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Since the start of the COVID-19 pandemic in 2020, wastewater surveillance 
programs were established, or upscaled, in many countries around the world 
and have proven to be  a cost-effective way of monitoring infectious disease 
pathogens. Many of these programs use RT-qPCR, and quantify the viral 
concentrations in samples based on standard curves, by including preparations 
of a reference material with known nucleic acid or virus concentrations in the RT-
qPCR analyses. In high-throughput monitoring programs it is possible to combine 
data from multiple previous runs, circumventing the need for duplication and 
resulting in decreased costs and prolonged periods during which the reference 
material is obtained from the same batch. However, over time, systematic shifts in 
standard curves are likely to occur. This would affect the reliability and usefulness 
of wastewater surveillance as a whole. We aim to find an optimal combination of 
standard curve data to compensate for run-to-run measurement variance while 
ensuring enough flexibility to capture systematic longitudinal shifts. Based on 
more than 4000 observations obtained with the CDC N1 and N2 assays, taken as 
a part of the National Sewage Surveillance program at the Dutch National Institute 
for Public Health and the Environment, we  show that seasonal and long-term 
shifts in RT-qPCR efficiency and sensitivity occur. We find that in our setting, using 
five days of standard-curve data to quantify, results in the least error prone curve 
or best approximation. This results in differences up to 100% in quantified viral 
loads when averaged out over a nationwide program of >300 treatment plants. 
Results show that combining standard curves from a limited set of runs can be a 
valid approach to quantification without obscuring the trends in the viral load of 
interest.
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1. Introduction

The idea of monitoring pathogens through wastewater has 
been  applied for decades (1, 2), but interest in waste waterbased 
epidemiology (WBE) has significantly increased with its applications 
during the COVID-19 pandemic. SARS-CoV-2 detection in 
wastewater is currently employed as a monitoring tool in over 70 
countries, with several programs reaching significant population 
coverage (3).

Many of these surveillance programs, and WBE studies on SARS-
CoV-2  in general, make use of reverse transcription quantitative 
polymerase chain reaction (RT-qPCR) on one or more regions of the 
virus genome as the primary method to quantify the number of RNA 
copies in wastewater samples (4, 5). Absolute quantification of RNA 
concentrations in this way relies heavily on the use of standard curves 
with which the initial RT-qPCR results, in the form of cycle threshold 
values (Ct-values), are converted to a known concentration.

Similar to virtually all measurement instruments, RT-qPCR is 
known to produce results with test–retest variability. That is, multiple 
tests of the same sample are known to result in slightly different 
Ct-values. This not only applies to the results of the Ct-values of 
samples, but also to the Ct-values of the standard dilutions that result 
in PCR efficiency estimates and ultimately determine the standard 
curve that is used for quantification. Although such variation is 
smaller in (synthetic) preparations with known RNA particle counts, 
this variation can still affect the quantification process. Therefore, it is 
recommended to construct a standard curve using multiple replicates 
and dilutions for each assay (6–8).

The sources of variation in outcomes between duplicate analyses 
are plentiful and often hard to identify, as it may be any external factor 
that has the potential to affect the efficiency and sensitivity of the 
RT-qPCR, as small as changes in mains voltage (9). These may cause 
stochastic measurement error, where variations occur due to, e.g., 
randomness in the chemical processes during the RT-qPCR, 
temperature fluctuations, or external factors such as minor differences 
in the preparations made by laboratory technicians. Yet, other sources 
of variation in outcomes, such as the use of different batches of 
chemicals, seasonal differences in laboratory atmosphere, or general 
wear and tear of equipment may result in longer-term, 
systematic changes.

On the one hand, in a more traditional research setting with a 
predetermined number of experiments conducted in a limited 
timeframe, such structural external influences are easier to control 
than in a long-term monitoring setting. When analyses continue over 
a period of multiple years, it becomes prohibitively difficult to 
guarantee exactly identical circumstances, chemicals from the same 
batch run out, and there is personnel turnover. On the other hand, 
with continuous analyses, the opportunity exists to combine standard 
curve data from multiple runs, avoiding the need to duplicate the 
dilutions of the reference material in each run.

This implies that a trade-off exists between on the one hand 
combining duplicates between runs that reduce random variation 
caused by stochastic measurement error, and on the other hand 
updating the standard curve over time to take systematic shifts into 
account that would bias the quantification process when ignored. This 
issue of systematic shifts is also identified by Bivins et al. (10), who 
suggest to monitor shifts in Ct-values over time to determine when to 
replace the reference material, or use an overall calibration curve 

based on a mixture model to incorporate run-to-run variability. The 
trade-off is implicitly recognized throughout the literature where 
duplication is often recommended, but with consideration for 
between-run variability (e.g., 8).

