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An alternative method for
monitoring and interpreting
influenza A in communities using
wastewater surveillance

Tomas de Melo, Golam Islam*, Denina B. D. Simmons,

Jean-Paul Desaulniers and Andrea E. Kirkwood

Faculty of Science, Ontario Tech University, Oshawa, ON, Canada

Seasonal influenza is an annual public health challenge that strains healthcare

systems, yet population-level prevalence remains under-reported using standard

clinical surveillance methods. Wastewater surveillance (WWS) of influenza A can

allow for reliable flu surveillance within a community by leveraging existing

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) WWS networks

regardless of the sample type (primary sludge vs. primary influent) using an RT-

qPCR-based viral RNA detection method for both targets. Additionally, current

influenza A outbreaks disproportionately a�ect the pediatric population. In this

study, we show the utility of interpreting influenza A WWS data with elementary

student absenteeism due to illness to selectively interpret disease spread in the

pediatric population. Our results show that the highest statistically significant

correlation (Rs = 0.96, p = 0.011) occurred between influenza A WWS data

and elementary school absences due to illness. This correlation coe�cient is

notably higher than the correlations observed between influenza A WWS data and

influenza A clinical case data (Rs = 0.79, p= 0.036). This method can be combined

with a suite of pathogen data from wastewater to provide a robust system for

determining the causative agents of diseases that are strongly symptomatic in

children to infer pediatric outbreaks within communities.
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1. Introduction

As the world continues to deal with ongoing challenges associated with the COVID-19

pandemic, the re-emergence of seasonal respiratory pathogens such as influenza poses an

additive threat to public health. Influenza and pneumonia are ranked among the top 10

leading causes of death in Canada. It is estimated that influenza causes approximately

12,200 hospitalizations and 3,500 deaths per year (1). With numerous non-pharmaceutical

interventions placed during the COVID-19 pandemic, the dynamics of influenza exposure

and transmission, incidence rates, and symptom severity may have changed. This is evident

by the current increase in influenza infections and influenza-associated hospitalization rates

in Canada, which are above-expected levels that are typical for the flu season, spanning from

August 2022 to February 2023 (1, 2). Thus, there is now an immediate demand for improved

surveillance of this contagious disease.

Influenza viruses arise from the family Orthomyxoviridae. This family is unique in

that they are enveloped viruses with genomes that consist of negative-sense single-stranded

RNA segments (3). There are four types of influenza viruses, A, B, C, and D. Within these,
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influenza A is the only flu virus known to cause flu pandemics

(4). The influenza A type virus is further classified into subtypes,

clades, and subclades based on the presence of surface viral proteins

hemagglutinin (H) and neuraminidase (N). Currently, the most

commonly detected subtypes found circulating in human infections

are A(H1N1) and A(H3N2) (4). The most commonly reported

symptoms of the virus are fever, cough, runny nose, body aches,

and sore throat (4).

One of the important lessons learned from the COVID-

19 pandemic is that monitoring respiratory pathogens through

conventional clinical testing (nasal swabs, sample collection, and

RT-qPCR) presents many challenges and may not be sufficient

for pathogen surveillance where timely information is required.

Thus, the surveillance of pathogens in wastewater has been

successfully implemented as a credible technique to complement

monitoring SARS-CoV-2 infections within communities (4, 5).

When clinical SARS-CoV-2 tests were widely available in Canada,

they provided a reliable and robust metric that correlates with

SARS-CoV-2 RNA concentrations in domestic wastewater (5,

6). However, interpreting SARS-CoV-2 wastewater data has

been challenging (variable correlation strength, lack of reported

cases, and inconsistent lead vs. lag association to clinical data).

Additionally, public accessibility to clinical COVID-19 PCR tests

has been greatly limited in Canada and is currently only available

to high-risk groups.

Similar to current COVID-19 testing, influenza A testing is

limited to people in hospitals or associated with an institutional

outbreak (7). As such, there are incomplete incidence data available

to compare withWWS viral signals, thus making the interpretation

of wastewater epidemiology data very complex.

