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The ongoing COVID-19 pandemic is arguably one of the most challenging health

crises in modern times. The development of e�ective strategies to control the

spread of SARS-CoV-2 were major goals for governments and policy makers.

Mathematical modeling and machine learning emerged as potent tools to guide

and optimize the di�erent control measures. This review briefly summarizes the

SARS-CoV-2 pandemic evolution during the first 3 years. It details the main public

health challenges focusing on the contribution of mathematical modeling to

design and guide government action plans and spread mitigation interventions

of SARS-CoV-2. Next describes the application of machine learning methods in

a series of study cases, including COVID-19 clinical diagnosis, the analysis of

epidemiological variables, and drug discovery by protein engineering techniques.

Lastly, it explores the use of machine learning tools for investigating long COVID,

by identifying patterns and relationships of symptoms, predicting risk indicators,

and enabling early evaluation of COVID-19 sequelae.

KEYWORDS
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SARS-CoV-2

1. Introduction

Mathematical models help to understand the functioning and dynamics of a given system
trough equations and rules, as such, can simulate conditions and scenarios associated with
multiple public policies, non-pharmaceutical interventions (NPI), and vaccine performance
(1). Therefore, mathematical models became major tools for guiding the decision-making
of governments and health systems during the pandemic (2). This section briefly introduces
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) and describes relevant
events during the progress pandemic. We then summarize the main applications of
mathematical models and the various uses to describe the transmission behaviors of
SARS-CoV-2.
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1.1. What is the SARS-CoV-2?

SARS-CoV-2 is the pathogen causing the 2019 coronavirus
disease (COVID-19). COVID-19 manifestations range from mild
flu symptoms to severe acute respiratory syndrome. SARS-CoV-
2 virion contains a 29Kb RNA genome wrapped in a capsid
covered by the Spike, the main protein responsible for the high
infection rate (3). During the transmission between humans,
the genome accumulates mutations, generating variants with
selective advantages that predominate in different countries (4).
Intrinsic factors like transmissibility and natural mutation rate,
host factors such as age, risk group, immunity, and socio-cultural
factors like economy, culture, and current levels of globalization
have determined the coronavirus evolution. Integrating SARS-
CoV-2 data is essential to predict its behavior, prevent its
continuous expansion, and understand this disease. Three years
after the pandemic, the scientific community has generated an
unprecedented amount of data, now facing the challenge of
translating this data into knowledge.

1.2. The first 3 years of the pandemic

The first reported case of COVID-19 was in December 2019 (5).
With the exponential increase in infections worldwide, the World
Health Organization (WHO) declared the disease a pandemic in
March 2020. Governments adopted different NPI to mitigate
the virus’s high reproduction rates. These measures included face
masks, social distancing, and lockdowns. While these measures
were implemented worldwide, just a few countries, such as
Vietnam and New Zealand, demonstrated the complete -although
transitory- elimination of the transmission (6). In April and May
2020, the first predictions of the pandemic course were based on
statistical models performed by the Institute for HealthMetrics and
Evaluation and provided a reasonable projection in the short-time
(7). During the first wave, it was also possible to establish that 10%
of the cases were responsible for 80% of the secondary infections,
indicating a high heterogeneity in transmission spread as compared
to other pathogens (8).

In the first pandemic year, it was identified that social contact
in public transport or closed areas allowed high transmission rates
(9, 10). In turn, it was determined that face masks reduce droplet
particle transmission (11). Furthermore, NPI was essential to flatten
the spread curve in the first year of the pandemic preventing
new waves of cases after curves pick, limiting overcrowding of
hospital beds, and giving time to improve treatment strategies
(12). Adaptations of the Susceptible-Infected-Recovered models
helped to demonstrate the NPI effectiveness in preventing the
transmission of the virus. Besides, these same models allowed the
detection of an increase in virus circulation with the relaxation of
the measures (13). Other models, facilitated the test-track-isolation
developing strategies to prevent the spread, demonstrating that
efficient track strategies help to reduce the number of new cases
(14). At the same time, the first signs of SARS-CoV-2 genetic
adaptation arose between March and May 2020, with the emerging
D614G variant, which showed clear worldwide transmissibility
advantages (15). The control of the pandemic at that time

relied on the development of herd immunity, being established
that the necessary protection of the population is approximately
1 −