Here we investigate this trade-off and present the results from the 
Dutch National Wastewater Surveillance (NRS) program, based on 
more than 4000 standard curves obtained using the US CDC SARS-
CoV-2 assay targeting two parts of the nucleocapsid protein (N1 and 
N2 assays) (11), between September 2021 and November 2022. Based 
on these data we propose and investigate an approach of combining 
observations of the standard from multiple runs to reduce the effect 
of random variations in the analyses, while still taking systematic 
shifts in RT-qPCR efficiency and sensitivity into account. This 
approach has the potential to be  a cost-saving method in high-
throughput programs, when it can reduce or eliminate the requirement 
to duplicate reference material series per run, and may allow 
quantification of samples from successful PCR runs with an erroneous 
standard curve. Conversely, in programs with lower analysis 
frequencies the method may instead lead to a reduction of unwanted 
variation in standard curve estimation without extra resources, when 
the results for the reference material can be  combined over 
multiple runs.

2. Materials and methods

2.1. Standard curve methodology

2.1.1. Log-linear standard curves
Absolute quantification by using a standard curve is an intuitive 

solution to the problem that initial values are only comparable within 
one PCR run (12). By including a consistent reference material with, 
in the case of SARS-CoV-2 analysis, a known RNA concentration the 
relationship between the Ct-value this reference material produces 
and its concentration can be  determined. By including multiple 
dilutions of reference material, a curve can be constructed that allows 
interpolation of the relationship between the Ct-value and the RNA 
concentration. These standard dilutions are generally 10-fold because 
of practical considerations in laboratory protocols. Due to the 
expected exponential growth of particles in the RT-qPCR process, the 
theoretical relationship between the Ct-value and concentration can 
be described as:

 Ct Intercept Slope Concentration= + ∗ ( )log10  (1)

Since not the Ct-value is of interest, but the RNA concentration of 
the sample, this is rewritten as:

 log /10 Concentration Ct Intercept Slope( ) = −( )  (2)

With the increasing popularity of RT-qPCR, advances to the basic 
approach have been developed, many of them focusing on the implicit 
assumption that the efficiency is equal for all samples included in a 
PCR run (13–15). Further improvements focus on better estimates of 
the efficiency, and a higher precision of the resulting standard curve 
(16–18). However, despite these efforts, simple ordinary least squares 
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(OLS) curve estimation is still predominant in current research. This 
may be  explained by the intuitive theory behind it, the need to 
maintain comparability to earlier studies, and the varying results of 
alternatives (14, 19). Moreover, it is surprisingly rare that obtaining 
the true RNA or DNA particle count is needed, and in the vast 
majority of applications maintaining an acceptable level of unbiased 
comparability between analyses suffices.

Since RT-qPCR is an approximately exponential process whereby 
PCR doubles the number of DNA particles per cycle, the ideal 
circumstance would be that each unit increase in Ct-value leads to 
exactly doubling the number of particles per amplification cycle. On 
a base-10 logarithmic scale this results in a slope of −3.32. That is, 
under ideal circumstances, a 3.32 point increase in Ct-value should 
occur per 10-fold dilution, regardless of the dilution’s absolute 
particle count.

In that light, the slope of a standard curve is determined by the 
relative distance between Ct-values of the dilutions of the reference 
material, assuming that log-linearity holds. As a result, the slope and 
associated efficiency are primarily indicative of the difference in 
concentration between high- and low concentration samples or 
dilutions. Anything that affects the RT-qPCR process in full, is 
captured in the intercept and could be  deemed indicative of 
the sensitivity.

Of course, directly controllable factors such as the threshold of the 
analyses linearly affect the resulting Ct-values and can be  chosen 
arbitrarily as long as they are placed in the log-linear phase of the 
amplification process. However, other factors can impact run-to-run 
comparability as they may shift the intercept of the standard curve, 
such as equipment wear and tear, differences between batches of 
materials and reagents, and laboratory temperatures or humidity. Such 
factors may affect both the degree of fluorescent luminescence of the 
sample material, as well as the sensitivity of sensors to the fluorescence 
(16). When such external factors affect the process equally for all, or 
a majority, of the dilutions of the reference, the resulting Ct-values 
change by an approximately equal amount. This would result in a 
largely unchanged slope, and an increase or decrease of the intercept 
proportional to the change in Ct-values.

The above has led to suggesting different ways to construct the 
standard curve when multiple analyses are conducted, based on the 
circumstances. Generally, when quantifying RNA or DNA from 
samples, researchers use either the Ct-values of the standard curve per 
run, or use a master curve where multiple runs are combined. Neither 
option is very useful or theoretically sensible in long-running 
surveillance programs, because these would either allow stochastic 
variance to affect trend estimation, or cause structural changes in 
quantification parameters to be ignored over time.

