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Background: The global COVID-19 pandemic is still ongoing, and cross-country 
and cross-period variation in COVID-19 age-adjusted case fatality rates (CFRs) 
has not been clarified. Here, we  aimed to identify the country-specific effects 
of booster vaccination and other features that may affect heterogeneity in age-
adjusted CFRs with a worldwide scope, and to predict the benefit of increasing 
booster vaccination rate on future CFR.

Method: Cross-temporal and cross-country variations in CFR were identified in 
32 countries using the latest available database, with multi-feature (vaccination 
coverage, demographic characteristics, disease burden, behavioral risks, 
environmental risks, health services and trust) using Extreme Gradient Boosting 
(XGBoost) algorithm and SHapley Additive exPlanations (SHAP). After that, 
country-specific risk features that affect age-adjusted CFRs were identified. The 
benefit of booster on age-adjusted CFR was simulated by increasing booster 
vaccination by 1–30% in each country.

Results: Overall COVID-19 age-adjusted CFRs across 32 countries ranged from 110 
deaths per 100,000 cases to 5,112 deaths per 100,000 cases from February 4, 2020 
to Jan 31, 2022, which were divided into countries with age-adjusted CFRs higher 
than the crude CFRs and countries with age-adjusted CFRs lower than the crude 
CFRs (n = 9 and n = 23) when compared with the crude CFR. The effect of booster 
vaccination on age-adjusted CFRs becomes more important from Alpha to Omicron 
period (importance scores: 0.03–0.23). The Omicron period model showed that the 
key risk factors for countries with higher age-adjusted CFR than crude CFR are low 
GDP per capita and low booster vaccination rates, while the key risk factors for 
countries with higher age-adjusted CFR than crude CFR were high dietary risks and 
low physical activity. Increasing booster vaccination rates by 7% would reduce CFRs 
in all countries with age-adjusted CFRs higher than the crude CFRs.

Conclusion: Booster vaccination still plays an important role in reducing age-
adjusted CFRs, while there are multidimensional concurrent risk factors and 
precise joint intervention strategies and preparations based on country-specific 
risks are also essential.
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Introduction

The COVID-19 pandemic has triggered a public health and 
economic crisis the like of which has not been seen for generations (1, 
2). With the gradual reduction of COVID-19 restriction policies, the 
long-term epidemiological trend of COVID-19 is unpredictable. The 
risk of death from COVID-19 varies between countries, and case 
fatality rate (CFR) is an important indicator used to assess it. It is 
widely considered that the COVID-19 CFRs are affected by 
multidimensional factors, such as the SARS-CoV-2 variant infected 
(3), vaccination coverage (4), population age structure (5, 6), health 
service (7), disease burden (8, 9), environment (10), and so on (11). 
Of these, as the COVID-19 CFR is strongly associated with age, 
considering age structure when comparing CFR differences across 
countries is more helpful in minimizing potential bias (6). To best of 
our knowledge, studies have been conducted using age-adjusted CFRs 
for comparison across at most seven countries to illustrate the 
significant effect of confounding by the age distribution of the cases 
when using crude CFRs for country comparisons, however, cross-
country and cross-period differences in risk factors for age-adjusted 
CFR have not been identified (12, 13). Therefore, it is essential to 
adjust COVID-19 CFRs according to patient age structure in the 
widest possible number of countries and to compare and clarify 
possible risk factors for age-adjusted CFRs with a global perspective, 
which could provide an updated and practical reference for future 
pandemic control.