1
R0
, being estimated at 67% of the people (16). In August

2020, reinfection cases demonstrated that natural immunity only
provides temporary protection (17). In December 2020, the first
clinical trials of vaccines were developed, leading to the emergency
approval of traditional and novel vaccine formulations -such as
mRNA vaccines-. These studies quickly established that immunity
begins between 10 and 14 days after the first dose (18). A second
dose shows protection over 90%, preventing hospitalizations and
deaths (19). The vaccines can block propagation, making cases less
infectious, with a 92% reduction in transmission rates (20). At
the same time, quantitative models pointed to the possibility of
immune escape when complete schemes are not generated. At the
end of 2020, the Alpha variant (B.1.1.7), according to the WHO
terminology, was the variant responsible for the significant increase
in cases in the United Kingdom. This variant was characterized by
presenting spike mutations with binding advantages to the ACE-2
receptor (21), showing clear selection advantages, a phenomenon
observed simultaneously in different parts of the world (22, 23).

The subsequent variant of similar global relevance was Delta
(B.1.617.2), characterized by its high replicative capacity. Vaccine
effectiveness studies showed protection against Alpha and Delta
variants (24). Vaccination programs were effective reducing deaths,
hospitalization admission, and intensive care unit (ICU) occupancy
(see Figure 1). In November 2021, a new outbreak was reported
in South Africa, caused by a new circulating variant presenting
a 60–70 spike gene deletion. This variant was called Omicron
(B1.1.529) and expanded rapidly throughout the world, replacing
the Delta variant. Omicron carries more than 30 spike mutations
(25), being responsible for high worldwide reinfection rates (26).
Vaccines have also shown a protective effect against this variant,
although deaths were reported among unvaccinated individuals.
Omicron subvariant (XBB1.5) has been described as responsible for
40.5% confirmed cases in the EE.UU. as of late December 2022. It
has also been observed that recombinant XBB and BA.2 Omicron
subvariant strains, widely spread in Asia, do not show different
symptoms than the previous variants, nor do they show signs of
being more severe than their predecessors.

Figure 1 summarizes the key variables depicting the pandemic
evolution in five exemplary cases. Each country showed different
spread behaviors of SARS-CoV-2. The measures showed variable
effectiveness. In most countries, other public health policies and
government plans were applied to mitigate the effects of the
spread. However, in most cases, the fatalities decreased after
implementation.

1.3. Applications of mathematical modeling
during the pandemic

The SIR models (Susceptible, Infected, and Recovered) are
spread dynamics analysis models used during the early days of
the pandemic (30). SEIR models (Susceptible-Exposed-Infected-
Recovered) correspond to an adapted SIR model to understand
propagation mechanisms (31). These models do not account
for heterogeneity within the population, thus novel strategies
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FIGURE 1

Behavior of epidemiological variables during the ongoing pandemic of COVID-19. The figure depicts the timeline of new deaths per million

inhabitants (left) and admissions to intensive care unit (ICU) per million inhabitants (right) in relationship with SARS-CoV-2 variants, vaccination

thresholds, and non-pharmacological interventions. The stringency index is a composite measure based on nine response indicators including

school closures, workplace closures, and travel bans, rescaled to a value from 0 to 100 (100 = strictest). Data acquired from et al. (27), Hasell et al.

(28), and Khare et al. (29).

incorporated a component of population subdivision into multiple
groups and interconnected systems, allowing the representation
of several mechanisms of interaction between different sub-
populations by a multi-group SEIRA (Susceptible-Exposed-
Infected-Recovered and Asymptomatic Model) (32). Another
interesting development was the statistically-based temporal
reclassification of cases. This approach allowed more precise
modeling of SARS-CoV-2 propagation dynamics, by correcting
errors in diagnostic test reporting times and infection time
registries (33, 34).