Two alternative approaches are based on multilevel random 
intercept and random slopes mixture models. These approaches 
combine information from all runs to reduce stochastic error, but 
allow either the intercept to vary with a fixed slope, or allow both the 
intercept and slope to vary per run (16). Although elegant solutions, 
there are some caveats when applying them for long-term, real-time 
monitoring. Firstly, these methods are introduced with the assumption 
that the complete data is available before standard curve estimation, 
and would require extensive computation after each PCR analysis in 
a continuous monitoring setting. Secondly, and more problematic, is 
that the approaches do not guarantee that shifts over time are properly 
captured. The estimation assumes that between-run variation 

randomly fluctuates around a midpoint. That midpoint, however, 
suffers the same problem as a master curve and is slow to incorporate 
systematic shifts due to it being based on all historically available data.

2.1.2. Rolling window master curve
To overcome the latter point, we here suggest an approach that 

uses historic data on standard curves within a rolling window as a 
pragmatic way to take advantage of the continuous observations of the 
standard in a monitoring setting. Such an approach may 
simultaneously reduce unwanted, stochastic variance by using more 
of the available data while still being able to incorporate longitudinal 
shifts in RT-qPCR efficiency and sensitivity. Due to its widespread use 
we do so using common standard curve methodology, where future 
steps are to combine these findings with advances such as using 
mixture models in curve estimation to allow plate-specific variance in 
efficiency estimation.

The assumption here is that, on average, an ideal amount of 
historic data of the reference dilutions exists. Using the data from this 
period reduces stochastic error in standard curves more than error 
that is introduced by structural shifts in the standard curves. 
Specifically, the distance between the expected Ct-values based on the 
current standard curve, and the Ct-values from the standard curve 
based on earlier observations of the reference material can 
be minimized. At the point of the smallest error, the standard curve 
based exclusively on historic data is the best approximation of the 
current standard curve parameters. That is, we propose an analysis 
using previously obtained standard curves, or measurements of the 
reference dilutions, whereby these observations of dilution series are 
used to obtain a standard curve that is compared to the current curve.

Because systematic changes are a function of time, the curves 
based on previous observations of the reference material are here 
obtained per day, but the span could be  any theoretical sensible 
timeframe, or can be  a number of previous runs. Based on the 
observations within this historical span a standard curve can 
be constructed using the observed Ct-values of the dilution series. 
Subsequently, the root mean square error (RMSE) between the curve 
based on a given number of previous days and the per-run curves of 
today can then obtained by computing the Ct-values associated with 
the known particle counts on the line per run, and the difference to 
the Ct-values resulting from the line based on historical data. Note 
that the error should be  obtained per current day run, and only 
subsequently be  aggregated. Not doing so would average out any 
differences between standard curves before obtaining the residual, 
which would significantly reduce the potential impact of individual 
runs. Doing the above for different amounts of historical data, e.g., 1 
through 20 days prior to today, the span that on average best 
approximates all standard curve observations of today can 
be determined by minimizing the RMSE. The expectation here is that 
the ideal tradeoff between systematic and random error can 
be determined. As more data is used, stochastic error variance will 
be reduced, but error due to systematic shifts in the standard curve 
parameters will increase. At the point with the lowest RMSE the 
reduction in stochastic variance is smaller than the error introduced 
due to systematic shift in standard curves, identifying the ideal size of 
the window of the smoothed, rolling window curve.

Further note that the curves estimated on data obtained in the 
preceding days should be based exclusively on data preceding the 
current day or current run. Including observations from the current 
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run or day in this analysis would give an arbitrary advantage to curves 
based on less historic data, since current observations are the best 
approximation of themselves and would form a larger share of the data 
when less previous information is used. For this same reason the most 
current data does need to be incorporated for the final curve that is 
used for quantification.

As a final remark, in the presented situation, curves based on one 
or two previous days are systematically missing due to weekends and 
national holidays. This is resolved by using the last estimate available 
in the cases where no data is observed on days prior to today. This 
would be the most pragmatic solution when applying the idea of a 
rolling window in practice.

2.2. Reference material

A synthetic DNA construct containing complementary sequences 
of the CDC 2019-nCoV Real-Time RT-PCR Diagnostic Panel, 
consisting of primers and probes that target the nucleocapsid (N) gene 
(11, G-block sequence in S1), downstream of a T7 RNA-polymerase 
promotor (Thermo Fisher Scientific) was used to transcribe RNA 
using the MEGAshortscript™ T7 Transcription Kit (Thermo 
Fisher Scientific).

Following transcription, and after a DNase step to remove the 
synthetic DNA construct, the generated RNA was quantified using a 
clinical isolate with a known concentration of SARS-CoV-2 genome 
copy numbers. In RT-qPCR, each assay, consisting of different 
primers/probes, has a different priming reaction. Therefore the 
performance of the N1 and N2 assay on the generated standard RNA 
has to be evaluated separately (11).