Since December 2021, the global COVID-19 vaccination 
program has been in place and, due to declining antibody levels, 
booster doses of COVID-19 vaccine have subsequently been offered 
to eligible individuals (14). However, the limited and unbalanced 
medical resources result in the global inequity of both vaccination 
rate and further recovery rate. As of January 2023, more than 60% 
of the population worldwide has received at least one dose of 
COVID-19 vaccine, while in low-income countries, only 26% have 
received at least one dose (15), which possibly leads to an unbalanced 
protection ability and heavy burden in the overall health systems. 
Furthermore, the dominant strains in each period of the COVID-19 
pandemic have different characteristics. For example, relative to the 
original variant, the Alpha strain has around 43–90% greater 
transmissibility along with a 42–82% higher risk of death (16), and 
the Delta strain has a transmission rate still faster (17), with 
concomitant greater risk of hospitalization and death (18, 19). The 
emergence of the Omicron variant brought the COVID-19 epidemic 
into a new pattern (20). Omicron’s immune escape properties make 
it more contagious than previous strains, but it appears to also 
be milder, usually causing less severe disease (21). Thus, analysis of 
risk factors for COVID-19 CFR based on international inequalities 
in boosters and the complexity of SARS-CoV-2 variants has greater 
research implications.

The complex factors involved in real-world health emergencies 
are more effectively analyzed with fast-evolving machine learning 
algorithms, such as Extreme Gradient Boosting (XGBoost) algorithm. 
XGBoost is a decision tree-based gradient boosting ensemble 
machine learning algorithm with improved performance based on 
other tree-based models such as Random Forest and Gradient 
Boosting Decision Tree (GBDT), which is well suited for solving 
classification and regression problems (22). It features several 
advantages that allow it to be effectively adapted to real-world studies: 

(1) the objective function can be customized and we choose the most 
appropriate loss function based on the distribution of the outcome 
variables; (2) it handles missing data by assigning it to a default 
direction and finding the best imputation value, which means it is 
more suitable for dealing with real-world data with limited matching; 
(3) it penalizes more complex models by LASSO and Ridge 
regularization to improve the generalization of the model; (4) it can 
detect and learn from non-linear data patterns, making it easier to 
identify the non-linear effects of features (23). SHapley Additive 
exPlanations (SHAP) is a well-established method for interpreting 
machine learning models (24). On the one hand, SHAP values can 
clarify the importance of each feature in the model, and on the other 
hand, SHAP values can break down a prediction to show how each 
feature affects the prediction. XGboost algorithm with SHAP 
explanation allows us to identify what factors are driving each 
country’s risk and enabled countries to directly address those risk 
factors with targeted interventions (25).

Here, we analyze COVID-19 age-adjusted CFRs across countries 
using the latest available database, as well as crude CFRs. The main 
aim is to identify the effects of vaccination coverage (e.g., booster 
vaccination) and other features in six dimensions that may affect 
heterogeneity in age-adjusted CFRs, including demographic 
characteristics, disease burden, behavioral risk factors, environmental 
risk factors, health services and trust levels, using machine learning 
approaches. Then, to further identify country-specific risk features 
that affect age-adjusted CFRs. Finally, we predicted the reduction in 
CFR by country with increased vaccination rates to assess the future 
health benefits of vaccination in each country.

Materials and methods

Data collection

COVID-19 crude CFR and age-adjusted CFR
Global daily confirmed infections and deaths of COVID-19 by age 

over the period of 4 February 2020 to 2 February 2022 (the latest 
database update time) were extracted from the COVerAGE-DB 
database, which contains the widest range of COVID-19 case and 
death data by age group for countries worldwide (26). The 
COVerAGE-DB database contains data for 108 countries, and after 
we  filtered the countries for which both case and death data are 
available and the countries for which time series containing four time 
periods are available, there are 32 countries throughout the original, 
Alpha, Delta and Omicron periods, including Argentina, Australia, 
Austria, Belgium, Bulgaria, Chile, Colombia, Czechia, Denmark, 
Finland, France, Germany, Greece, Indonesia, Isreal, Italy, Jamaica, 
Japan, New Zealand, Nigeria, Peru, Philippines, Portugal, Slovakia, 
Slovenia, Somalia, South Korea, Spain, Sweden, Switzerland, Togo, 
and United State America.