With the application of NPI strategies to prevent the spread
of SARS-CoV-2, the mathematical models were adapted to
incorporate this new knowledge. This adaptations enabled the
anticipation of the effect of NPI relaxation measures in function
of epidemiological variables, such as levels of hospitalization, use of
ICU, and lethality (35). SEIRAmodels also helped to asses the effect
of vaccines and pharmaceutical interventions (36).

With the first vaccination plans and high immunization rates
started the relaxation of public policies (37). However, the ability
of the virus to mutate and generate variants was associated with
new peaks in cases incidence.Mathematical models were adapted to
this scenario by incorporating information on genomic surveillance

programs, spread of variants, and the effects of immunization
(38–40).

Altogether, mathematical tools proved its relevance in
modeling the behavior of propagation systems and their effect on
populations. The SIR classical model as well as different adaptations
such as SEIR, SEIRA, and others, contributed significantly to the
development of government plans and public health policies.
Nevertheless, traditional mathematical modeling strategies rely on
existing knowledge and cannot account for dynamics not explicitly
incorporated during modeling. Methods based on machine
learning (ML) and artificial intelligence (AI) can overcome these
intrinsic limitations by generating autonomous systems that learn
from the modeled dynamics to predict new behaviors and adapt to
unknown scenarios.

1.4. Vaccines developments, e�cacy, and
adverse e�ects

Population immunity is considered a landmark for epidemic
control. Since immunity through natural infection might result in
unacceptable morbidity and mortality, the development of efficient
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COVID-19 vaccination programs was a prioritary public policy
for most countries (41, 42). The race to develop highly effective
and safe vaccines resulted in various platforms allowing their
implementation at unprecedented speed (43–45).

Due the modest response of traditional vaccines against
other coronaviruses such as Middle East Respiratory Syndrome
Coronavirus (MERS) and Severe Acute Respiratory Syndrome
(SARS), the development of novel formulations was a major
scientific goal (42, 46). A new vaccine technology based on mRNA
technology emerged as candidates in late December 2020 and
two formulations granted emergency approval BNT162b2 (Pfizer-
BioNTech), and mRNA-1273 (Moderna) (47). The developed
vaccines showed promising results in reducing transmissibility and
the probability of death, reaching an efficacy > 90% in phase III
clinical trials (48).

The widespread immunization poses the challenge of
quantifying and understanding short- and long-term toxicity for
novel vaccine formulations. Most studies have shown short-term
safety in the general population. However, in certain groups, severe
adverse events were reported i) anaphylaxis (2.5–4.8 cases per
million adult vaccine doses administered) (49, 50), ii) myocarditis
(52.4 cases and 56.3 cases per million doses) (51), iii) thrombosis
with thrombocytopenia syndrome (2-4 cases per one million doses
administered) (52), and iv) Guillain-Barré syndrome (7.8 cases
per million) (53), as well as an association with multisystemic
inflammatory syndrome (54).

A major challenge is to reliably detect long-term effects that
might occur at different rates in different patients subgroups (55).
Causal association becomes difficult due to the high immunization
rates achieved in most countries. In this complex scenario
mathematical models, ML, and AI, could provide powerful tools
provided that public policies focus on collection of sufficient high-
quality data.

1.5. What is long COVID?

1.5.1. Characteristics and definitions of long
COVID

Long COVID (LC) is a novel multi-systemic disease defined
by the persistence or appearance of a wide variety of symptoms
with variable intensity, regardless of the initial disease severity by
probable or confirmed SARS-CoV-2 infection (56). In response to
the absence of a consensus definition, the WHO proposed using
the term Post-COVID-19 listed in the ICD-10 classification based
on the Delphi consensus (57). This condition usually manifests 3
months after the SARS-CoV-2 infection, the symptoms last for at
least 2 months in the absence of alternative diagnosis (58).

