological studies have shown that BPA exposure 
could have negative effects on NAFLD-related biomarkers (Table 5). 
Higher urinary BPA levels usually led to the elevation of ALT (83, 96, 
97). A study carried out by Lang et al. reported that higher BPA levels 
are linked to abnormal GGT (Odds ratio [OR]:1.29, 95% Confidence 
Interval [CI]:1.14–1.46) and ALP (OR:1.48, 95%CI:1.18–1.85) (98). In 
addition to liver biomarkers, urinary BPA levels were positively 
associated with the prevalence of NAFLD in adults and adolescents. In 
the Korean National Environmental Health Survey (83), which 
included 3,476 participants with a mean age of 52.96 ± 0.25 years old, 
the geometric mean concentration of BPA in the NAFLD group was 
significantly higher than in the non-NAFLD group (2.56 ug/L vs. 
2.24 ug/L, p = 0.001). A study analyzing adolescents (12–19 years old) 
from NHANES in the USA also showed that the risk of suspected 
NAFLD (ALT≥30 U/L) was increased in participants in higher 
quartiles of BPA exposure (93). In terms of pathological findings, mice 
and rats treated with BPA showed liver tissue dilatation of sinusoids, 
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TABLE 4 Epidemiologic studies on the relationship between PCBs and NAFLD related biomarkers.

Substance Reference Country Population Sample 
size

Biological 
materials

Measurement Exposure 
assessment

Outcomes Results Adjustment 
factors

PCB Midya et al. (72) France, 

Greece, 

Lithuania, 

Norway, 

Spain, UK 

2021–2022

Mother–child 

pairs from the 

Human Early-

Life Exposome 

project

1,108 Serum GC-MS/MS LOD used in NIPH 

PCB180: 0.91 pg./g 

PCB170: 0.61 pg./g 

PCB153: 0.61 pg./g 

PCB138: 0.61 pg./g 

PCB118: 0.31 pg./g

ALT, AST, GGT 

and CK-18 of 

children

A 1-quartile increase in prenatal 

exposure was associated with 

increased CK-18 for PCBs and 

constitute a potential risk factor for 

pediatric non-alcoholic fatty liver 

disease.

Subcohort, maternal age, 

maternal prepregnancy 

BMI, maternal 

educational level, parity, 

child age, child sex

PCB Rantakokko 

et al. (59)

Finland 

2005–2010

Kuopio Obesity 

Surgery Study

161 Serum NR Median ng/g lipid 

PCB-118: 15.2 

(normal) 

9.42(steatosis) 

10.1(NASH)

Steatosis, lobel 

inflammation, 

ballooning, 

fibrosis, liver 

phenotype

PCB-118 was associated with NASH, 

lobular inflammation, few liver cell 

balloon, and S2-S3 steatosis grade at 

baseline.

Age, BMI, sex, fasting 

insulin

PCB Clair et al. (73) USA ACHS adults 738 Serum HRGC/HRMS PCB congeners (28, 

44, 49, 52, 66, 101, 

105, 110, 128, 149, 

151, 172, 178, 187, 

195)

TASH, CK18 TASH was associated with increased 

exposures to specific PCB congeners.

Age, BMI, gender, race, 

diabetes status, alcohol 

use, total lipid levels

PCB Kumar et al. 

(74)

Sweden Prospective 

Investigation of 

the Vasculature 

in Uppsala 

Seniors 

(≥70 years)

992 Serum HRGC–MS PCB congeners (74, 

99, 105, 118, 126, 

138, 153, 156, 157, 

169, 170, 180, 189, 

194, 206, 209)

Bilirubin, ALP, 

ALT, GGT

PCBs was not associated with 

bilirubin, ALP, and GGT. PCB-74, 

105, and 118 were found to 

be significant in positive direction 

with ALT.

Age, sex, kidney function, 

smoking BMI, education, 

physcial activity, waist 

circumference, fasting 

blood glucose, systolic 

blood pressure, use of 

cardiovascular 

medication

PCB Serdar et al. 

(65)

USA 2003–

2004

NHANES 

(>12 years)

1,935 Serum HRGC/HRMS PCB congeners ALT, AST, GGT Liver enzymes (AST, ALT, GGT) were 

significantly higher in the highest 

exposure groups of PCBs. ALP 

dropped as levels of PCBs increased.