Weekly crude CFRs were calculated from the number of new 
deaths and new cases per week. Weekly age adjusted CFRs were 
calculated by the direct method (13). The population structure for 
each country was calculated using World Bank population data for 
2020, and the WHO World Standard Population was used as the 
standard population structure (27). In addition, before building the 
models, the outliers in CFRs were removed based on the 
interquartile range.
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Vaccination data
Daily vaccination data from January 28, 2020 to January 31, 2022 in 

32 countries were extracted from Our World in Data (OWID) and 
pre-processed by linear interpolation (28). The OWID COVID-19 
vaccination dataset is the largest publicly aggregated global dataset on 
administered vaccinations by country and up-to-date in real time. The 
advantage of this database is that it differentiates the number of vaccine 
shots, including share of the population completed the initial 
vaccination protocol (2 doses for most vaccines, 1 or 3 for a few 
manufacturers) and share of the population receiving booster doses 
(doses administered beyond those prescribed by the original 
vaccination protocol - for example, a third dose of Pfizer/BioNTech 
vaccine, or a second dose of Johnson & Johnson vaccine) (28). 
Furthermore, considering that the protection offered by the COVID-19 
vaccine drops sharply after 6 months (29–31), we  calculated four 
categories of vaccination status: (1) the proportion of the population 
having completed the initial vaccination protocol within 6 months (fully 
vaccinated), (2) the proportion of the population having received a 
booster within 6 months (booster given), (3) the cumulative proportion 
of the population having completed the initial vaccination protocol, (4) 
the cumulative proportion of the population having received a booster.

SARS-CoV-2 lineage data
SARS-CoV-2 lineage data were obtained from the China National 

Center for Bioinformation (CNCB), which integrated global SARS-
CoV-2 sequences from the Global Initiative on Sharing All Influenza 
Data (GISAID), NCBI GenBank, National Genomics Data Center 
(NGDC), National Microbiology Data Center (NMDC), and China 
National GeneBank (CNGB) and identified variants among those 
sequences (32). We identified those variant types that accounted for 
>70% of all detected sequences on a global scale for each day in the 
study period, and considered variants meeting that criterion as having 
been world-dominating. We  defined periods of main VOCs 
dominance. The starting time of a VOC is based on the World Health 
Organisation’s definition of the start time of each VOC (33). The 
ending time was set as the next VOC occurring in no more than 10% 
of the countries. The COVID-19 pandemic was thus divided into four 
periods: the ancestral variant dominance period (original period, 28 
January to 17 December 2020), Alpha variant dominance period 
(Alpha period, 18 December 2020 to 6 April 2021), Delta variant 
dominance period (Delta period, 11 May to 21 November 2021), and 
Omicron variant dominance period (Omicron period, 26 November 
2021 to 31 January 2022; Figure 1).

Multi-dimensional explanatory variables
We included six dimensions of features including demographic 

characteristics, disease burden, behavioral risk factors, environmental 
risk factors, level of national health services and level of trust to 
comprehensively assess risk factors for COVID-19 age-adjusted 
CFR. Demographic characteristics include gender ratio (34), average 
years of schooling (35), and GDP per capita (36). Disease burden 
include the top three causes of death globally: cardiovascular diseases 
(CVD), stroke, and chronic obstructive pulmonary disease (COPD); 
comorbidity which are known to affect the outcome of COVID-19: 
cancers, diabetes, chronic kidney disease (CKD), and hypertension; 
upper and lower respiratory infections (URI and LRI), and 
tuberculosis (TB), which affect lung function; as well as mental 

disorders, acquired immunodeficiency syndrome (37), and the overall 
prevalence of noncommunicable diseases (NCD) (38). Behavioral risk 
factors include overweight (39), low physical activity, smoking, and 
dietary risks (37). Environmental risk factors include PM2.5 pollution 
(37), tree density (40), average temperature (41), and population 
density (42). The level of health services is indicated by the healthcare 
access and quality (HAQ) index (43), International Health Regulations 
(IHR) core capacity scores (44), health expenditure (45), number of 
hospitals (46), and hospital beds per capita (47). The trust indices 
include the level of people’ trust in the national government, media, 
and science during the pandemic (48). Data sources and detailed 
descriptions are detailed in Supplementary Table 1.

