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Background: Wastewater surveillance (WWS) of pathogens is a rapidly evolving
field owing to the 2019 coronavirus disease pandemic, which brought about
a paradigm shift in public health authorities for the management of pathogen
outbreaks. However, the interpretation of WWS in terms of clinical cases
remains a challenge, particularly in small communities where large variations in
pathogen concentrations are routinely observed without a clear relation to clinical
incident cases.

Methods: Results are presented for WWS from six municipalities in the eastern
part of Canada during the spring of 2021. We developed a numerical model
based on viral kinetics reduction functions to consider both prevalent and incident
cases to interpret the WWS data in light of the reported clinical cases in the six
surveyed communities.

Results: The use of the proposed numerical model with a viral kinetics reduction
function drastically increased the interpretability of the WWS data in terms of
the clinical cases reported for the surveyed community. In line with our working
hypothesis, the e�ects of viral kinetics reduction modeling were more important
in small communities than in larger communities. In all but one of the community
cases (where it had no e�ect), the use of the proposed numerical model led to
a change from a +1.5% (for the larger urban center, Quebec City) to a +48.8%
increase in the case of a smaller community (Drummondville).

Conclusion: Consideration of prevalent and incident cases through the proposed
numerical model increases the correlation between clinical cases and WWS data.
This is particularly the case in small communities. Because the proposed model
is based on a biological mechanism, we believe it is an inherent part of any
wastewater system and, hence, that it should be used in any WWS analysis where
the aim is to relate WWS measurement to clinical cases.
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1. Introduction

The main objective of the epidemiology of infectious diseases

is to assess the distribution and effects of the etiologic agents on

the health and wellbeing of human populations. In the context

of the 2019 coronavirus disease (COVID-19) pandemic, this

has led to large-scale testing of suspected infected individuals

who underwent nasal and/or throat swab sampling followed by

polymerase chain reaction (PCR) assay detection of severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). The objectives

of these campaigns were 2-fold: (i) to identify positive virion

carriers and (ii) to evaluate the acute progression of the pandemic

in the population. These data are fundamental for predicting

short-term demands on the healthcare system and assisting in the

pandemic management decision-making process. However, the 2

years of the pandemic have shown that obtaining population data

through individual tests is expensive both in terms of human and

monetary resources.

An alternative approach based on wastewater surveillance

(WWS) (1, 2) was proposed in the early phase of the COVID-

19 pandemic (3). WWS provides two types of information. The

first is the absence–presence in the community, which makes

WWS a tool corollary to a canary in coal mines. The second type

of information is the trend in the number of infections in the

population, which has the potential to detect trends earlier than by

monitoring clinical manifestations.

When coupled with a Geo-Data software (e.g., ArcGiS), WWS

allows us for the first time to obtain on a daily basis real population

health data. It is likely the first epidemiological data that are

truly populational in nature. This reality needs to be emphasized

as this new approach to generating population health data is

an open field of research that did not previously exist. Classical

epidemiological data are obtained from individuals presenting with

clinical manifestations of infection with or without confirmatory

molecular testing. Hence, classical data provide two specific types

of information: positivity and identity of the carrier. In the case of

WWS, information is populational. This means that one obtains

information on the presence and abundance of an etiologic agent

in a population of interest but not on the identity of the carriers.

Thus, the data provide an indication of the health of the community

as a whole. This is especially important to consider in an outbreak,

such as the COVID-19 pandemic, because the optimal exploitation

ofWWS population data in relation to public health intervention is

not straightforward and requires a new paradigm.

Correct interpretation of WWS data remains challenging

as viral concentrations can vary substantially from 1 day to

the next (4). In addition to the inherent daily variability in

the concentration of SARS-CoV-2 in wastewater, the midterm

temporal dynamics differs between large (collecting wastewater

from hundreds of 1,000’s of individuals) and small (collecting

wastewater from a few tens of 1,000’s of individuals) sewer systems.