Ten-fold serial dilutions of the generated standard RNA were 
tested to determine which dilutions could be  included in the 
quantification curve, resulting in five dilutions of the RNA standard 
generating a positive signal.

The generated standard RNA was aliquoted in large batches of 
7 μL per tube (for single use) and stored in a −80°C freezer. Before 
each RT-qPCR run the standard RNA is serially diluted for direct use. 
Per 96-wells PCR plate the RNA of 20 samples are tested in duplicate 
using the N1 and N2 assays. The RT-qPCR is performed as prescribed 
previously (11) with minor modifications; Each reaction contained 1x 
TaqMan Fast Virus 1-step Master Mix (Thermo Fischer Scientific) and 
a final concentration of 0.5 μM and 0.25 μM of primers and probes, 
respectively. In each RT-qPCR run, for each assay, a negative control, 
a positive control and five dilutions of the standard RNA are included. 
All analyses were performed in an in-house laboratory at the Dutch 
National Institute for Public Health and the Environment, using nine 
different QIAquant 96 5-plex instruments (Qiagen). The threshold 
with which a Ct-value is determined is fixed across all runs in the 
log-linear phase of the RT-qPCR process.

2.3. Data

Data collection took place between September 1st 2021 and 
November 11th 2022 as part of the Dutch NRS program. During 
this period approximately 125 to 250 wastewater samples were 
quantified daily, resulting in four to ten PCR runs on average. In 

each run, five 10-fold dilutions of the RNA standard were included. 
However, the most diluted reference resulted in inconsistent 
Ct-values that strongly affect estimated standard curves. Therefore, 
only the other four standard dilutions are used for the analyses 
below. To improve readability of figures these are referred to as −04 
to −07 in the following. Although general recommendations for 
dilution series include 5–6 points, we  have confidence that the 
obtained standard curves are adequate, as they very closely 
match the curves reported in Bivins et al. (10) for the N1 and N2 
CDC assay. Furthermore, if additional 10-fold dilutions were added 
these can occasionally fall outside the log-linear phase of the 
quantification curves.

The procedures for the quantification are based on the 
NEN-EN-ISO-15216-1 (20) standard for hepatitis A virus and 
norovirus quantification in food chain microbiology. The 
construction of standard curves prescribed follow the widely used 
criteria for standard curve estimation, requiring a minimum of 
three 10-fold dilutions. These should log-linearly result in a slope 
between −3.60 and −3.10, which equates to a PCR efficiency 
estimate of 90 to 110%, and a minimum correlation between 
standard dilutions of 0.99, which translates to an R-squared of 
0.980 or higher. In the assessment of RT-qPCR data obvious 
deviations in the results of the reference dilutions are manually 
removed before standard curve construction. An example would 
be two wells with reference material resulting in almost identical 
Ct-values.

The ISO standard further allows the removal of dilutions based on 
outlying Ct-values, maintaining the minimum requirement of three 
or more observed dilutions per standard curve. Here the following 
procedure is applied: a standard curve is estimated on all four directly 
observed dilutions, or three in the case of aforementioned reasons for 
removal. When the resulting curve does not adhere to the criteria, but 
an acceptable curve exists when excluding any one out of the four 
dilutions, we use the combination excluding the most diluted reference 
that leads to an acceptable curve.

Standard curves were obtained on 308 out of 437 days. All days 
without data are weekends or national holidays. A total of 2282 unique 
runs were performed, the majority of which contain two series of RNA 
standard for both the N1 and N2 gene, respectively resulting in 4455 
and 4442 approved dilution series. Applying curve construction as 
described, this leads to 3755 (84%) and 3145 (71%) curves that adhere 
to the criteria.

To approximate the comparison between using historical data 
and the recommended duplication of dilution series of the standard, 
one line per RT-qPCR duplication is constructed for the results in 
section 3.3. As mentioned, samples within the NRS program are 
analyzed in duplicate for both N1 and N2 genes, where 40 wells are 
used for N1 and 40 wells for N2 on a 96-wells plate. Both runs 
contain a dilution series. The between-plate dependence of these 
analyses is high, plates contain identical reference material, and 
although two separate instruments are often used, the external 
circumstances are close to identical. These two sets of dilutions 
from the duplicate runs are combined to better approach the 
situation in which reference material is duplicated, and a standard 
curve is estimated on 3 – in the worst case scenario where one of 
the standard curves is unusable – to 8 dilutions, after which the 
same criteria as before are applied.
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3. Results