XGBoost model

Model building
We used XGBoost to capture the non-linear associations between 

COVID-19 age-adjusted CFRs and vaccination rates as well as 
multiple dimensional features to build explanatory and predictive 
models. XGBoost is a decision-tree-based ensemble machine learning 
algorithm that uses a gradient boosting framework (23). It produces 
a robust, more accurate prediction model in the form of an ensemble 
of weak prediction models and introduces a penalty term for model 
complexity to provide better performance. The objective function of 
the XGBoost algorithm is as follows:

 
Obj L L y y f f F

i
i i

k
k kθ θ θ( ) = ( ) + ( ) =









 + ( ) ∈∑ ∑Ω Ω , ,

Where L  is the training loss function. L y yi i ,








  corresponds to 

the training loss function for each sample, where yi  denotes the true 
value of the i  sample and yi  denotes the estimated value of the i  
sample. Ω  is regularization function that measures the complexity of 
the model, where k  is the number of trees, F  is the set of all possible 
regression trees.

Feature selection
We used a recursive feature elimination (RFE) algorithm to 

filter main features with the aim of retaining as few features as 
possible while still capturing the variation in age-adjusted CFRs 
(49). The RFE strategy uses all features to train a supervised model, 
then evaluates the features according to their importance in the 
model. In each iteration, only one feature with minimal model 
importance is eliminated, and the model fit in each iteration is 
compared by RMSE; ultimately, features from the better-fitting 
model are selected.

Hyperparameter tuning
The best combination of hyperparameter values was selected 

using a fivefold cross-validation grid search. The tuned parameters 
consisted of learning rate (from 0.05 to 0.2 with an interval of 0.05) 
and the maximum depth of the tree (from 4 to 10 with an interval of 
1). The objective function was set as “reg:tweedie,” as our dependent 
variable of interest was zero-inflated right-skewed data. The training 
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process was stopped when the performance of the validation dataset 
did not improve after further training iterations. The dataset was split 
into three parts: 60% for training, 20% for validation, and 20% for 
testing. The accuracy of the model was evaluated in terms of R2 
and RMSE.

Model interpretation
We adopted the SHAP framework to rank features according 

to their importance and explain how booster vaccination and other 
key features affect the age-adjusted CFR. SHAP is a game theoretic 
approach that can explain the output of the XGBoost model. It 
connects the optimal credit allocation with a local explanation 
using the classical Shapley values from game theory and their 
associated extensions (24). The variability of the predictions is 
assigned to the available features, allowing evaluation of the 
contribution of each feature to each prediction point. SHAP 
provides valuable insights into a model’s behavior by overcoming 
the main drawback of inconsistency in classical global feature 
importance measures, minimizes the possibility of underestimating 
the importance of a feature with a certain attribution value, shows 
consistency and accuracy in its importance ordering, and 
interpreting the model’s global behavior while retaining local 
faithfulness. The overall importance of a feature was scored as the 
mean absolute value of all SHAP values for that feature, and 
we considered features scoring 0.1 or higher as important. The 
relationship between age-adjusted CFR and each key feature was 
examined via partial dependence plots, with adjustment for all 
other confoundings.

Prediction
We predicted the change in CFR for scenarios when booster 

vaccination was increased by 1–30% in each country. The 
approach is to determine the model parameters from the training 
and validation sets and then predict the CFRs when booster 
vaccination rates increase by 1–30% for each country respectively, 
holding all other variables constant. The principle of increasing 
booster vaccination is based on the actual full and booster 
vaccination rate in each country, so we  predicted the CFRs of 
increasing booster vaccination rates within the range of a country’s 

booster vaccination rate not exceeding the cumulative proportion 
of the population fully vaccinated.