Although the temporal trends of SARS-CoV-2 concentrations in

large systems (urban centers) typically follow a wave-like pattern

over several weeks consequent to local outbreaks (4), these trends

exhibit rapid increases and decreases in small systems (towns

and rural communities) (5). Similar observations are reported

here for samples obtained from sewer systems of different sizes.

These strong signal oscillations make it challenging to adequately

interpret wastewater data in small communities. Is the increasing

trend observed today a strong indication of an increased number

of incident1 cases in screened populations? To be a useful early

indicator of population viral infection, WWS data need to be

interpreted in terms of an overall viral attack in the population,

hence presenting as little unexplainable variability as possible. It is

hypothesized that the variability in temporal trends originates from

the different aspects of the system being analyzed. Two important

contributing factors are (i) interhuman variability in viral excretion

kinetics coupled with the size of the outbreaks and (ii) the structure

of the sewer system under study (including the water residence

time and accumulation of solids). Following this hypothesis, large

systems cover large populations with a high number of incident and

prevalent2 cases at any time and with long water and solid residence

times. Together, these elements tend to smooth out the variation

in SARS-CoV-2 concentrations. Conversely, small systems receive

fecal discharges from only a small number of prevalent cases at any

time and are characterized by short water residence times.

From a biological perspective, we would expect prevalent

cases to excrete a dwindling quantity of virions down to a

null value within a certain number of days following infection.

Concentrations measured from WWS reflect the combination of

several individuals at different stages of infection. From this work

hypothesis, we assumed that considering prevalent cases using a

reduction function to consider the evolution of virions in time

would better correlate with WWS data than simply considering

incident cases. Because this effect is more impactful in small

sewer systems, we hypothesized that considering viral excretion

kinetics would improve the interpretability of WWS data in small

sewer systems.

To test our hypothesis, we aimed to differentiate the effects

of incident and prevalent COVID-19 cases on temporal trends

in SARS-CoV-2 concentrations observed in wastewater samples

from wastewater treatment plant influents in large urban settings

and small towns and rural communities. To this end, we built a

numerical model that explicitly considers the evolution of viral

excretion over time. The main novelty of this work is that it

identifies key differences in the interpretation of WWS data

from large (densely populated) and small (with low population

density) sewer systems (where data are sparser than in large

communities) (6) and quantifies the effects of viral excretion

kinetics in different contexts.

2. Materials and methods

2.1. Sampling

Our study was conducted in six municipalities of different

sizes between January and June 2021 (Table 1). The size of the

communities included in our study ranged from 2,000 to> 540,000

citizens. Table 1 shows the type of raw wastewater samples and the

frequency of sampling used in each municipality. Grab samples

1 Individuals changing in status from non-disease to disease carrier (new

cases).

2 Individuals with positive disease over a specified period of time (existing

cases).
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refer to samples where all volumes are collected at instant t.

Composite samples refer to either samples where constant volumes

are collected over the course of a certain time (Composite 24 h) or

samples where the volume collected during a time interval varies

depending on the instantaneous flow rate (Composite-Flow 24 h).

The concentrations of SRAS-CoV-2 in grab samples typically show

a good correlation with the ones in composite samples (7–10).

However, grab sampling taken in mid to late mornings leads to

higher day-to-day variability and often to higher concentrations

than composite sampling (7–10). In most communities, direct

measurement of the flow rate was not possible, and the value was

estimated based on the pump power and time of usage.

Generally, samples were either analyzed the day they were

sampled or refrigerated (4◦C) for no more than 2 days before

analysis. Some specimens (4 January to 15 January) sampled at

the beginning of the project before the laboratory equipment for

analysis was ready were frozen. Two different temperatures were

used for frozen specimen: −20 and −80◦C. Although reported

work shows no loss of signal within 58 days at either −20 or

−75◦C (11), Centers for Disease Control and Prevention standards

suggested the use of < −70◦C for the preservation of samples (12).