Wastewater monitoring is quickly emerging as a powerful

epidemiological tool in public health surveillance and the early

detection of contagious diseases. It is unbiased, inexpensive, and

can be implemented easily, as one wastewater sample can be used to

test small communities as well as large populations (8). In addition

to SARS-CoV-2, wastewater surveillance can also be applied to

target influenza and other pathogens using similar a DNA/RNA-

based RT-qPCR detection methodology (9). For example, Mercier

et al. (10) recently reported the feasibility of monitoring influenza

A viral RNA gene copies in wastewater primary sludge within three

distinct communities in Ottawa, Canada, with lead times between

14 and 21 days over clinical testing data.

In this study, we aimed to contribute to the growing WWS

knowledge base by exploring other methodological approaches

that aid in the interpretation of WWS data, particularly where

the clinical case data are limited. Using a detection method

focusing on primary influent, we explored the efficacy of school

absences due to illness as a proxy measure of community influenza

A prevalence and compared these inferred cases with influenza

A viral loads in local domestic wastewater samples from Ajax,

Ontario, Canada. This analysis will also allow the monitoring

of influenza infections in the pediatric population, which likely

serves as a major driver of total population influenza A prevalence

in sewershed communities that flow into municipal wastewater

treatment plants.

Using time-step Spearman’s rank correlation analysis

and pepper mild mottle virus (PMMoV) normalization

to rescale influenza A and SARS-CoV-2 RNA gene

copies in wastewater, we compared the relationships

between levels of influenza A and SARS-CoV-2 gene

copies and (1) student absences due to illness and (2)

clinical cases of influenza A to determine the lead and

lag time of influenza A WWS data using 1-, 3-, and 5-day

averaging times.

2. Materials and methods

2.1. Wastewater sample collection and
PEG-NaCl viral concentration

Raw wastewater samples were collected 3 days/week for almost

13 weeks from 15 September to 13 December 2022, from a

sanitary sewershed pumping station in Ajax, Ontario, Canada

that captures domestic wastewater from approximately 150,000

people. The sewershed primarily reflects a suburban residential

area (>80%), with some commercial and light industries. Each

sample represented hourly sub-samples of equal volume collected

over a 24-h period, for a final composite sample volume of 500mL

that was stored at 4◦C. Wastewater samples were transported

in sterile, sealed 500mL plastic containers at 4◦C to Ontario

Tech University, Oshawa, Ontario, Canada. Upon arrival, the

samples were stored at 4◦C for up to 24 h until processing

and analysis.

To precipitate the influenza viral particles and PMMoV

particles from wastewater, all samples were mixed thoroughly

before 30mL of wastewater was transferred to the NalgeneTM

Oak Ridge High-Speed PPCO Centrifuge Tubes (Thermo Fisher

Scientific, MA, USA) containing 10mL of 4X PEG–NaCl

buffer (40% w/v PEG 8,000 and 1.5M NaCl), vortexed briefly

and centrifuged using a SORVALL RC 6+ Ultracentrifuge

(Thermo Fisher Scientific, MA, USA) at 12,000 x g for

2 h at 4◦C (11, 12). After discarding the supernatant, a

second centrifugation step at 12,000 x g for 10min was

performed to help solidify the pellet. The PEG–NaCl method

was utilized for all experimental samples to concentrate the

viral particles. Before RNA extraction, the pellet mass for all

samples was measured using a top-loading balance (Sartorius,

Goettingen, Germany).

2.2. Nucleic acid extraction

Total RNA was extracted from the concentrated wastewater

pellets using the RNeasy R© PowerMicrobiome R© Kit (Qiagen,

Germantown, MD) with the following alterations from the

recommended protocol: 100 µL of phenol–chloroform–isoamyl

alcohol (25:24:1, pH 6.5–8) was added to each sample prior to

the lysis step (Thermo Fisher Scientific, MA, USA). The pellet was

resuspended with 650 µL of the lysis buffer and transferred to the

PowerBead (glass, 0.1mm) tubes (QIAGEN, Germantown, MD).