Statistical analysis

Continuous data are presented as a mean with standard deviation 
(SD) where normally distributed and as a median with the 25th and 
75th percentiles where non-normally distributed. Univariate analyses 
relating CFRs and multi-dimensional explanatory variables were 
assessed with Spearman’s rank correlation.

Analyses were performed in the R 4.1.1 and Python 
3.8 environments.

Results

Temporal and regional heterogeneity of 
age-adjusted CFRs

COVID-19 age-adjusted CFRs were available in 32 countries 
throughout the pandemic from February 4, 2020 to January 31, 
2022. The crude CFRs in these countries ranged from 63 to 5,886 
deaths per 100,000 people, and the age-adjusted CFRs still varied 
significantly across the country, ranging from 110 to 5,112 deaths 
per 100,000 people. The age-adjusted CFRs for the 32 countries 
during the original, Alpha, Delta, and Omicron periods were 1.25, 
1.19, 1.37, and 0.16% respectively, showing a significant decrease 
for the Omicron period. According to the age-adjusted CFRs, the 
32 countries were grouped into two groups: (1) Countries with 
higher age-adjusted CFRs than crude CFRs (n = 9, median 
age-adjusted and crude CFRs: 0.013 and 0.010), mainly in Asia 
and Africa; and (2) Countries with lower age-adjusted CFRs than 
crude CFRs (n = 23, median age-adjusted and crude CFRs: 0.003 
and 0.007), mostly in Europe (Figure 2A). The countries with the 
highest age-adjusted CFR in group 1 are Indonesia, Colombia and 
Jamaica, and in group 2, they are Somalia, Peru and Bulgaria. The 
median cumulative full and booster vaccination rates for countries 
with higher age-adjusted CFRs than crude CFRs were 51.08 and 

FIGURE 1

The four periods of the pandemic defined by the dominance of the different VOC strains. * A period of multiple variants mixing, with the next VOC 
already occurring in more than 10% of countries.
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6.49%, respectively, while the median cumulative full and booster 
vaccination rates for countries with lower age-adjusted CFRs than 
crude CFRs were 73.83 and 39.7%, respectively. Univariate 
analyses revealed that age-adjusted CFRs were relatively strong 
associated with both the cumulative proportion of the population 
having completed the initial vaccination protocol and that having 
received a booster (r = −0.625, p = 0.0001; and r = −0.514, 
p = 0.0030, respectively) (Figure 2B). The higher the vaccination 
rate, the lower the CFRs, however, some countries with high 
vaccination rates, such as Peru, Chile and Colombia, still have 
relatively high CFRs.

The determinants of age-adjusted CFRs 
over the pandemic

Most cross-country variation in age-adjusted CFRs in the Alpha, 
Delta, and Omicron periods could be well explained by the SHAP-
interpreted XGboost model (R2: 0.78, 0.88, 0.79, respectively) 
(Figure  3A). The XGboost-SHAP model showed that important 
determinants [importance score (IS) ≥ 0.10] in all three periods 
included HAQ index (IS: 0.36, 1.33 and 0.31 in the Alpha, Delta, and 