2.2. Molecular analyses

The laboratory analysis of the samples was performed in

three steps. Filtration was performed to concentrate the organic

materials on the filters. SARS-CoV-2 virions tend to agglomerate

with organic material rather than to float in free water. Thus, the

collection of such organic materials and their concentrations on a

filter during the filtration phase is crucial. Each sample underwent

the first treatment in duplicate with a volume of 100mL (50mL

for Quebec City) and was stirred at 200 rpm for 30min at room

temperature. After stirring, the pH was adjusted to 4.0 ± 0.5, and

magnesium chloride (final concentration, 25mM) was added. Each

sample was filtered on 0.2µm mixed cellulose ester filters with

47mm diameter and stored at−80◦C until further analysis.

RNA was extracted using the Qiagen RNeasy

PowerMicrobiome Extraction Kit (QIAGEN). Briefly, all

sample filters were cut into eight pieces and placed in 1.5mL

centrifuge tubes. In each tube, 100 µL of bovine respiratory

syncytial virus (BRSV) was added as external control marker,

and a reference sample of BSRV was extracted simultaneously

to obtain the recovery rate to validate the extraction process.

The remaining samples were extracted according to the

manufacturer’s instructions.

A one-step reverse transcription quantitative PCR (RT-qPCR)

approach was used to quantify SARS-CoV-2, pepper mild mottle

virus (PMMoV), and BRSV gene markers in wastewater samples.

All primers and probes used in this study are listed in Table 2.

For all samples, amplification reaction mixtures (final volume,

20 µL) contained 5 µL template RNA, 10 µL of 2 × Luna
R©

Universal Probe One-Step RT-qPCR (BioLabs Inc., New England),

0.25µM for each forward and reverse primer, 0.125µM of probe,

and 1 µL of RT enzyme mix. The thermal cycling protocol

was as follows: 10min at 55◦C for RT denaturation and 5min

at 95◦C for initial denaturation followed by 40 cycles of two

steps consisting of 10 s at 95◦C and 30 s at 60◦C. All RT-qPCR

analyses were performed in triplicate (duplicate in Quebec) and

in multiplex mode using a real-time PCR apparatus. Calibration

curves were generated using the 2019-nCoV_N_Positive Control

provided by Integrated DNA Technologies. The internal marker

was PMMoV (14) and the external marker was BRSV. SARS-CoV-2

concentrations (gc/mL) were calculated from the cycle threshold

(Ct) values using a calibration curve. Ct values < 38 were

considered positive for SARS-CoV-2.

2.3. Mathematic modeling and statistical
analyses

For each sample, external and internal markers were

assessed for aberrant data. Mean Ct values were converted into

concentrations (gene copies per volume) using SARS-CoV-2

standard curves.

Viral load excretion from affected individuals varies with time

from a maximal value to a null value at time t. Hence, incident

cases obtained from health authorities from populational screening

were used along a kinematic reduction-viral load function to

consider this evolution in time. The modeled data comprise our

first dataset and are referred to in the rest of the work as themodeled

equivalent shedding cases. These modeled equivalent shedding cases

were subsequently compared with the second dataset composed

of SARS-CoV-2 concentrations obtained from the wastewater

sample analyses. The main objective is to establish whether it is

possible to define a function between SARS-CoV-2 concentration

data and modeled data using regression analysis, assuming that

modeled cases represent the real prevalence of viral infection in the

population (or a close approximation). If applicable, this function

would theoretically allow the calculation of an approximate number

of prevalent cases based on WWS data.

To define the relationship between the two datasets, we

hypothesized that the evolution of viral load shedding over time

was an important factor. We call this evolution of the time of the

viral load the kinetics reduction-viral load function.