Age, gender, relevant 

survey design, 

subsample, population 

weights

PCB Christensen 

et al. (75)

USA 2003–

2004

NHANES 

(>12 years)

1,345 Serum HRGC/HRMS PCB congeners (DL 

and NDL)

ALT The DL PCB, the NDL PCB were 

significant associated with elevated ALT.

Age, sex, race/ethnicity, 

income, BMI

PCB Cave et al. (76) USA 2003–

2004

NHANES adults 4,582 Serum HRGC/HRMS PCB congeners ALT 9 of coplanar PCBs (66, 74, 105, 118, 

126, 156, 157, 167, 169) were positively 

associated with elevated ALT. 11 of 

NDL PCBs (138 and 158, 146, 151, 153, 

170, 172, 177, 178, 183, 187, 196 and 

203,) were positively associated with 

ALT elevation.

Age, race/ethnicity, sex, 

BMI, poverty income 

ratio, insulin resistance.

GC-MS, gas chromatograph-mass spectrometry; GC-MS/MS, gas chromatography coupled to tandem mass spectrometry; HRGC/HRMS, high-resolution gas chromatography/isotope dilution high-resolution mass spectrometry; HRGC-MS, high-resolution gas 
chromatograph coupled to mass spectrometry.
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TABLE 5 Epidemiologic studies on the relationship between BPA and NAFLD related biomarkers.

Substance Reference Country Population Sample 
size

Biological 
materials

Measurement Exposure 
assessment

Outcomes Results Adjustment factors

BPA Fu et al. (90) China 2017–

2018

Children (5–

14 years)

1,006 Serum HPLC Median BPA: 26.31 ng/

mL

ALT, AST, TBIL Exposure to BPA would have 

negative effects on hepatic 

function, and these effects 

showed differences in gender 

and geographical location.

Age, address, gender

BPA An et al. (83) Korea 2015–

2017

KoNEHS 

(≥18 years)

3,476 Urine UPLC Geometric mean (SE) 

ug/L BPA: 2.24(0.08) 

non-NAFLD 2.56(0.15) 

NAFLD

NAFLD 

prevalence ALT, 

AST, GGT

The prevalence of NAFLD and 

abnormal ALT were increased in 

accordance with the increase of 

urinary BPA concentrations. There 

were no relationships between 

AST, GGT and BPA levels.

Age, sex, drinking and smoking 

status, physical activity, household 

income, education level, marriage, 

medication taking

BPA Federico et al. 

(91)

Italy 2017 Male patients 

with NAFLD

32 Urine, plasma HPLC LCMS/MS mean ± SD ng/mL Plasm 

BPA: 6.45 ± 4.51 Urine free 

BPA: 2.73 ± 2.06 Urine 

total BPA: 5.84 ± 3.07

ALT, AST, GGT NAFLD patients showed higher 

levels of ALT, plasmatic, free 

urine and total urine BPA.

NR

BPA Kim et al. (92) USA 2005–

2014

NHANES adults 7,605 (HSI) 

3,631 

(USFLI)

Urine SPE-HPLC NAFLD and ALT 

according to BPA levels.

NAFLD defined 

by HIS or 

USFLI

The prevalence of NAFLD and 

abnormal ALT levels was 

correlated with urinary BPA levels.

Race/ethnicity, education, 

hypertension, diabetes, smoking 

status, alcohol consumption

BPA Verstraete et al. 

(93)

Spain 2003–

2010

NHANES 

adolescents 

(12–19 years)

944 Urine HPLC-MS NAFLD and ALT 

according to BPA levels. 

Median(IQR) BPA: 2.6(1.3–

5.3) ng/mL NAFLD

NAFLD risk Risk of suspected NAFLD was 

increased in the second quartile 

of BPA levels.

Age, gender, race/ethnicity, country 

of birth, poverty to income ratio, 

tobacco exposure, daily caloric 

intake

BPA Lee et al. (94) Korea 2005–

2016

Children of 

Ewaha Birth 

and Growth 

Cohort Study

164 Urine HPLC Median(IQR) ug/L BPA: 

0.61(0.35–1.09) 3–5 years 

old 0.60(0.34–1.15) 

7–9 years old

AST, ALT, GGT The urinary BPA concentrations 

at 7–9 years was associated with 

the serum levels of liver 

enzymes at 10–13 years of age, 

but 3–5 years not.

sex, age, BMI, monthly household 

income, maternal educational level, 

pubertal status, the frequencies of 

canned fish and soft drink 

consumption, exposure to 

secondhand smoke

BPA Dallio et al. 