3.1. Univariate descriptive statistics

To be  able to combine the generated data and give a single 
overview, dependencies in the performance of the different qPCR 
instruments (QIAquants) are tested by conducting an ANOVA on the 
slopes and intercepts of constructed standard curves. A description and 
the results of this analysis can be  found in S2. The largest mean 
difference in standard curve intercepts between two machines equals 
0.157 for the N1 assay, and 0.220 on the N2 assay. Explained variance 
in the estimated intercepts by differences in qPCR instruments does 
not exceed 0.43% for N1 (F(8, 3634) = 1.96, p = 0.048), and 1.12% for 
N2 (F(8, 2985) = 4.24, p < 0.001). The statistical significance is a result 
of the large sample sizes, whereas the practical implication of these 
differences is negligible. With regard to the slopes, the mean differences 
and explained variance are, respectively, 0.024 and 0.38% for N1, and 
0.048 and 0.85% for N2. Although this does not exclude temporary, 
larger differences between pairs of instruments, the results give 
confidence that the qPCR results from instruments can be combined.

In Figures 1, 2, the density estimates and mean Ct-values for all 
observations of the four standard dilutions are shown when any 
combination leads to a curve within the criteria. Summary statistics 
are presented in Table  1. For both N1 and N2 the different 
concentrations show very comparable distributions. Combined with 
Figures  3, 4, which show a relatively stable long-term slope, the 
different dilutions seem to be affected in a similar fashion over time. 
This also explains the slight right-tail skew of the distribution as the 
intercept is, on average, trending upwards over time. The decreasing 
kurtosis of the distributions indicates larger variability in lower 
concentrations, which is expected given the higher levels of 
uncertainty in PCR analyses in more diluted samples.

3.2. Temporal trends in curve parameters

In Figures 3, 4 the curve parameters estimated on each set of 
reference material are shown, where the colored scatter indicates 
standard curves that fall within the selection criteria described in 
section 2.3. Locally estimated scatterplot smoothing (loess) is used 
for trend estimation.1 Long-term, structural fluctuation in the 
standard curves, as well as significant run-to-run variation in both the 
slope and intercept terms are visible. The former, structural trend, 
mostly manifests itself in terms of the intercept, which implies that all 
dilutions of the standard are similarly affected by the external factors 
that cause the shift, and the standard curve as a whole shifts upwards 
or downwards over time, in line with Figures 1, 2. Shifts in both the 
N1 and N2 curves are substantial, with approximately 2 Ct difference 
between the highest and lowest points. A difference of this magnitude 
will have a notable impact on the virus concentration obtained for the 
samples. The slopes of the standard curves, and associated efficiency 
of the analyses, show less structural fluctuation, indicating that the 
sensitivity of analyses varies more strongly and systematically than 
their efficiency.

Moreover, the trends in the N1 and N2 intercepts deviate from 
one another, and often show shifts in opposite directions, while the 
RNA is generated using the same G-block. For example, in the period 
from January to February 2022 the N1 assay shows a decrease in 
sensitivity (increasing intercept Ct-value) and the N2 assay shows an 

1 With a span of 0.25 a quarter of all points is used at each given day, which 

have a weight based on distance as (1−(distance/distancemax)3)3. This gives 

points closest to the day of interest a much higher weight than more 

distant points.

FIGURE 1

Density plot for the Ct-values per N1 reference dilutions. Dotted lines and values indicate the mean value, and distances between the mean values. 
Sample sizes are 3754, 3753, 3754, 3689, respectively.
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almost equal increase in sensitivity. This is plausible given that the 
N-gene primers and probes show different concentrations after 
preparation, but also implies that they react to different external 
factors, or react differently to similar external factors.

Disregarding the seasonal variation in Figures 3, 4, both assays 
also show a steady upward trend over the year. This is less apparent for 
the N2 assay from the figure, due to the trendline being somewhat 
distorted at the endpoints. The first and last week of data have above 
and below average intercept estimates, respectively. This upward trend 
is seemingly small (N1; B = 0.004, t = 39.72, p < 0.001. N2; B = 0.003, 
t = 24.65, p < 0.001), but results in a theoretical shift of 1.57 Ct for N1 
and 1.18 Ct for N2 over the course of one year, which will cause a 
significant upward trend in terms of the obtained viral concentrations 
from samples. We assume this to be the result of general wear and tear, 
as all data is obtained from PCR equipment that was brand new at the 
start of the measurements when sensitivity is expected to decline faster 
during a period of breaking in the new instruments. A similar trend 
is not observed in data before September 2021 obtained in a laboratory 
with older equipment.

The slopes in the second panel of the figures indicate good 
efficiency, but structurally result in efficiency estimates just below the 

90% limit. The net result of this is hard to determine. A steeper slope 
causes smaller differences in concentration for equal differences in 
Ct-values. However, this may cause both over- and underestimation, 
and is further compounded by the interaction between the slope and 
the intercept terms. One explanation may be so-called compound 
errors; the different standard RNA dilutions are obtained through 
serial dilution of one batch preparation. In practice it is almost always 
the case that when minor variations occur, too little standard material 
is pipetted, causing the assumed concentration to be higher than the 
true concentration. This error is then carried over to any dilutions 
made afterwards.