To define the kinetics reduction-viral load function, we sought

clinical data from anal swab and/or fecal analyses, where viral

concentrations were measured at different time intervals. Positive

carriers carry higher viral loads from throat swabs at or just before

the onset of symptoms and that viral loads recede monotonically,

leading to a significant decline in infectiousness 8–9 days after

symptoms (15). For anal swabs, data (16) indicate that the mean

duration of SARS-CoV-2 shedding is 17.2 days in feces, although

live viruses have not been reported beyond 9 days of illness. Cevik

et al. (16) also reported studies that show that the viral shedding

duration is positively associated with age and severity of illness

and that asymptomatic SARS-CoV-2 infection is associated with

significantly lower viral loads after the initial stages compared with

symptomatic individuals (faster clearance), although the initial

viral load might be similar in both asymptomatic and symptomatic

individuals. Because little is known about the Ct threshold used

and because virus isolation was not conducted in studies on feces,

it is difficult to establish a clear comparison. Considering these

facts, the following hypotheses were used in this study to construct
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TABLE 1 Municipalities and their specifics.

Municipality Population Start month
in 2021

Sampling
frequency

TypeI Area
classification∗∗

Average

flow (m3/d)

In sewershed Density
(citizen/km²)

Québec City 542,300 1,210 February Daily 1 Large urban 359,000

Rimouski 48,650 146 January 3/week 1 Rural area 30,600 (est.∗)

Rivière-du-Loup 19,450 237 Mars 1/week 1–2 Rural area 15,250 (est.)

3/week

Drummondville 68,600 310 April 3/week 1 Rural area 61,700 (est.)

Saint-Alexandre-

de-Kamouraska

2,050 18 April 3/week 1 Rural area 1,185

La Tuque 11,125 0.39 Mars 2/week 1 Rural area 6,010 (est.)

∗Flow rate estimated based on pump power and usage.
IType: 1 is composite sample (24 h), and 2 is grab (instantaneous) sample.
∗∗Classification based on POPCTRs (21).

TABLE 2 Sequences of primers and probes for the detection of SARS-CoV-2, PMMoV, and BRSV.

Target Primer/probe name Primer/probe sequence References

SARS-CoV-2 Forward primer GAC CCC AAA ATC AGC GAA AT (12)

Reverse primer TCT GGT TAC TGC CAG TTG AAT CTG

Probe (FAM) FAM ACC CCG CAT/ZEN/TAC GTT TGG TGG ACC IABkFQ

BRSV Forward primer GCA ATG CTG CAG GAC TAG GTA TAA T (13)

Reverse primer ACA CTG TAA TTG ATG ACC CCA TTC T

Probe (Cy5) Cy5 ACC AAG ACT/ZEN/TGT ATG ATG CTG CCA AAG CA IABkFQ

PMMoV Forward primer TAC TTC GGC GTT AGG CAA TCA G (14)

Reverse primer TGA AAC CAG TAG CAG GAA ATC TAA C

Probe (HEX) 5HEXCA GCA GTT CZENT CTG ATG TGT GG3IABkFQ

a recursive curve for viral loads: (i) the maximum viral load is

assumed to be on the day of symptom onset (assumed to be

on the day of a positive screening test), and (ii) the viral load

monotonically decreases from the maximum value to zero at a

certain time t (Equation 1):

Ŵ(t)v = Ŵ0(1− β(t)) (1)

where Ŵ0 is the maximal viral load and β (t) is the function that

correlates the viral concentration at time t with the value of Ŵ0. The

shape and value of8t = (1−β (t)) is dependent on assumption (ii),

which translates to a specific shape for the kinetics reduction shape

function (8(t)). Several candidate 8t functions were tested, and

their relative efficiencies in relating the SARS-CoV-2 concentration

to the modeled cases were evaluated using the squared residual

approach (Equation 2):

r2 = 1−
SSR

TSS
(2)

where r² is the coefficient of determination, SSR is the sum of

squares of the residuals, and TSS is the total sum of squares.