The National Institute for Health Research, classifies LC
into i) post-intensive care syndrome (post-ICU syndrome), ii)
post-viral fatigue syndrome, iii) permanent organ damage, iv)
decompensation of previous chronic diseases, v) the onset of a new
disease triggered by COVID-19, and vi) pharmacological toxicity
from COVID-19 treatment (59).

Other authors had suggested six post-COVID syndrome
subsets, including i) non-severe COVID-19multiorgan sequelae, ii)

pulmonary fibrosis sequelae, iii) myalgic encephalomyelitis/chronic
fatigue syndrome, iv) postural orthostatic tachycardia syndrome, v)
post-intensive care syndrome, and vi) medical or clinical sequelae
(60).

1.5.2. Symptoms and incidence of long COVID
Between 2.3 and 60% of COVID-19 survivors could experience

LC symptoms during the first year, and up to 42% 2 years
after the infection (61–63). Patients with LC present variable
symptoms, including fatigue (29%), muscle pain, palpitations,
cognitive impairment (28%), dyspnea (21%), anxiety (27%), chest
pain, and arthralgia (18%) (see Figure 2) (64). Other patients
report respiratory system dysfunction (26%), or cardiovascular
complications (32–89%) 3 months after the onset of infection
(65–67). Gastrointestinal symptoms have been associated with
an imbalance of gut microbiota, as well as psychological and
central nervous system effects (68, 69). Most of these symptoms
are associated with a reduction in the quality of life. However,
the distinction between SARS-CoV-2-related symptoms to those
linked to other, often pre-existing conditions remains extremely
challenging. As clinical studies addressing this issues take a long
time to develop the NIH launched the Rapid Acceleration of
Diagnostics initiative, and the NIH LC Computational Challenge
(70). This initiative aims to use AI and ML to predict which
patients with SARS-CoV-2 infections are most likely to develop LC.
Figure 2 depicts the relative frequency of LC symptoms registered
by the National COVID Cohort Collaborative (N3C) initiative.
Inviduals that tested positive for SARS-CovV-2 show a higher
frequency of alterations in symptoms such as fatigue and shortness
of breath. The prevalence of these symptoms seems higher in
women. However, the small magnitude of the differences highlights
the challenge of differentiation long COVID from other conditions.

2. Machine learning application to
COVID-19

During the COVID-19 pandemic, ML methods have played a
relevant role in the development of diagnostic strategies (72, 73),
forecasting the epidemiological behavior (74), and as a tool to
support the development and monitoring of public health policies
(75). Figure 3 summarizes the most relevant ML applications
during the COVID-19 pandemic.

2.1. COVID-19 diagnosis

Different strategies based on ML algorithms were designed
during the COVID-19 pandemic to elaborate predictive models
of efficient clinical diagnosis (76). The main inputs used to
build the models are based on images, sounds, respiratory
information, symptoms, andmixed data (77). Convolutional neural
networks (CNN) architectures are commonly employed to develop
classification models via image inputs (e.g., x-ray, CT-chest, and
ultrasounds) (78). Sounds from respiratory information, such as
cough and breath, were common inputs for the development of
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FIGURE 2

Analysis of long COVID symptoms in patients with positive or negative COVID-19 PCR test. Relative frequency of symptoms in individuals with a

positive COVID-19 PCR test (left) as compared to individuals with a negative test. Elaborated on basis of LC symptoms registered by the National

COVID Cohort Collaborative (N3C) initiative. Data acquired from (71).

predictive models employing recurrent neural network (RNN) or
long short-term memory architectures (LSTM), since this type of
architectures have the advantage to maintain the information on
signal frequencies (79). Hybrid methods that combine symptoms
and clinical diagnostic tests as inputs facilitate the development of
more complex predictions models or classifications systems. The
hybrid methods include not only vector information or matrix
spaces, but also data on disease’s propagation. The incorporation of
virus characteristics, close contacts, and contagion networks using
graph neural networks results in highly efficient prediction systems
(80).