The subsequent steps were performed following the recommended

protocol from the manufacturer’s kit. The total RNA was eluted

from the kit spin column using 100 µL of RNase-free water.
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2.3. Quantitative reverse transcription PCR

Quantification of the influenza A matrix (M) gene, SARS-

CoV-2 viral nucleocapsid (N) gene, and the PMMoV coat protein

gene in the composite wastewater samples was performed using

the Reliance One-Step Multiplex RT-qPCR Supermix (Bio-Rad,

Hercules, CA) utilizing a TaqMan-MGB (Applied Biosystems,

Massachusetts, USA) probe-based approach. Gene copy numbers

of influenza A in wastewater were determined using the WHO

influenza A M gene primer/probe to target a region of the M gene

that encodes for the M1 protein. The gene copy numbers of SARS-

CoV-2 in wastewater were determined using the US CDC 2019-

nCoV N2 Assay RUO primer/probe mix to target a region of the

N gene and have been discussed previously (13). PMMoV gene

copy numbers were determined using PCR primers developed by

Zhang et al. (14) to target a region of the PMMoV strain S genomic

sequence. All probes/primers used in this study and their sequences

are shown in Table 1.

For each wastewater sample, technical replicates were run in

triplicate, and serial dilutions of the Twist Synthetic H3N2 RNA

Control (Twist Bioscience, CA, USA) were run on every plate

to quantify the gene copies of influenza A (M gene) using the

standard curve method. Each reaction comprised a mixture of 5

µL of RNA template, 600 nM (M1) of each forward and reverse

primer, 100 nM (M1) probe, and 5 µL of 4X Reliance master mix

for a final reaction volume of 20 µL. Reactions were performed

in a CFX Connect Real-Time PCR Detection System (Bio-Rad,

Hercules, CA) beginning with a reverse transcription (RT) step at

50◦C for 10min, followed by a polymerase activation at 95◦C for

10min, and then 45 cycles of denaturation and annealing/extension

at 95◦C for 10 s and then at 60◦C for 45 s. The RT-qPCR analysis

was validated with no-template controls (NTCs) using PCR grade

water instead of RNA, no-reverse transcriptase controls (NRTs),

and the presence of PCR inhibitors was determined using a serial

dilution. All samples analyzed were quantified according to the

MIQE recommendations (15) using the standard curve method

with a synthetic RNA standard (Twist Synthetic H3N2 RNA

Control, Catalog #: 103002) that contains the complete genome

of influenza A/H3N2. A minimum 7-point standard curve with

technical triplicates for each point was performed for every RT-

qPCR experiment. The primer efficiency of influenza A (M1) was

approximately 91%. The R2 value was ≥0.99, and the slope of

the standard curve was ∼3.55. The limit of detection for the

influenza A M1 gene with a 95% coefficient of variation was

13.71 copies/mL of wastewater. Any crossing threshold values

above 40 cycles were identified as negative reactions, assuming

no amplification/detection occurred. The dynamic range of our

linear standard curve was between 1 × 103 copies/µL and 1.37 ×

100 copies/µL.

2.4. Influenza A case data

Influenza A case data for the city of Ajax were provided by

the Durham Region Works and Health Department (DRHD) and

represented cases identified within the sewershed when they were

reported to DRHD.

2.5. School absences

DRHD also collected student absence data due to illness for all

elementary and secondary schools within the region, as all schools

are required to report absences due to illness. Within the region of

Durham, the city of Ajax, ON, contains a total of 24 elementary

schools (J.K.–grade 8) with approximately 13,500 students and a

total of 3 secondary schools (grades 9–12) with approximately 6,000

students. The absenteeism data provided for this study did not

include specific absenteeism for each school in Ajax, but rather

a separate daily total percent (%) of absence due to illness (# of

students absent due to illness/total student population ∗ 100) for

elementary and secondary schools. Absences due to illness were

also collected for some Child Care Centers (CCC); however, these

data were limited because CCC absence reporting was voluntary,

and thus the sample size was too small for analysis.