Specifically, we tested different hypotheses on the decay intensity

for Ŵ0 to recede to a null value. All shape functions assumed an

exponential form with varying degrees of decay between days 4 and

9. The regressions are based on linear and polynomial functions

(third order). The r² value for each regression in each city, as

presented in Table 1, was calculated to establish the efficiency of the

proposed procedure. We have included Supplementary material

describing the other curves. However, because it was statistically

impossible to distinguish between each curve and because the aim

of this study was to demonstrate the usefulness of viral kinetics

modeling, we presented only the curve that best fitted our data,

based on Equation 2, and applied it to all municipalities:

8t = 1− β(t) (3)

β(t) = 1− 0, 455 ln (t) : t∈ N | [0, 9] (4)

The data obtained from 8t (Equation 3) are compared with

incident cases, that is, for β (1) = 0, β (1+ 1t) = 1.

With an in-house built code using TcL, a matrix of incident

(d0) and prevalent (dt) cases [C] by the day of sampling (d) was

compiled. The 1-β(t) coefficient is then provided in the form of

a column vector quantity {1-β} so that the modeled equivalent
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TABLE 3 Candidate shape function parameter values.

Days from
symptoms onset

β

Viral kinetic
function

Incident

1 0 0

2 0.315 1

3 0.5 1

4 0.631 1

5 0.732 1

6 0.815 1

7 0.885 1

8 0.946 1

9 1 1

shedding cases for each day of the study are obtained in a vector

form {ς(d)} using Equation 1:

ς(d) = C(d, t) 8(t) (5)

This is a simple vector-matrix product. To illustrate this process,

we considered five incident cases at d = 0. The following day (d =

1), four incident cases occurred, and the next day (d= 2), seven. In

this example, the [C] matrix is a 3×3 matrix, with three rows for d

= 1, 2, and 3, and with three columns representing the day t that is

appropriate for the 1-β(t) coefficient, where β(t) is given in Table 3

and ς(d) obtained by matrix × vector multiplication resulting in

the following values:

C =







5 0 0

4 5 0

7 4 5






8 (t) =











1

0.68

0.5











ς
(

d
)

=







5 0 0

4 5 0

7 4 5






∗











1

0.68

0.5











=











5

7.4

12.2











(6)

This simple matrix × vector product provides a time-dependent

cumulative contribution of all incident and prevalent cases to the

evolution of the viral load excreted, which better relates to the actual

WWS measurements. This allowed us to consider the effects of

viral kinetics by multiplying each incident and prevalent case by an

appropriate factor. These factors are dependent on the assumptions

considered in defining the viral kinetics reduction function.

Figure 1 illustrates this mathematical approach. The horizontal

axis in Figure 1 displays the day, whereas the vertical axis represents

the number of clinical cases (or modeled equivalent shedding

cases). In the example used, there were four incident cases on

day 1. On day 2, there were 15 incident cases. Continuing with

this logic would lead to the incident case curves (red dotted line)

displayed in Figure 1. However, as previously stated, there is no

logic behind the idea that incident cases from the previous day

would stop contributing to the virion concentration measured in

the WWS samples. Consider an example of the period between

days 1 and 5. If we consider only incident cases, we would expect

to observe a decrease in the trend of cases. However, from a

wastewater concentration perspective, this would not be the case

because prevalent cases still excrete virions in the sewers. Our

proposed model, using shedding curves that decrease over time

(dotted black lines, Figure 1), allows the effects of prevalent cases to

be included in the modeled equivalent shedding cases (solid black

curves, Figure 1).

For example, on day 4, the total number of modeled equivalent

shedding cases is the sum of the contributions of all previously

determined incident cases (days 1, 2, 3) and the incident cases on

that day. This provides a significantly different portrait of what is

happening, as can be observed by comparing the incident cases

(dashed red line, Figure 1) with the modeled equivalent shedding

cases (solid black line, Figure 1). This approach is underlined

by a simple biological mechanism, that is, sick individuals keep

excreting a receding number of virions during the course of the

disease, from a peak at symptom onset to a null value after

a certain amount of time. The work hypothesis was that the

modeled equivalent shedding cases would be better related to the

WWS concentration.