(84)

Italy NAFLD patients 

with or without 

T2DM

60 Urine plasma LC-MS/MS Urine BPA: 6.17 ± 0.85 ng/

ml NAFLD 0.80 ± 0.17 ng/

mL control plasma BPA: 

5.30 ± 0.78 ng/ml NAFLD 

0.36 ± 0.06 ng/ml control

ALT, AST, GGT 

grade of 

NAFLD

BPA resulted to be significantly 

higher in NAFLD subjects 

compared to controls both in 

urine and plasma. BPA plasma 

levels in NASH patients was 

higher in NAFL patients.

NR

BPA Albeldawi et al. 

(95)

USA 2005–

2006

NHANES (18–

74 years)

175 Urine SPE-HPLC-MS/MS OR (95%CI) Urinary 

BPA (1 ng/mL, increase): 

0.92(0.83, 1.02)

ALT BPA exposure was not 

associated with abnormal ALT 

levels and risk of liver disease.

Age, sex, race/ethnicity, education, 

smoking, BMI, waist circumference, 

urinary creatinine concentration

UPLC, ultra-high-performance liquid chromatography; HPLC, high-performance liquid chromatography; SPE, solid-phase extraction; HPLC-MS, high-performance liquid chromatography–tandem mass spectrometry; LC-MS, liquid chromatography-mass spectrometry; 
LC-MS/MS, liquid chromatography coupled to tandem-mass spectrometry.
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congestion, inflammation, and necrosis in a dose-dependent manner 
(99). Although BPA can be excreted quickly from the body, people are 
constantly exposed to it throughout their lives and BPA exposure is 
associated with metabolic health in offspring. Prenatal BPA exposure 
has been shown to alter gene expression profiles and result in peripheral 
insulin resistance and liver lipotoxicity (100, 101). Gestational BPA 
exposure can promote the development of NAFLD in rodent models 
through the perturbation of the nuclear transcription factor activity 
(102). Another study indicated that exposure to BPA may diminish the 
immune response following hepatitis B vaccination (79).

3.4. Di-(2-ethylhexyl) phthalate

Phthalates are a large group of ubiquitous industrial chemicals 
that are commonly used in a variety of products such as plasticizers in 
food wrapping and packaging, coatings, cosmetics, adhesives, medical 
tubes, and toys (103, 104). Phthalates may enter the human body 
through the skin, respiratory tract, digestive tract, or even intravenous 
injection, as they are prone to leaching and transfer to air, soil, or food 
(105, 106). These chemicals are usually rapidly metabolized and 
excreted within 24–48 h. Diester phthalates could hydrolyze into 
monoester phthalates, then excreted as glucuronide conjugates, in the 
urine (107).

The development of NAFLD may be related to the adverse effects 
of DEHP on lipid metabolism and oxidative stress. DEHP and its active 
metabolite mono-(2-ethylhexyl) phthalate (MEPH) can affect hepatic 
accumulation of TGs and exacerbate NAFLD in rodents (108). MEHP 
also can affect the lipid accumulation in BRL-3A hepatocytes through 
the inhibition of the Janus kinase 2/Signal transducer and activator of 
transcription 5 (JAK2/STAT5) pathway, suggesting that the regulation 
of STAT5 by MEPH plays a critical role in the activation of enzymes 
involved in fatty acid metabolism (109). Furthermore, DEHP also 
mediates the deterioration of antioxidant machinery and induces 
oxidative stress. Higher levels of ROS were observed in MEHP-treated 
cells, indicating the effect of ROS on pro-inflammatory cytokine 
production and apoptosis of hepatocytes by inducing NF-κB (110, 111). 
Other experimental studies in animals have shown that the toxicity of 
phthalates drives liver fibrosis by oxidative stress pathways (112, 113).