Omicron periods, respectively), GDP per capita (IS:0.19, 0.13, and 
0.91) and vaccination (IS of fully vaccinated: 0.19, 0.49, and 0.28; IS 
of boost given: 0.03, 0.08, and 0.23), in addition to CKD (IS: 0.10), 
smoking (IS: 0.13) in the Alpha period, tree coverage (IS: 0.14), 
NCD (IS: 0.17), URI (IS: 0.17) in the Delta period, and dietary risks 
(IS: 0.17) in the Omicron period. Figure  3B showed that high 
booster vaccination rates and high GDP and HAQ indices are 
protective against age-adjusted CFR and that high dietary risks 
would be  a risk for age-adjusted CFR in the Omicron period. 
Comparing the important determinants of CFR over the three 
periods shows that completing the initial vaccination protocol is 
more important in the Delta period (IS: 0.49), while the protective 
effects of booster vaccination increasingly become more important 
from Alpha to Omicron period (IS: 0.23; Figure  3B). Various 
underlying disease burdens were identified as important risk factors 
for CFR, such as chronic kidney disease (CKD) (IS: 0.10 in both 
Alpha and Delta period), and NCD (IS: 0.17 in the Delta period), 
but the risk posed by these underlying diseases was reduced for the 
Omicron period. In addition, high levels of trust in government, 
journalists and science are also protective factors for COVID-19 
deaths in almost all periods. The importance of dietary risk on 
age-adjusted CFR is revealed in the Omicron period (IS: 0.17). 

A

B

FIGURE 2

(A) Crude CFRs and age adjusted CFRs in the 32 countries. (B) The correlation between age-adjusted CFRs and vaccination coverage (fully vaccinated 
and booster given).
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PM2.5 as a risk factor in all periods became more important in the 
Omicron period (IS: 0.09).

Assessment of country-specific risks for 
age adjusted CFR in the omicron period

The determinants, including GDP per capita, HAQ index, 
vaccination coverage (population receiving booster doses and fully 
vaccinated) and behavioral risk factors (dietary risks, low physical 
activity, and smoking), disease burden (NCD and LRI), as well as 
PM2.5 and trust science, contribute to the COVID-19 age-adjusted 
CFR in each country during the Omicron period as shown in Figure 4. 
Countries are sorted from left to right in descending order of risk of 
death from COVID-19. The key risk factors for countries with higher 
age-adjusted CFR than crude CFR are low GDP per capita and low 
booster vaccination rates, while the key risk factors for countries with 
higher age-adjusted CFR than crude CFR were high dietary risks and 
low physical activity. Moreover, most countries were already protected 
by booster vaccination, but there were still seven countries (Sweden, 
Bulgaria, Jamaica, Indonesia, Somalia, Togo, Nigeria) with an 
increased risk of death from COVID-19 due to low booster 
vaccination rate. These countries have more concurrent risk factors, 
with all seven at risk of high NCD burden, six of the seven at risk of 
low HAQ index, and five of the seven at risk of low GDP per capita. 
Furthermore, high dietary risk and low physical activity also increased 

the risk of death from COVID-19 in 23 countries, with it being the 
main risk in 12 of these countries. The 11 of these 12 countries that 
are high-income countries already have a booster vaccination rate of 
41.3%. CFRs are adversely affected by the burden of NCD to some 
degree in 65.6% of countries in this study, but of these only Portugal 
and Sweden have the main risk from NCD. In addition, high PM2.5 
and low trust in science are the key risk factor in South Korea and 
Isreal, and Switzerland, respectively.

Future benefits of increasing booster 
vaccination vary by country

Countries show varying degrees of reduction in age-adjusted 
CFRs when simulating 1–30% increase in booster vaccination 
(Supplementary Figure 2). Countries with age-adjusted CFRs higher 
than crude CFRs showed a reduction in CFRs when simulated booster 
vaccination rates were increased by 1–7%, and in addition, 11 of the 
countries with age-adjusted CFRs higher than crude CFRs (48%) also 
showed a reduction in CFRs. Furthermore, increasing booster 
vaccination for just up to 3% of the population would reduce CFR in 
15 countries. These countries include five countries (Nigeria, Togo, 
Indonesia, Sweden, and Jamaica) with pre-existing low booster 
vaccination rates as a risk factor. However, Bulgaria, as a country 
where low vaccination rates are also a risk factor, would need to 
increase vaccination rates by 9% and above to bring down its 