The percentage of student absences due to illness obtained

from DRHD is a measure of the cumulative prevalence of illness

across schools (similar to the total number of cases). However,

TABLE 1 Listed are the primers and probes used to obtain WWS data.

Viral target Primer/Probe Sequence (5′ -> 3′) References

Influenza A MP-39-67For CCMAGGTCGAAACGTAYGTTCTCTCTATC (33)

MP-183-153Rev TGACAGRATYGGTCTTGTCTTTAGCCAYTCCA (33)

MP-96-75ProbeAs VIC-ATYTCGGCTTTGAGGGGGCCTG-MGBNFQ (33)

SARS-CoV-2 2019-nCoV_N2 For TTACAAACATTGGCCGCAAA (34)

2019-nCoV_N2 Rev GCGCGACATTCCGAAGAA (34)

2019-nCoV_N2 Probe FAM-ACAATTTGCCCCCAGCGCTTCAG-MGBNFQ (34)

Pepper mild mottle virus

(PMMoV)

PMMoV For GAGTGGTTTGACCTTAACGTTGA (14)

PMMoV Rev TTGTCGGTTGCAATGCAAGT (14)

PMMoV Probe VIC-CCTACCGAAGCAAATG-MGBNFQ (14)

Materials were obtained from Applied Biosystems (MA, USA). M= A/C, Y= C/T, R= G/A.
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given that WWS captures the daily abundance of viral genes within

the catchment area, for comparison purposes, we transformed the

% school absence due to illness data to represent the changes in

the daily incidence rate of illnesses in schools by calculating the

overall percent change (daily % absence due to illness reported–

% absence due to illness from the previous school day) for

primary and secondary schools in Ajax. Positive percent change

values represented the increase in daily incidence of illness within

schools, while negative values represented a decrease in illness

(students re-attending after recovery). Since we are not evaluating

the effectiveness of non-pharmaceutical interventions, only positive

percent changes in absences due to illness were used to infer the

incidence of new cases.

2.6. PMMoV normalization for comparisons
with influenza A case data and school
absenteeism

Viral WWS data are normalized with PMMoV to account for

the human fecal content in wastewater as PMMoV is generally

found at consistent levels in wastewater (WW) and reflects

population-level variability in waste production (14). PMMoV can

also be used to account for variability caused by slight changes

in extraction efficiency due to the complexity of the WW matrix

and variability in pellet weight. This normalization approach is

commonly used (10, 16–18) and helps not only reduce noise

due to variability but also helps to scale the data for comparison

with clinical surveillance data. Since PMMoV acts as a min–max

normalization factor to scale the data, the maximum andminimum

values are mostly within a 0 to 1 scale. This allows for comparison

with other data from different time periods or even different

sampling sites.

2.7. Statistical analysis

All data were assessed for normality. Wastewater viral

concentrations and % change in absenteeism due to illness were

not in compliance with parametric assumptions. Thus, a non-

parametric Spearman’s rank correlation coefficient (Rs) analysis

was performed using the daily PMMoV-normalized viral signals for

influenza A: (1) the associated influenza A cases clinically reported

and (2) the percentage (%) of change in school absenteeism for

primary and secondary schools. To examine if the strength of

associations between WWS data and clinical and absenteeism data

can be improved with smoothed data, the correlation was also

analyzed for 3-day and 5-day averages for both WWS data and the

absence/case data.

In addition, to examine the maximum Spearman’s correlation

values, a time-step correlation analysis was conducted between

WWS data and % change in school absenteeism and clinically

reported cases with a data offset of a range of +/– 7 days applied

to the % change in school absenteeism due to illness and reported

cases time series data. This data shift in clinical and absenteeism

metrics was applied to observe whether the correlation would be

stronger with a lead (– shifted) or lag (+ shifted) time for up to 7

days. Zero-day offset refers to the correlation between wastewater

signals and the case counts on the day of the wastewater sampling.