To demonstrate the usability of classification models based
on ML techniques, a clinical diagnostic model using CT chest
images was developed following the architecture proposed in
Figure 4 and updating our previously reported method for CT
chest images classification (34). Generally, models based on CNN
architectures can be divided into three large blocks: i) pattern
processing and extraction, ii) learning, and iii) classification blocks.
To extract patterns, a set of three layers composed of CNN, batch
normalization, max pooling, and dropout, was developed. Then, a
flattened layer is used to prepare the inputs to the fully connected
or dense layers, which are part of the learning block, composed of
dense layers interspersed with batch normalization, ending with
a dropout layer. Finally, a last layer of classification is added to
develop the outputs. As activation functions, ReLU and SoftMax

were used. In addition, binary cross entropy associated with an
Adam optimizer was used as a cost function. A total of 2,482 images
were used to train the diagnostic model extracted from (81). For
the training process, a classic validation approach was followed by
segmentation of the training and validation data set (80:20), and
the TensorFlow framework was employed for its implementation
(82). Model training was followed for a total of 10 epochs. The
proposed architecture achieved a precision of 99.81% and 0.027
loss function, demonstrating the high performance obtained by the
proposed architecture. The implemented model can be used as a
support strategy for clinical diagnosis in patients with COVID-19.
Besides, it is possible to apply transfer learning techniques to use the
same images and the same architecture proposed to estimate the
probability that patients present sequelae, one of the most recent
areas of study associated with the concept of LC.

2.2. COVID-19 treatments and strategies to
prevent adverse e�ects

ML applications related to the design of treatment strategies
have focused on drug discovery, drug repurposing, and vaccine
discovery methods (83). For drug repurposing, algorithms are
usually based on networks of knowledge graphs including
virus and host interactions (84). These strategies have used
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FIGURE 3

Summary of machine learning applications to fight COVID-19 during the pandemic. General applications of machine learning were classified into 5

categories: i) The design of diagnosis models based on di�erent types of inputs like CT chest, X-ray images, and symptom descriptions. ii) Treatment

development. iii) The development of epidemiological models to predict new waves and outbreaks. iv) The simulation of potential scenarios, and

monitoring systems to guide public health decisions. v) The diagnosis and identification of risk factors in long COVID.

particular network label propagation combined with semi-
supervised learning method based on regularized Laplacian
to identify interactors of SARS-CoV-2 (85). Another example
is the elaboration of predictive systems based on protein-
protein interaction to estimate affinity between two elements
(86). This issue has been addressed by either CNN or graph
convolutional neural networks (GCNN) architectures. Protein
complexes are typically represented using strategies based on
topological information (87), solvent accessible surface (SAS) (88),
voxel-based molecular surface representation (89), and various
molecular descriptors (90).

Another of the traditional drug repurposing methods are
the gene expression based algorithms (83). The changes in the
expression levels of defensive genes in disease states can be used
as phenotypic descriptors or quantifiers of the transcriptomic
effects of the explored drugs. Besides, methods based on integrated
docking simulation algorithms have made it possible to optimize
drug repurposing systems (91).

Different computational tools have been developed for drug
and vaccine discovery. Zhavoronkov et al. (92) developed a
generative chemistry pipeline based on the knowledge of protein,
molecule structures, and homology models strategies to identify
new drugs related to SARS-CoV-2. Tang et al. (93) have built
processes based on deep learning (DL) algorithms to design new
antivirus drugs of a chemical or peptide nature based on the
information available in the literature and different chemical rules.

Molecular simulations using docking techniques allowed the
development of virtual screening methodologies and iterative
searches to discover new drugs of interest. The discovery of
new chemical compounds with desirable activities is possible
by combining the structural information with strategies of deep
generative models (94, 95).

Predictive models using the linear protein sequences and the
chemical compounds represented as SMILES have been proposed
to predict affinity between proteins and chemical compounds
(96). Different numerical representations strategies have been
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FIGURE 4

Developed architecture for COVID-19 diagnosis classification models based on CT chest images and convolutional neural network architectures.