To inspect if the mentioned interaction between slope and 
intercept terms does not result in systematic bias, the log10 viral load 
of three Ct-values associated with high (29) / medium (33) / low (37) 
viral concentrations is plotted over time in Figure  5. Here any 
systematic over- or underestimation of samples with different 
concentrations would result in diverging trends over time (i.e., 
increasing or decreasing distances between the respective log10 
concentrations), of which there is no evidence. In addition, the N1 and 
N2 gene show the same overall trend, but have almost diametrically 
opposed short-term fluctuations, again indicating that external factors 

FIGURE 2

Density plot for the Ct-values per N2 reference dilutions. Dotted lines and values indicate the mean value, and distances between the mean values. 
Sample sizes are 3144, 3140, 3144, 3049, respectively.

TABLE 1 Summary statistics of the reference dilutions.

N1 N2

Mean Median Density Var Mean Median Density Var

St-04 23.17 (−) 23.08 (−) 23.09 (−) 0.50 23.87 (−) 23.64 (−) 23.37 (−) 0.90

St-05 26.52 (3.35) 26.39 (3.31) 26.21 (3.12) 0.61 27.27 (3.43) 27.08 (3.44) 26.98 (3.61) 1.03

St-06 29.92 (3.40) 29.83 (3.44) 29.46 (3.25) 0.61 30.81 (3.54) 30.60 (3.52) 30.28 (3.31) 1.12

St-07 33.39 (3.48) 33.25 (3.42) 33.13 (3.67) 1.13 34.36 (3.55) 34.18 (3.58) 34.15 (3.87) 1.50

Distances between dilutions between parentheses.

https://doi.org/10.3389/fpubh.2023.1141494
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Nagelkerke et al. 10.3389/fpubh.2023.1141494

Frontiers in Public Health 07 frontiersin.org

affect the sensitivity, efficiency, and quantification of the 
samples differently.

3.3. Rolling window master curve

In Figure 6 the RMSE between the Ct-values associated with the 
different dilutions of the reference material are shown, per number of 
previous days included in the curve based on historic data.

In line with the expectation, including more data to reduce 
random variance works for a brief period of time, signified by the 
error reduction as a result of using data over one through four days. 
The shifts in error reduction on day three for the N2, and between 
days six and fifteen of the N1 assay can both be explained by the 
remaining effects of days without observations. The average age of the 
data used to approximate the current curve fluctuates, and is oldest 
when Monday is predicted using last week’s data. That is, due to having 
no new data in the weekend, a prediction based on three days of data 
causes a prediction of Monday by only using Friday, which explains 
the sudden increase of error for the N2 assay. This effect re-occurs 
every seven days, where there is a transition between having either 
more data available, and that data being older data on average.

Figure 7 shows the aggregated error between the historic curve 
and the curves obtained on the current day. The weekend-weekday 
effect is amplified here, as the error is combined across dilutions. It is 
nonetheless apparent that using standard curves estimated on the data 

of four days prior gives the best approximation of today’s standard 
curves, although it should be noted that using between four and seven 
days would not give significantly different results, both in the statistical 
and substantive sense.

Figure 8 contains the slopes and intercepts for three methods 
– duplicate standard combined in two simultaneous runs, a 
cumulative master curve using all data up to that point, and the 
suggest rolling curve over five days of data – when used to estimate 
standard curves using the Ct-values of the N1 standard dilutions 
(see S3 for N2). To depict the trend in the day-to-day quantification, 
a line is also estimated using the combined data from each day. As 
previously mentioned, the rolling curve was re-estimated to include 
a total of five days: the four previous dates as shown in Figure 6, 
plus today.

The suggested approach of including five days of data results in 
standard curves that follow the trend in day-to-day variation, with the 
exception of October 2021, and the third week of August 2022. In 
contrast, the master curve clearly shows increasing underestimation 
of the intercept and steepness of the slope compared to the other 
methods. Note that the slope is negative, and a shallower, less negative, 
slope indicates increased efficiency. This result is, of course, specific to 
the trends in standard curve parameters that are observed in the data 
from the NRS program, where a steady increase in intercepts, and 
decrease in slopes occur in the data.

Whether or not over- or underestimation of the concentration 
occurs depends on the observed Ct-value of a sample, and the over- or 

FIGURE 3

Slope and intercept for the N1 Target. loess smoothing with span  =  0.25, degree  =  2. N  =  3755/4455. Vertical lines indicate a new preparation from the 
CDC assay. Blue dots indicate line parameters of accepted standard curves, gray dots show rejected curves. For readability 242 and 650 observations 
are beyond the y-axis limits for the intercept and slope, respectively.
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underestimation of the intercept and slope. For example, when a high 
intercept and steep slope are found, it may be  the case that the 
concentration of samples with low Ct-values may be underestimated 
based on the high number of cycles associated with the intercept. 
However, due to the steep slope, using the same curve may cause 
overestimation of the concentration of samples with high Ct-values.