A

B

FIGURE 3

(A) Relative importance scores for each feature affecting age-adjusted CFR in each period model, obtained by taking the absolute mean of the SHAP 
values. The 35 features represent seven distinct dimensions: vaccination coverage, demographic factors, disease burden, behavioral risk factors, 
environmental risk factors, health services, and trust levels. (B) SHAP dependence plots for GDP per capita, HAQ index, booster vaccination rate, and 
dietary risks in the XGBoost models. SHAP values above zero represent an increased risk of higher COVID-19 age-adjusted CFR. LRI, lower respiratory 
infections; URI, upper respiratory infections; COPD, chronic obstructive pulmonary disease; CVD, cardiovascular diseases; CKD, chronic kidney disease; 
HTN, hypertension; MD, mental disorders; NCD, noncommunicable diseases; HIV, HIV infection; TB, tuberculosis.
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CFR. Moreover, in Czechia, Australia and Portugal, the CFRs did not 
show a decrease until booster vaccination rates increased by more 
than 12%. Furthermore, in Austria, Belgium, Chile, Germany, 
Denmark, Italy, and Slovakia, the increase in booster vaccination did 
not significantly reduce the CFRs, where the average booster 
vaccination rate has reached 51.9%.

Discussion

This is the first study to comprehensively identify risk factors 
affecting COVID-19 age-adjusted CFRs at the country level, 
particularly to assess and predict the effect of booster vaccination 
in the COVID-19 pandemic. Our models fit well allowing for a 
real-world assessment of the risk of COVID-19 death and the 
health benefits of vaccination in each country to more rationally 
guide vaccine distribution. We draw two conclusions from this 
study. First, booster vaccinations showed stronger importance in 
the Omicron period as previous vaccine effectiveness waned, while 
the importance of other factors such as disease burden and 
behavioral risk factors for CFR changed during the pandemic. Our 
study confirms the importance of vaccination, especially booster 
doses, in reducing the risk of death in Omicron pandemics. 
Patients during the Omicron period also benefited from the strong 
protection against severe disease and death still afforded by the 
COVID-19 vaccine (50). In the stage dominated by the “Stealth” 
Omicron, during which strict prevention policies are challenged 
by insidious transmission and the number of infections has become 
difficult to control, improving vaccination coverage is a cost-
effective approach for reducing severe health outcomes and 
relieving pressure on the healthcare system. On the issue of vaccine 
allocation, as advocated by Jeremy Bentham’s Utilitarianism, a rule 
for society should be established that has the best outcome for the 
greatest amount of people in society, in the sense that a 

cost-effective vaccine allocation scheme should be developed in a 
global perspective that reduces the risk of death for the greatest 
proportion of people worldwide. Our study simulated the 
reduction in CFR after increasing vaccination by country and 
found that the health benefits of increasing vaccination varied by 
country, for example, countries such as Togo, Isreal, and Nigeria 
showed significant reductions in CFR with only a small increase in 
vaccination. The WHO has worked to this end by convening 
COVAX (51), a ground-breaking global collaboration aimed at 
accelerating the development and production of and equitable 
access to the COVID-19 vaccine, ensuring that every country has 
access to the vaccine and is able to promote vaccination to protect 
their whole population, starting with the most vulnerable. On the 
other hand, GDP per capita and HAQ index have been important 
determinants of age-adjusted CFR during the different variant-
dominated periods of the pandemic. The HAQ index reflects the 
accessibility and quality of health care for individuals. The 
accessibility and quality of healthcare in a country are important 
when responding to a pandemic; moreover, regional inequities in 
access and quality may lead to greater regional disparities in the 
burden of infectious diseases in the future. Adjusting investments 
to improve access and quality across healthcare needs will not only 
benefit routine care, but also improve overall health coverage in 
preparation for the next pandemic (43). For instance, our study 
presented that there were several countries (e.g., Sweden, Bulgaria, 
Jamaica, Indonesia, Somalia, Togo, Nigeria) have low GDP and 
HAQ indices, as well as low boost vaccination coverage, which 
contribute to their high risk of death.