Lead times refer to wastewater data being correlated with later case

counts (e.g., a lead time of 3 days refers to the correlation between

wastewater data and clinical cases 3 days later). Lag times refer to

the wastewater data being correlated with earlier case counts (e.g., a

lag time of 3 days refers to the correlation between wastewater data

and clinical cases 3 days later). Corresponding p-values (obtained

using the Mann–Whitney test) were also calculated to determine

the statistical significance of each correlation (α = 0.05). Only

p-values for strong correlation values (Rs > 0.50) are discussed

below. For each averaging time, WWS data were only compared to

absences/case data for the same averaging time. As per other studies

(17) performing similar tests, the averages did not overlap, meaning

it was not a moving average.

3. Results and discussion

3.1. Time-step correlation analysis between
PMMoV-normalized WWS data and clinical
surveillance metrics

Time-step correlation analyses were performed using PMMoV-

normalized influenza A WWS data and cases of influenza A

reported in the catchment area, which showed a strong correlation

between influenza A WWS data and clinical surveillance data

(Figure 1A). Comparisons of the daily PMMoV-normalized

influenza A signal to the daily number of clinically reported cases

showed a maximum Spearman’s rank correlation coefficient value

Rs = 0.80 (p = 0.579) when the data were adjusted with a 4-day

lead time. Comparing the 3-day average for PMMoV-normalized

influenza A WWS data to the 3-day average influenza A cases

by reported date, the highest correlation (Rs = 0.75, p = 0.168)

was observed with a 6-day lead time. However, these correlation

values were not statistically significant. Only the 5-day average for

PMMoV-normalized influenza A WWS data compared with the

5-day average influenza A cases demonstrated a strong significant

correlation with clinically reported cases of influenza A (Rs = 0.79,

p= 0.036) with a 5-day lead time (Figure 1A).

Time-step correlation analyses between PMMoV-normalized

WWS data and clinical surveillance metrics have been previously

explored and shown to effectively determine a lead time for

COVID-19 WWS surveillance data (8, 17–23). Although, many

have stated that the differences in gastrointestinal replication and

fecal shedding of SARS-CoV-2 and influenza A were a cause for

concern with respect to the effective detection[/interpretation] of

influenza A in wastewater (12, 24–28). Our study has demonstrated

that a 5-day lead time between smoothed datasets (5-day averaged

influenza A WWS data and 5-day averaged influenza A cases)

provided a strong significant correlation (Rs = 0.79, p = 0.036),

indicating the presence of influenza genes in wastewater was found

5 days before the increase in clinically reported influenza cases.

This successful detection of influenza in raw influent

wastewater and its correlation to clinical cases complements

other recent studies (10, 25) that have also documented successful

influenza A detection in both influent and sludge samples.

Researchers examining primary sludge from communities in

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1141136
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


de Melo et al. 10.3389/fpubh.2023.1141136

FIGURE 1

Results of time-step Spearman’s rank (Rs) correlation analysis with a 7-day lag to a 7-day lead. Maximum Spearman’s rank correlation for each

averaging time highlighted if Rs > 0.50 (strong correlation) or Rs > 0.30 but < 0.50 (moderate correlation) (A) PMMoV-normalized influenza A (M1

gene) viral signal vs. influenza A cases by reported date, (B) PMMoV-normalized influenza A (M1 gene) viral signal vs. % change in elementary school

absences due to illness, (C) PMMoV-normalized influenza A (M1 gene) viral signal vs. % change in secondary school absences due to illness, (D)

PMMoV-normalized SARS-CoV-2 (N2 gene) viral signal vs. % change in elementary school absences due to illness, and (E) PMMoV-normalized

SARS-CoV-2 (N2 gene) viral signal vs. % change in secondary school absences due to illness.

Ottawa were able to detect influenza A with a 14–21-day lead

time against reported clinical case data (10). We were unable to

detect influenza A in wastewater prior to the first identified case of

influenza A within the catchment. However, this is unsurprising

given the differences in the viral abundance of enveloped viruses

that have been identified between primary sludge and primary

influent (17, 21, 29, 30).