Phthalate exposure is strongly associated with the NAFLD 
prevalence (114) (Table 6). A study involving 5,800 Korean adults 
demonstrated that the prevalence of NAFLD defined by the hepatic 
steatosis index (HSI) was associated with high urinary levels of many 
types of phthalates, and higher quartiles of MEHHP revealed a 
significantly higher risk (OR 1.39, 95% CI:1.00–1.92) of NAFLD (119). 
In addition, NAFLD measured using vibration-controlled transient 
elastography (VCTE) was also found to be positively associated with 
MECPP and MEHHP exposure (116). Unlike in adults, DEHP 
exposure also affects the prevalence of NAFLD in adolescents. Berman 
et al. (115) studied 387 mother–child pairs in Australia and found that 
mid-level prenatal exposure to MnBP was associated with a greater 
incidence of NAFLD at 17 years old. Table 6 also lists epidemiologic 
studies on the relationship between NAFLD biomarkers. A study 
involving 102 males aimed to examine the influence of MEP and 
MEHP on liver function and found that phthalate exposure may 
be associated with a statistically significant increase in ALT and AST 
serum levels, while urinary phthalate levels may be correlated with 
increased serum TG and decreased HDL cholesterol levels (104). A 

transversal study also demonstrated that serum MEHP levels were 
correlated with GGT (122). Thus, DEHP may interfere with thyroid 
function and induce NAFLD. Yang et al. divided 2,308 adults with 
subclinical hypothyroidism (SCH) into NAFLD and non-NAFLD 
groups according to the HSI score and found that the levels of phthalate 
metabolites in urine are positively associated with NAFLD with SCH 
(118). DEHP possesses a thyroid receptor antagonistic function, while 
thyroid hormones can activate TH-Receptor β (a potential target in 
NAFLD therapy) and decrease hepatic steatosis, which may further 
induce NAFLD (123–125). However, not all studies have discovered an 
association between phthalates and thyroid hormones, and further 
studies ought to be conducted to investigate this association.

3.5. Sex differences of association between 
EDCs and NAFLD

Liver expresses androgen and estrogen receptors (126), thus 
research on sex-specific differences in EDCs has been a hot topic, but 
no consistent conclusion has been made so far. In the analyses of 
NHANES 2013–2016, it was observed that an opposite direction of 
the statistically significant association between PFAS and liver enzyme 
by sex, elevated AST is associated with increased PFOA in female 
adolescents, whereas there is an inverse association with increased 
PFOA, PFNA and PFHxS in males (54). However, Borghese et al. 
using the data from Canadian Health Measures Survey found that the 
association between PFOA and AST was twice as strong among men 
vs. women, this could be  because menstruation, pregnancy, and 
breastfeeding are all prominent excretion pathways for PFAS in 
women (25). The sex difference was also reported in PCB, Li et al. 
(127) found that increased mortality from hepatic disease in 
PCB-exposed, it may be explained by sex-specific effects of estrogenic 
PCB congeners (73, 128). Relationships between BPA exposure and 
liver function at puberty were observed, serum AST levels were 
positively associated with BPA in boys, and the effect sizes were larger 
for all indicator in boys (94). Due to the differences in sex hormone 
associated BPA metabolism, women expressed higher levels of the 
UGT2B1 to catalyze BPA glucuronidation and accelerate the clearance 
of BPA (129, 130). Trasande et al. (131) identified a near-significant 
interaction of DEHP metabolites with sex, suggesting a possible role 
of reduced androgen activity. EDC’s sex difference is complicated, 
further research is needed to be done.

4. Conclusion

Exposure to environmental chemicals is ubiquitous and poses a 
threat to human metabolic health. EDCs affect NAFLD by interacting 
with nuclear receptors (NRs) and activating transcriptional factors, 
which promote hepatic lipid accumulation, oxidative stress, and liver 
dysfunction. Data from epidemiological studies prove an 
interrelationship between EDCs exposure and NAFLD. However, 
several challenges remain. For example, EDC mixtures are a 
complicated issue, and it is difficult to predict the net effect of EDC 
mixtures at the individual level in humans because it is difficult to 
perform laboratory detection for individual isomer and every human 
has a unique exposome (22, 90). In addition, the interpretation of the 
results on the effects of EDCs has been complicated by using different 
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TABLE 6 Epidemiologic studies on the relationship between phthalates and NAFLD prevalence and biomarkers.