The second major conclusion of this study is that CFRs are also 
affected by a broad range of concurrent risks, such as high dietary risk, 
low physical activity, high disease burden, and high PM2.5. 
Consequently, we  believe that a joint intervention would be  an 
effective measure for reducing CFRs in this class of countries. In the 
short term, in addition to vaccination, a promising area for 

FIGURE 4

The protection and risk contributions of the determinants of the COVID-19 age-adjusted CFR for each country in the Omicron period. SHAP values 
above 0 are regarded as risk effects and below 0 as protective effects.
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interventionists to work on is raising the level of national trust. Our 
findings support previous research that trust in government and 
science can increase risk perceptions of COVID-19 among the 
population, promote cooperation with outbreak prevention and 
control efforts, and more quickly control the number of cases and 
deaths (52). Pandemics have always posed a challenge to trust between 
the public and the government, and maintaining and rebuilding trust 
during a crisis is crucial to maintaining political participation and 
social cohesion (53). In the long term, behavioral factors such as 
smoking, diet, and nutrition, along with environmental factors such 
as PM2.5, are all risk factors that can be  changed through health 
education and policy development, and are areas in which advanced 
preparation is needed in order to mitigate the effects of future 
epidemics. In high-income countries, dietary risks are revealed. 
Dietary risk is the intake of too much or too little of certain foods or 
nutrients. As studies have shown, a healthy dietary pattern is 
associated with lower risk and severity of COVID-19 (54). Therefore, 
improving the dietary health of the population or correcting 
micronutrient deficiencies in people already diagnosed with 
COVID-19 infection may help to reduce the risk of death (55). 
Moreover, regulating taxes on tobacco, tightening restrictions on 
smoking places, and setting a legal age for smoking would contribute 
to reducing the potential harm from smoking at a national level. In 
addition, environmental factors are of increasing concern to 
epidemiologists, and our research suggests that PM2.5 have some 
impact on severe health outcomes in COVID-19. It has also been 
suggested that PM2.5 may potentially serve as a carrier for the virus 
(56). Therefore, an improved environment with less air pollution 
would benefit both patients with COVID-19 and healthy populations. 
Consequently, we  believe that a joint intervention would be  an 
effective measure for reducing CFRs in the countries.

There are several limitations in our analysis. First, the study design 
is a country-level ecological analysis based on retrospective data, and 
care should be taken regarding ecological fallacies in the interpretation 
and generalization of the results. Second, our data were sourced from 
multiple publicly available data sources, and after comparing them 
we  selected the more credible sources and also applied outlier 
treatment, but the credibility of our analysis relies greatly on the 
quality of the data. Third, COVID-19 cases and deaths are from 
national self-reported data and do not consider excess deaths from 
COVID-19. Fourth, we predicted the future CFR only when increasing 
booster vaccination rates in each country, keeping other factors 
constant, considering that only vaccination rates are relatively 
changeable in the short term among the factors that affect CFR. Fifth, 
some of the potential factors affecting CFR were not available in this 
study, such as vaccine type and ethnicity, and in addition there may 
be incorrect estimates based on missing values due to the missing 
values in the data.

In conclusion, the cross-temporal and cross-country variation in 
COVID-19 age-adjusted CFRs illustrates the importance of 
conducting further research on risk assessment. The future health 
benefits of increased vaccination are country-specific due to 
differences in risk factors of CFR by country. Booster vaccination still 
plays an important role in reducing age-adjusted CFRs, while there are 
multidimensional concurrent risk factors and precise joint 
intervention strategies and preparations based on country-specific 
risks are also essential. Our study reminds policy makers to consider 
risk factors holistically and assess whether their countries can rebuild 

policy trust, face the challenges of vaccine hesitancy, revitalize primary 
healthcare, and strengthen behavioral and environmental risk 
management and investment in the post-COVID era.
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