3.2. Correlation between
PMMoV-normalized viral WWS data and %
change in absences due to illness in
elementary and secondary schools

Examining the correlation between the daily PMMoV-

normalized influenza A WWS signal and the daily percentage of

change in elementary school absences (see Figure 1B), the time-

step correlation analysis showed that the maximum significant

correlation value was obtained with a 4-day lead time (Rs =

0.96, p = 0.011). Comparisons of the smoothed 3-day averages of

influenza AWWSdata and% change in elementary school absences

due to illness produced only a weaker correlation with a 6-day lead

time (Rs = 0.62, p = 0.035), while no correlation (Rs < 0.5) was

observed with the 5-day averaged dataset. The correlation of daily

WWS data to primary school absenteeism (Rs = 0.96) with a 4-

day lead time was much higher than associations with clinically

reported cases (Rs = 0.79, p= 0.036) with a 5-day lead time.

In terms of the correlation between influenza AWWS data and

the daily % change in absences due to illness in secondary schools

(see Figure 1C), the time-step correlation analysis demonstrated a

weak significant correlation with a 7-day lead time (Rs = 0.52, p

= 0.011). Moreover, weak correlations (Rs < 0.50) were observed

when averaging the data across 3 and 5 days.

We also concurrently monitored for the presence of SARS-

CoV-2 RNA viral signal in wastewater from the same samples.

This demonstrated that our experimental method can be utilized

to detect both SARS-CoV-2 and influenza in wastewater influent.

For elementary schools, only the correlations between the daily

PMMoV-normalized SARS-CoV-2 WWS data and the daily %
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FIGURE 2

PMMoV-normalized viral wastewater signals vs. clinical surveillance metrics over the study period (1 September 2022 to 13 December 2022). (A) daily

PMMoV-normalized influenza A (M1 gene, WHO) viral signal plotted with the number of new influenza A cases by reported date. (B) Daily

PMMoV-normalized influenza A (M1 gene, WHO) viral signal plotted with daily % change in elementary school absences due to unspecified illness.

(C) Daily averaged PMMoV-normalized influenza A (M1 gene, WHO) viral signal plotted with daily % change in secondary school absences due to

unspecified illness. (D) Daily PMMoV-normalized SARS-CoV-2 (N2 gene, CDC) viral signal plotted with daily % change in elementary and secondary

school absences due to unspecified illness.

change in elementary absences due to illness showed a moderate

significant correlation (Rs = 0.60, p = 0.017) with a 3-day lead and

2-day lag time of WWS data. However, in contrast to influenza A,

the daily PMMoV-normalized SARS-CoV-2 WWS data showed a

stronger statistically significant correlation (Rs = 0.76, p = 0.005)

with the % change in secondary school absences due to illness, with

a 3-day lag time (see Figure 1D).

When comparing the correlations between influenza A WWS

data and % change in absences due to illness for elementary

and secondary schools, the maximum Spearman’s rank correlation

coefficients were observed when looking at elementary absences (%

change) due to illness. For each data set, regardless of the daily, 3-

, or 5-day averages, elementary school absenteeism was observed

to correlate significantly higher with influenza A WWS data than

secondary school absences. This suggested that influenza A was

potentially a causative agent in the absences of the elementary

school students in the studied sewershed. Conversely, a strong and

significant correlation was found between SARS-CoV-2 WWS data

and secondary school absences (% change) due to illness. This may

be due to the notable differences in disease presentation between

influenza A and COVID-19 in children, where the former is

commonly symptomatic compared to the latter (31, 32). However,

due to the limited data, we could not confirm the number of SARS-

CoV-2 cases in secondary school students (14–18 years old) to

corroborate our findings.