Substance Reference Country Population Sample 
size

Biological 
materials

Measurement Exposure 
assessment

Outcomes Results Adjustment factors

DEHP Berman et al. 

(115)

Australia 

1989–1992 

(prenatal)

Mother–child 

pairs from the 

Raine Study

387 Maternal 

serum

LCMS/MS Phthalate diesters NAFLD at 

17 years old 

ALT, AST, GGT

Mid-levels of prenatal 

exposures to MnBP were 

associated with a greater 

incidence of NAFLD.

Age, household income at birth, 

maternal education level at birth, 

duration of breast feeding, BMI 

z-score, height

DEHP Chen et al. 

(116)

USA 2017–

2018

NHANES adults 1,450 Urine HPLC-ESI-MS/MS Mean ± SD 

MECPP: 

1.89 ± 0.03 ug/g 

MEOHP: 

0.99 ± 0.03 ug/g 

MEHHP: 

1.44 ± 0.03 ug/g 

MCiNP: 

0.16 ± 0.02 ug/g 

MCiOP: 

1.51 ± 0.04 ug/g 

MCiNP: 

0.19 ± 0.03 ug/g

NAFLD 

prevalence

Higher prevalence of 

NAFLD is correlated with 

MECPP and MEHHP. There 

is no significant relationship 

between phthalates and liver 

fibrosis.

Age, sex, smoking status, 

education, race/ethnicity, physical 

activity, diabetes, blood pressure, 

BMI, total cholesterol levels

DEHP Fu et al. (90) China 

2018.7–8

Children (5–

14 years)

1,006 Serum HPLC Median DMP: 

31.62 ng/mL

ALT, AST, TBIL Serum DMP concentration 

and TBIL level were 

significantly positively 

correlated.

Age, address, gender

DEHP Li et al. (117) USA 1999–

2014

NHANES 

participants

17,878 

(HIS-

NAFLD) 

8,487 

(USFLI-

NAFLD)

Urine HPLC-ESI-MS/MS 13 phthalates OR 

(95%CI) Urinary 

phthalates: 

1.18(1.09–1.4)

NAFLD 

prevalence

Urinary phthalates were 

positively associated with 

NAFLD development.

Age, sex, race, education, family 

income-to-poverty ratio, marital 

status, employment, insurance, 

self-reported comorbidities, 

alcohol consumption, cigarettes 

smoking, leisure time physical 

activity, diet quality

DEHP
Midya et al. 

(72)

France, 

Greece, 

Lithuania, 

Norway, 

Spain, UK 

2021–2022

Mother–child 

pairs from the 

Human Early-

Life Exposome 

project

1,108 Serum GC-MS/MS 10 phthalates

ALT, AST, GGT 

and CK-18 of 

children

Decreased odds of liver 

injury were associated with 

high-molecular-weight 

phthalates.

Subcohort, maternal age, maternal 

prepregnancy BMI, maternal 

educational level, parity, child age, 

child sex

(Continued)
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TABLE 6 (Continued)

Substance Reference Country Population Sample 
size

Biological 
materials

Measurement Exposure 
assessment

Outcomes Results Adjustment factors

DEHP Yang et al. 

(118)

Korea 2012–

2014

Adults with 

subclinical 

hypothyroidism 

from KoNEHS

2,308 Urine UPLC-MS Geometric 

mean(95%CI) 

ug/L MEHHP: 

3.02(2.97–3.06) 

EH 3.10(2.98–

3.23) SCH 

MEOHP: 

2.66(2.61–2.71) 

EH 2.76(2.64–

2.89) SCH 

MECPP: 

3.15(3.10–3.19) 

EH 3.22(3.11–

3.33) SCH MBzP: 

1.13(1.05–1.21) 

EH 1.02(0.84–

1.20) SCH MnBP: 

3.32(3.26–3.39) 

EH 3.35(3.22–

3.48) SCH

Risk of NAFLD The levels of phthalate 

metabolites in urine are 

positively associated with 

NAFLD in adults with 

subclinical hypothyroidism 

(SCH).