3. Results

Figure 2 shows the curves of SARS-CoV-2 (Gc) in Rimouski

City during the screening period (Table 1). The graph also displays

the curves for incident cases. The incident case curve was highly

jagged compared with the SARS-CoV-2 signal. Consequently, the

relationship between the two datasets was not good, with an

r² of 0.61 using conventional linear regression. Figure 2 shows

the modeled COVID-19 cases obtained using Equation 1. Using

Equation 1 led to the smoothing of the curves by considering

the prevalent cases and their evolution over time. The r² between

the modeled COVID-19 cases and the SARS-signal datasets

significantly increased and reached a value of 0.69 for a standard

linear regression. Using a third-order polynomial regression, r²

reached a value of 0.82, which was remarkably good given the

uncertainty in the physical process being modeled.

There was a clear effect, for Rimouski city’s dataset, when

adding the effects of prevalent cases through viral kinetics

reduction curves in the relationship between measured SARS-

CoV-2 concentration in wastewater samples and populational

COVID-19 cases. This is logical and follows a significantly simple

biological mechanism; during the course of COVID-19 infection,

the excretion of virions into the sewer network varies in time, with

a maximum value at the beginning and dwindling down to a null

value after a certain amount of time.

In the case of larger communities, such as Quebec City, the

picture is less clear. Figure 3 shows the evolution of SARS-CoV-

2 signal in the wastewater samples from Quebec City. The graph

also shows the values of the incident cases and the modeled

COVID-19 cases (incident and prevalent) using the same viral

kinetics reduction function as used by Rimouski.

The results in Figure 2 showed that using viral kinetics

reduction led to the smoothing of the COVID-19 cases compared

with the incident case curve. When considering the r² value,

using viral kinetics reduction led to a marginal decrease of r²,
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FIGURE 1

E�ects of viral kinetics reduction on correlation with COVID 19 cases—Rimouski (more explanation, see text).

FIGURE 2

E�ects of viral kinetics reduction on correlation with COVID 19 cases—Rimouski.
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FIGURE 3

E�ects of viral kinetics reduction on correlation with COVID 19 cases—Quebec.

passing from 0.63 for the incident case dataset to 0.62 with the

modeled datasets in standard linear regression and from 0.66 to

0.67 using the third order polynomial regression. We explain this

by considering that the large number of incident cases reduces the

effects of the prevalent cases in this population.

3.1. Population biomarkers

Before presenting the complete results (see Section 3.2), it

is important to detail how SARS-CoV-2 concentrations were

normalized before being used in the regression. Based on previously

published documentation available early during the pandemic (17,

18), PMMoV was initially considered to normalize the SARS-CoV-

2 concentration. This biomarker is thought to be abundant in bell

pepper-based foods, is unaffected by seasonal changes, and persists

in wastewater (with a half-life of 6–10 days) from populated areas

(19). Population biomarkers are important for two reasons. First,

these biomarkers validate the presence of a sufficient quantity of

organic materials in samples. Second, they can be used to normalize

the concentration of detected virions to account for changes in

wastewater dilution and differences in relative human waste input

over time due to tourism, weekday commuters, and temporary

workers (19). However, based on these data, PMMoV was a poor

biomarker (Figure 4).

In fact, normalization of the SARS-CoV-2 concentration with

PMMoV reduced the quality of the correlation obtained from the

linear regression compared with the raw data. This result is in

accordance with the recently published literature (19). The data

indicate that flow rate is the most important factor related to virion

concentration in the reported cases, and this conclusion is in line

with that of a prior study (20).

3.2. Linear regression analysis results

As shown in Section 3, the data collected in spring 2021 showed

a rapid increase and decrease when plotting COVID-19 incident

cases vs. SARS-CoV-2 concentrations measured in wastewater

samples obtained from small communities. Hence, in this study,

we consider the effects of prevalent cases using a viral kinetics

reduction function, as described previously. In this section, the

results of the linear and polynomial regression analyses for all

municipalities involved in the project are presented (Table 1).