3.4. Trends in quantified viral 
concentrations

In Figure 9 a fixed Ct-value of 30 is quantified using the different 
standard curves, of which the parameters are plotted in Figure 8. Note 
that general trends occur gradually even when new preparations of the 
standard are made, and these do not seem to cause sudden changes.

Figure  9 makes clear how relatively limited changes in the 
standard curve parameters can have large effects on the sample 
concentrations due to the logarithmic relationship between 
Ct-values and concentration. Even when applying replication of the 
standard dilutions, run-to-run variation can be high between days 
and regularly causes extreme values. Standard curves of these runs 
adhere to the specified criteria and although their intercept terms, 
for which no criterion is applied, are relatively high, they are not so 
high as to raise immediate suspicion in light of the daily variation 
observed. Concentrations of that magnitude would, of course, 
be subject to further inspection after quantification as clear outliers, 

but the properties of the standard curve do not indicate problems 
in isolation.

The proposed approach of including several previous days reduces 
the run-to-run, and day-to-day variance. Due to the outlying virus 
concentrations based on per-run standard curves, Figure 9 does not 
do full justice to the day-to-day variance. For example, in December 
2021 there is an almost 100% larger shift in viral concentration based 
on daily standard curves than based on the other approaches to 
quantification. Moreover, daily runs already partially use historical 
data due to the use of the ISO criteria for the curves and using the 
most recently accepted curve if the current curve is problematic. This 
paradoxically leads to the situation where the daily standard curves 
capture less of the variance in standard curve variance, and would 
occasionally show almost equally extreme concentrations as run-based 
curves when they are used on face value.

Finally, in Figure 10 a selection of 44500 samples from the NRS 
program, collected between January 1st and November 11th 2022 are 
quantified and aggregated to country level using the described 
methods. For details on sample collection, aggregation, and 
hospitalization data, see Geubbels et  al. (21). Samples are only 
included if a standard curve is available for the RT-qPCR run on 
which they were originally analyzed. Note that due to data selection, 
and not using inflow or inhabitant corrections for the final 
concentration, the trend presented cannot be interpreted as the viral 
trend in The Netherlands. It does nonetheless track the virus 
concentration to an acceptable level for the purpose of this study.

FIGURE 4

Slope and intercept for the N2 Target. loess smoothing with span  =  0.25, degree  =  2. N  =  3145/4442. Vertical lines indicate a new preparation from the 
CDC assay. Green dots indicate line parameters of accepted standard curves, gray dots show rejected curves. Note: For readability 548 and 855 
observations are beyond the y-axis limits for the intercept and slope, respectively.
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FIGURE 5

Average daily log10 concentration of three Ct-values when quantified with the standard curves per run on that day. N1 (blue) and N2 (green) trends are 
superimposed on all three Ct-value sets (black lines), which are plotted on a base-10 log-scale to be able to distinguish them from each other.

FIGURE 6

Mean RMSE between the Ct-values interpolated from the standard curve per run, and the standard curve based on x previous days, per dilution, per 
gene target.
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The master curve starts of performing very similar to the 5 day 
rolling window standard curves. However, as can also be seen from 
Figures 3, 4, 8, increasingly underestimate the virus concentrations 
over time compared to the other methods, where the signal is 
decreased to about 50% of the virus loads compared to the alternative 
approaches. Per run curves show more, and especially in the beginning 
of 2022, unrealistic levels of variance, with changes in estimated virus 

concentrations occasionally in- or decreasing more than 100% 
between days.

Differences between the rolling and run-to-run quantification 
approaches can exceed 400%, but these cases are an exception where 
the standard curve of one run is markedly different from the rolling 
window curve. The median absolute difference on the daily nationwide 
average equals 8%, Some noticeable, prolonged periods of larger 

FIGURE 7

Mean RMSE between the Ct-values interpolated from the standard curve per run, and the standard curve based on x previous days, per gene target.

FIGURE 8

Estimated standard parameters for the N1 target, based on estimation per run (gray), on all daily observations of standard dilutions (red), on all 
observations within a five day rolling window (blue) and on all cumulative data up to that point (green). Vertical lines indicate a new preparation from 
the CDC assay.
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differences, upwards of 25% between the approaches, can be seen in 
the first and third peak in the data. The median absolute difference on 
the daily nationwide average equals 8%, with prolonged period in the 

first and third peak in the data showing differences upwards of 25%. 
The difference between the reported median percentages also 
illustrates that on a higher level of aggregation the effect of a different 

FIGURE 9

Estimated concentrations for a fixed Ct-value of 30, based on standard curves per duplicate run (gray), per day (red), on a five day rolling window 
(blue), and cumulative master curve (green).