Three blocks of layers composed of convolution, batch normalization, max pooling and dropout layers are generated as a pattern extraction strategy,

then a flatten layer is used to generate the inputs to the dense layers, which are joined with a layer of batch normalization, followed by three

additional full connected layers, which end with a new dropout layer to prevent overfitting, and the final classification layer. ReLU is used as activation

functions and the SoftMax function in the classification layer. Finally, the Adam optimizer is used as a loss function binary cross entropy. The

developed architecture is an update from previous method for CT chest images classification models developed by our group (34).

implemented to encode the protein sequences, such as binarization
coding, physicochemical properties, and Fourier transforms to
represent protein sequences in spaces of signals (97). Alternatively,
methods based on natural language processing (protein language
models) have been developed (98). In the case of SMILES, different
autoencoders and transformers strategies have been created,
including variational autoencoders and graph junction trees (99).

Performance between methods based on linear sequences
information and those that only incorporate structural details are
similar. However, the processes that use representations based
on NLP seem to present a higher performance because the
autoencoders manage to learn the structural relationships that
guide the function (100). Nevertheless, the learning strategies and
the abilities to extract complex patterns from the information
used for the development of predictive models are properties of
DL methods that, to date, have not been fully understood due to
their functioning as black boxes. The incorporation of techniques
based on explainable AI, is under development to understand the
underlying functions and mechanics of the ML algorithms (101).

Concerning the strategies to prevent the adverse effect
provoked by the vaccination programs, ML analyzes revealed
distinct arterial pulse variability according to side effects of mRNA
vaccine. This can facilitate a time-saving and easy-to-use method
for detecting changes in the vascular properties associated with
cardiovascular side effects following vaccination (102).

The application of explainable ML techniques has allowed to
detect relevant variables to perform predictive models with hight
performances. Abbaspour et al. (103) applied SHAP strategies
combined with XGB model to identify important predictors
(e.g., demographics, any history of allergy, any prior COVID
diagnosis or positive test, vaccine manufacturer, and time-of-
day-of-vaccination) associated to COVID-19 vaccine-related side
effects.

Analyzes of the Vaccine Adverse Event Reporting System
datasets with ML and a statistical approaches identified and
classified pre-existing factors as having an impact on post-
vaccination morbidity and reactogenicity (104). Nevertheless, this
information is limited because the main databases do not have a
larger record size and do not cover all types of vaccines, provoking
problems in the generalization of the identified behaivors.

2.3. COVID-19 epidemiology

The design and implementation of ML models used for
predicting epidemiological variables was a significant challenge.
The need of high volumes of data to generalize the behavior of
the predictive models (105), made necessary to develop methods
for optimizing the representation of the inputs by autoencoders
or embedding (106). The developed models were generated
to promote the implementation of computer systems for the
simulation of scenarios (107) and to facilitate the elaboration of
government public policies focused on preventing the increase in
the number of contagious or the outbreak of new waves (108).

Depending on the input type, the construction of predictive
models can be based on forecasting methods using strategies
such as ARIMA (109, 110) or LSTM architectures (111). Other
strategies were based on logistic regression methods (112),
nonlinear regressions (113), autoregressive models (114), and
Gaussian Process Regression (115). The inputs used to develop
the predictive models contemplate information based on time
series and consider contagion spread records, NPI, scenarios, and
different types of crucial information related to epidemiological
variables. Mathematical methods based on linear algebra and kernel
applications were used to combine the different kinds of data in
hybrid systems elaborated with RNN and CNN architectures (116).
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2.4. COVID-19 public health

One essential use ofML strategies was combiningmathematical
models to develop hybrid knowledge systems to support decisions
in public health. These systems can be classified mainly into
monitoring applications and simulation systems (116). Concerning
monitoring tools, predictive models allow the generation of
early alerts of behaviors during a pandemic. These alerts were
usually related to predicting waves and new contagion outbreaks.
More limited strategies but with significant impact were the
methodologies to forecast the level of ICU occupancy in hospitals
and health systems and their correlation with increases in
contagion rates and mutational variants since it allowed early
warning of the occupancy level and facilitated decision-making to
prevent a whole occupancy level (117).