Linear and third-order polynomial regression analyses

were performed for each municipality. Graphs of SARS-CoV-2

concentration versus modeled equivalent shedding cases for all

regression analysis are shown in Supplementary material.

Table 4 compares the r² coefficients of all regressions for all

communities considered between the datasets with incident cases

only and those considering the modeled data.

4. Discussion

Values of r2 considering both incident and prevalent cases

using third-order polynomial regression along with a viral kinetics

reduction function led to an increase in the correlation between

the WWS data and clinical data (Table 4). This is particularly

true in small communities. For urban centers with low population

densities (Rimouski, Drummondville, and La Tuque), the modeled

cases of COVID-19 were better correlated with SARS-CoV-2

concentrations measured in wastewater when prevalent cases

were included according to the model. In the case of the city

of Drummondville (+48.8%) WWS data were simply unusable

without considering the viral kinetics evolution. In the case of

a large community (Quebec, +1.5%), inclusion of viral kinetics
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FIGURE 4

Comparison of the e�ect of pepper mild mottle virus and flow for normalization of data to modeled equivalent shedding cases—Rimouski.

TABLE 4 Summary of the regression analyses for all of the studied cities.

Municipality r² r²

Linear
incident

Linear
kinetics
reduction

Variation (%) Poly (3rd)
incident

Poly (3rd)
kinetics
reduction

Variation
(%)

Québec City 0.63 0.62 −1.6 0.66 0.67 +1.5

Rimouski 0.61 0.69 +13.1 0.6 0.82 +36.7

Rivière-du-Loup 0.7 0.69 −1.4 0.87 0.87 0.0

Drummondville 0.02 0.0054 −73.0 0.41 0.61 +48.8

Saint-Alexandre-de-Kamouraska 0.62 0.6 −3.2 0.88 0.91 +3.4

La Tuque 0.7 0.77 +10.0 0.63 0.83 +31.7

had a less profound effect. This can be explained by the

following mechanism.

4.1. Biological mechanism underlying the
importance of viral kinetics

An individual’s quantity of virions excreted in the feces

varies during the course of SARS-CoV-2 infection. The maximum

excretion of virions closely matches the initiation of disease

symptoms and gradually decreases to a null value. When plotted

in the time domain, variations in virion excretion can be described

by a viral kinetics reduction function. During a viral outbreak,

several individuals become ill at different times. Hence, the virion

concentration in wastewater is a superposition of several individual

viral kinetics reduction functions (Figure 1). It appears logical that

as the number of infected individuals increases, this effect becomes

less evident because of the cumulative effects of incident cases.

However, when a limited number of individuals are affected, as is

the case in small communities, failing to consider this effect may

lead to a large discrepancy between the measured concentration in

wastewater and clinical cases, making the interpretation of WWS

data cumbersome.

To highlight this biological mechanism, we built a

mathematical model that explicitly considers viral excretion

kinetics. The main novelty of this work is that it identifies

key differences in the interpretation of WWS data from large

(densely populated) and small (with low population density) sewer

systems and quantifies the effects of viral excretion kinetics in

different contexts. Through regression analysis of SARS-CoV-2

measurements in wastewater samples from six municipalities

located in Quebec (Canada), we showed that the inclusion

of a viral kinetics reduction function to consider prevalent

COVID-19 cases in the screened population led to an increase

in correlation. The effect of this increase was especially visible in

low-affected communities, where viral transmission remained low

during SARS-CoV-2 screening. The impact was less evident in
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communities where a large number of incident cases concealed the

effect of viral reduction.

4.2. E�ects

Our results show that it is possible to accurately estimate

prevalent cases at time t in a population usingWWS data. However,

making a good estimate requires the definition of a well-defined

(data-supported) viral kinetics reduction function. Currently, the

authors of this paper are unaware of any data that can provide

specific viral kinetics reduction functions for the expression of

SARS-CoV-2 virions in the feces of infected individuals in the

general population. As stated previously, most supporting data

originated from hospitalized individuals whose virion excretion

might differ significantly from that of the general population.