Age, gender, drinking, smoking, 

physical activity, monthly 

household income, education, 

marital status, clinical variables

DEHP Cai et al. (114) USA 2003–

2016

NHANES adults 

(>20 years)

4,206 Urine HPLC-ESI-MS/MS 9 phthalates 

(MEOHP, MEP, 

MEHHP, 

MECPP, MnBP, 

MEHP, MiBP, 

MBzP, MCPP)

ALT, AST, GGT Phthalates exposure was 

independently associated 

with NAFLD both in males 

and females.

Age, gender, education levels, race/

ethnicity, marital status, family 

poverty income ratio, BMI, total 

cholesterol, survey circle, smoking 

status, physical activity, 

hypertension, alcohol consumption

DEHP Yang et al. 

(119)

Korea 2012–

2014

KoNEHS adults 5,800 Urine UPLC-MS GM ± SE 

MEHHP: 

2.922 ± 0.011 ug/L 

MEOHP: 

2.571 ± 0.011 ug/L 

MECPP: 

3.059 ± 0.010 ug/L 

MnBP: 

3.211 ± 0.012 ug/L 

MBzP: 

1.047 ± 0.015 ug/L

NAFLD 

prevalence

The prevalence of NAFLD 

was associated with urinary 

levels of MEHHP, MEOHP, 

MECPP, MBzP, MnBP 

compared to the reference 

group.

Age, gender, smoking, drinking, 

exercise level, marital status, 

education level, socioeconomic 

status.

(Continued)
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Substance Reference Country Population Sample 
size

Biological 
materials

Measurement Exposure 
assessment

Outcomes Results Adjustment factors

DEHP Yu et al. (120) USA 2007–

2016

NHANES adults 

(≥20 years)

6,046 Urine HPLC-ESI-MS/MS 15 phthalate 

metabolites 

Median ΣDEHP: 

3.1 ug/mmol

ALT, AST, ALP, 

TBIL

Positive dose–response 

relationships between 

urinary phthalate 

metabolites and ALT or AST, 

ΣDEHP and GGT were 

observed. Significant 

positive associations of 

ΣDEHP with TBIL were 

found after adjusting for 

potential confounders.

Age, sex, race/ethnicity, education 

level, the ratio of family income to 

poverty, physical activity, alcohol 

consumption, medications

DEHP Milošević et al. 

(121)

Serbia Adults (18–

50 years)

305 Urine GC-MS 10 phthalates 

metabolites 

mean ± SD all 

phthalates: 

304.55 ug/g 

MEP: 

132.2 ± 188.6 

ug/g MEHP: 

80.36 ± 96.27 

ug/g

ALT, AST, GGT Phthalates exposure was 

associated with elevated AST 

levels. ALT and AST values 

were increased in MEP 

exposed while GGT levels 

were enhanced in MEHP 

exposed.

Obesity, diabetes

DEHP Milošević et al. 

(104)

Serbia 2015–

2016

Male participants 

(18–55 years)

102 Urine GC-MS MEP, MEHP, 

MPP, MiAP, 

MnAP, MCHP, 

MBzP, MOP, 

MBP

ALT, AST, GGT Significant increment in 

transaminase serum levels 

was observed in MEP-

positive normal weight 

sub-group. The phthalates 

exposure may be related to 

statistically significant ALT 

and AST serum levels 

increment.

NR

UPLC, ultra-high-performance liquid chromatography; HPLC, high-performance liquid chromatography; HPLC-MS, high-performance liquid chromatography-tandem mass spectrometry; UPLC-MS, ultra-high-performance liquid chromatography mass 
spectrometry; LC-MS, liquid chromatography-mass spectrometry; LC-MS/MS, liquid chromatography coupled to tandem-mass spectrometry; HPLC-ESI-MS/MS, High-performance liquid chromatography-electrospray ionization-tandem mass spectrometry; GC-MS, 
gas chromatograph-mass spectrometry; GC-MS/MS, gas chromatography coupled to tandem mass spectrometry.

TABLE 6 (Continued)
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routes of administration under many experimental conditions such 
as, difference of doses, absence of dose–response relationships, or 
small sample sizes (132). In the future, research with larger samples, 
longer follow-up periods, and a multidisciplinary approach to explore 
the effect of EDCs in the human body is required. Moreover, the 
scientific community should help draw public attention to the hazards 
of EDCs and promote more regulation of industrial pollution.
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