3.3. PMMoV-normalized viral WWS data
trends over time

The monitoring of PMMoV-normalized influenza and SARS-

CoV-2 viral signals over time is shown in Figure 2. An increase in

influenza WW signal can be observed from 13 October 2022 to 13

December 2022 along with increasing numbers of new influenza

cases reported within that time period which demonstrated that

WWS data may have an equivalent predictive power as clinical

testing. The PMMoV-normalized influenza wastewater signal to %

change due to absenteeism in elementary and secondary school

is also shown in Figures 2B, C. Thus, wastewater surveillance

was successfully employed using primary influent samples and

identified the influenza A outbreak within the community.

4. Conclusion

This study confirms that a primary influent-based wastewater

surveillance method is effective at monitoring influenza viral loads

in wastewater and that it can be monitored concurrently with other

infectious viruses such as SARS-CoV-2 using the same viral RNA

concentration and RT-qPCRmethod for both targets. Additionally,

this study demonstrated that school absenteeism may be a useful

tool for interpreting influenza A disease prevalence within a

pediatric population, and by extension, the total population within

a given sewershed.

Our results show that the highest statistically significant

correlation (Rs = 0.96, p = 0.011) occurred between daily

influenza A WWS data and elementary school absences due

to illness. This correlation coefficient is notably higher than

the highest statistically significant correlations observed between

influenza A WWS data and influenza A clinical case data

(Rs = 0.79, p = 0.036). Correlations between influenza A WWS

data and absences in secondary school were the lowest overall (see

Figure 1C). Interestingly, SARS-CoV-2 showed contrasting results

compared to influenza A WWS data, and the highest statistically

significant correlation observed was between SARS-CoV-2 WWS
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data and secondary school absences (Rs = 0.76, p = 0.005).

While SARS-CoV-2 WWS data and elementary absences showed

inconclusive results.

While absenteeism is a more coarse metric and relatively

ambiguous compared to clinical data, absences are less influenced

by sampling bias than clinical tests. This sampling bias is due to

clinical tests being reserved for a relatively small subset of the

population (typically the elderly or young children) that elect to

seek a healthcare intervention, whereas school absences are legally

required to be reported to the school by caregivers.

Overall, our results show great promise for inferring influenza

A prevalence in sewage-surveilled communities by adding student

absenteeism to the wastewater epidemiologist’s toolbox. However,

the application of this tool comes with some advantages and

disadvantages. With respect to advantages, we have confirmed that

there is a strong correlative relationship between specific clinical

indicators (influenza A cases) and WWS data. In addition, we

found an even stronger correlative relationship between a non-

specific clinical indicator (% change in elementary absences due

to illness) and WWS data. However, this method of comparing

non-specific clinical indicators of the pediatric population with

WWS data could be further improved by supplementing with

moreWWS data representing other clinically significant pathogens

circulating within the pediatric population such as respiratory

syncytial virus (RSV). For example, RSV also has a notable

symptomatic presentation in pediatric populations compared

with older age children. Another potential limitation with this

approach may be that the WWS data are impacted by “legacy

viruses” that remain pseudo-persistent in wastewater and are later

resuspended under high flow or other turbulence events and

detected at higher concentrations using qPCR. However, the fate

and stability of viruses in wastewater have not yet been determined.

Introducing an effective sampling strategy where sampling sites

are carefully selected and composite sampling is utilized with a

higher sampling frequency can increase the chances of monitoring

for “legacy viruses” due to resuspension or sloughing events.

The success of SARS-CoV-2 surveillance programs worldwide has

demonstrated that WWTP from different countries, populations,

catchment sizes, and designs, can all be sampled and provide a

very strong estimation of COVID-19 prevalence without being

affected by legacy virus concentrations (6, 26, 35). This WWS

method for the detection of influenza is not capable of predicting

or forecasting the number of students absent due to a specific

pathogen. However, this method, combined with a suite of

pathogen data from WWS, is reasonable enough to provide a

robust system for determining the causative agents of diseases that

are strongly symptomatic in children to infer pediatric outbreaks.

This kind of information could then be used to inform public

health interventions aimed at pediatric populations as well as the

larger community.
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