Furthermore, vaccination and varying viral lineages may produce

different viral kinetics reduction functions. However, defining the

maximum and minimum virion excretion evolutions in time based

on a statistical analysis of data collected from voluntarily sick

individuals representative of the general population would allow for

a good estimation of population cases at any time based on WWS

data. This would be revolutionary for WWS usage in epidemiology

because WWS falls short when interpreting data. The ability to

estimate population cases fromWWS data using a sound biological

mechanism would maximize the efficiency of WWS in future

pandemic surveillance.

5. Conclusion

The data collected in this study support the hypothesis that

the viral kinetics reduction function is a fundamental aspect

of describing the biological evolution of SARS-CoV-2 virion

shedding, which should be considered in the analysis. In all six

municipalities studied, except for Rivière-du-Loup, the inclusion

of such a reduction function led to an increase in the correlation

for the third-order polynomial regression. For the specific cases

of Rivière-du-Loup, we explained the negative effect of the nature

of the COVID-19 infection in this particular community during

our screening time. During our screening, the Rivière-du-Loup

community observed two large outbreaks related to workers

in a large company, but there was little contamination in the

community. This means that, in both situations, we observed a

large increase in incident cases on a daily basis over a relatively long

period of time (≈ days). In this context, the effect of the reduction

in virions from the prevalent individual’s excretion is lost in the

increase in newly affected individuals.

This study aimed to differentiate the effects of incident and

prevalent COVID-19 cases on the temporal trends in SARS-CoV-

2 concentrations observed in wastewater samples from large urban

settings and small towns and rural communities. Therefore, it

was essential to consider the smoothing effect. There were more

incidents in large cities than in small communities. In absolute

terms, SARS-CoV-2 concentrations measured in wastewater were

also higher in larger cities than in small communities. Because

the incident cases are larger in number, the variation in SARS

concentration is less significant from 1 day to the next because the

kinetics of viral excretion is overwhelmed by the large number of

incident cases, which contributes to the smoothing effect. Thus, the

consideration of prevalent cases is important in small communities

where fewer incident cases occur. When there are few incident

cases in a population, the contribution of the prevalent cases to the

SARS-CoV-2 signal is more significant.

However, our data suggest that the normalization of

SARS-CoV-2 concentrations in wastewater samples should

consider the flow rate and that there is a lack of consensus on

a good biomarker for population normalization and a need for

studies on this particular question.

The specific contributions of this work include (1) compelling

evidence from several rural and urban municipalities to robustly

demonstrate that viral kinetics-induced variability needs to be

considered, especially in lower-density communities, and (2) a

simple model to account for this viral kinetics effect and its

application to regression analysis for estimating SARS-CoV-2

prevalence in screened populations.

6. Limitations and recommendations

Because the biological model proposed in this study was

established based on the basic assumption of disease progression,

it is thought to be general and applicable to various types of

biological etiologic agents worldwide. However, the specific shape

function used in the model varies, depending on several factors. For

example, in the case of SARS-CoV-2, the vaccination status, age,

and viral lineage are all susceptible to influence the function used

in the model. It is expected that virus different from that of SARS-

CoV-2 has different shape functions. Hence, our results should

be understood in this context as a general demonstration of the

importance of considering disease evolution in affected individuals

in the interpretation of wastewater data while keeping in mind that

the specific function developed in this study should not be directly

used in another context.

These findings highlight the need for further studies on the

temporal evolution of virion excretion in different pathogens,

including different SARS-CoV-2 lineages. If wastewater data are

used to estimate infection in a population, which should be the

main objective of this technique, studies on the evolution of virion

excretion in body fluids are fundamental to refining the reduction

function used in our model and allowing such estimates to be made

on a sound basis.
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