FIGURE 10

National level aggregate virus loads from January 1st 2022 to November 11th 2022 as obtained from a standard curve per run (black), on a 5-day 
rolling window (red), or a cumulative master curve (blue), compared to daily hospitalizations.
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standard curve will be smaller, as the viral loads averages out over 
many observations. On more regional, or on WWTP level, trend 
estimates will show more marked differences.

This is far from being definitive proof, but when comparing the 
virus concentrations to the number of daily hospitalizations as a proxy 
variable, the standard curves using several previous days of data seem 
to outperform the other methods in capturing the correct levels of 
virus concentration on the aggregate level. Note that the lower peaks 
in hospitalizations do not indicate better performance of the master 
curve, as immunity through vaccination changed the ratio between 
viral load and hospitalizations over time (22, 23). This is especially 
important toward the end of 2022, as the standard curve affects 
estimated trends more severely in high virus concentrations: Small 
shifts in the curve intercept and slope have the potential to cause large 
trend variations by the nature of Ct-values being logarithmically 
related to virus concentration.

4. Conclusion

We present the resulting standard curves from more than 4000 
analyses of standard dilutions constructed from the CDC 2019-nCoV 
Real-Time RT-PCR Diagnostic Panel over the period of sixteen 
months. Further we propose a method of combining observations of 
standard dilutions over multiple runs in a high-throughput wastewater 
monitoring setting.

Results indicate that both the slope and intercept parameters of 
standard curves show high levels of run-to-run variance, and are 
subject to systematic shifts over a year that can exceed 2 Ct-values. 
Especially the sensitivity of the RT-qPCR process varies, as indicated 
by changes in the intercept of the standard curves. This is an important 
finding with regards to commonly applied criteria for standard curve 
construction, as the intercept is often, and surprisingly, absent from 
the quality indicators. As a result it may be a parameter that receives 
less attention when efficiency estimates are within their bounds, 
despite the potentially large impact on the concentrations obtained 
from samples.

The systematic fluctuations in the estimated standard curves make 
the application of a general master curve problematic. As time 
progresses the amount of data required to shift a master curve toward 
its current true value becomes exceedingly large, until the curve is 
virtually constant. In contrast, concentrations obtained from standard 
curves obtained from individual dilution series, even when duplicated 
on simultaneous runs, can result in large variation, with obtained 
sample concentrations that can exceed surrounding measurements by 
an order of magnitude.

Using the proposed approach of combining standard curve data 
from multiple runs, may not only have the practical benefits of 
extending the period for which the reference batch is identical, and 
cost-saving through less wells per run being occupied by reference 
dilutions. Results indicate that it also has the potential to solve 
problems associated with standard curve estimation, as a more 
plausible degree of variation in curve parameters is obtained than 
from run based standard curves, while systematic changes are properly 
captured. Both of these can be  beneficial in high throughput 
surveillance programs, such as wastewater surveillance.

The newest data is often of major importance to fulfill the real-
time monitoring objective that many surveillance programs are 

tasked with. Problematic or outlying concentrations can compromise 
this task, given potential delays through re-testing or partial 
rejection of output. Depending on the degree to which true variance 
is captured by partially smoothed standard curves, the proposed 
approach can reduce such problematic data where they are caused 
by standard curves that contain significant measurement error. 
Furthermore, trends in the data roughly coincide with meteorological 
seasons. Although multiple years of data would be required and 
controlled for laboratory atmosphere to ascertain this with certainty, 
if these trends do indeed have a yearly recurrence they may cause 
the viral load signal of interest to be  dampened or amplified. 
Specifically during autumn and winter seasons there is a potential 
for these trends to coincide with seasonal variations of certain 
infectious disease prevalence, most notably respiratory viruses such 
as influenza and SARS-CoV-2.

Despite promising results, this work should be seen primarily as 
a proof of concept, since the major caveat is that the true standard 
curve is unknown. Given the observed changes in qPCR efficiency and 
sensitivity, and the theoretical basis for standard curve estimation, 
usage of a master curve for a longer period of time can be advised 
against. However, whether short term variance is captured to a 
sufficient degree when using standard curve estimation on a rolling 
window requires further work through a simulation study in which 
the properties of the true standard curves are known, and recovery of 
those curves can be investigated.

Such a study would further allow investigation of the required 
density of standard curve data. Preliminary results obtained over the 
year prior, where the weekly analysis frequency was one fourth of the 
data presented, show similar results. However, whether or not good 
approximation of standard curves per run is possible by using a rolling 
window, is dependent on the specific properties of the RNA or DNA 
target, the reference material used, and the laboratory setup and 
equipment, combined with data availability over a given period 
of time.
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