The simulation of scenarios by ML allowed the evaluation
of public policy effect on populations of interest (118). Despite
the versatility of ML, dynamic changes in the knowledge
embedded in the system—NPI modifications, the application of
vaccine programs, emergence of SARS-CoV-2 variants, etc- makes
necessary a constant adaptation ofML basedmodels. Incorporation
of reinforced learning might help to facilitate this process.

2.5. Application to long COVID

With the emergence of LC, ML methods have been employed
for the development of predictive tools, the construction of
statistical systems for relating patient phenotypes, and the
elaboration of rules and complex patterns to understand the
interactions between systems and types of sequelae. The application
of unsupervised learning algorithms like k-means and kernel
representations strategies enabled to correlate symptoms and
different classifications of LC (119).

Based on data from the N3C electronic health record
repository, Pfaff et al. (119) have developed anMLmodel to classify
the likelihood of LC diagnosis. Using XGBoost machine learning
algorithm this study identified a series of features, including the
healthcare utilization rate, patient age, dyspnea or respiratory
symptoms, other pre-existing risk factors (diabetes, kidney disease,
congestive heart failure, or pulmonary disease), and treatment
medication information to predict LC.

Binka et al. (120) proposed a classification model based on
elastic net penalized logistic regression algorithms for classifying
patients as positive or negative for LC. The model proposed
by Binka et al. (120) employed as descriptors demographic
characteristics, pre-existing conditions, COVID-19 related data,
and all symptoms/conditions recorded >28–183 days after the
COVID-19 symptom onset/reported.

Fritsche et al. (121) described associations from the previous
and acute medical phenomena of COVID-19 as predisposing
diagnoses for LC employing statistical and relation features models.

Performed phenomenon-wide association studies (PheWa) and
Phenotype Risk Scores (PheRS) have uncovered a plethora of
diagnoses associated with LC. These studies associated seven
phenotypes with the pre-COVID-19 period (e.g., irritable bowel
syndrome, concussion, nausea/vomiting, and shortness of breath)

and 69 acute-COVID-19 phenotypes (predominantly respiratory
and circulatory phenotypes) significantly associated with LC. Using
PheRS, a quarter of the COVID-19 positive cohort was identified
with a 3.5-fold increased risk of LC compared to the bottom 50% of
their distributions (121).

Sengupta et al. (122) proposed an interpretable DL approach
based on Gradient-weighted Class Activation Mapping using
N3C and RECOVER data to predict risk factors contributing to
the development of LC. This model used a temporally ordered
list of diagnostic codes six weeks post-COVID-19 infection for
each patient, with an accuracy of 70.48%. Gupta et al. (123)
proposed a stacking ensemble learning technique based on deep
neural networks for early predicting cardiovascular disease risk in
recovered SARS-CoV-2 patients with LC symptoms, achieving an
accuracy of 93.23%.

The here reviewed studies highlight the versatility of ML
methods to study LC, facilitating not only the implementation of
predictive diagnostic tools but also encouraging the integration of
clinical data with, social, demographic and other information, for
the development of robust systems. Despite the versatility of ML
techniques, there are still enormous challenges for their application
in LC analysis, in particular the collection of meaningful data sets
for the development of predictive systems.

3. Discussion

Mathematical models have helped to understand the dynamics
of the spread of SARS-CoV-2 and helped to predict different
scenarios during the COVID-19 pandemic, becoming one of
the most relevant tools for developing public health policies.
Correlating sanitary measures with virus variants and the
effects on the reproduction rate enabled the assessment of
government policies that will help to face new outbreaks
of SARS-CoV-2 or future pandemics. The development
of reliable mathematical models, statistical techniques for
test correction, and methods of analysis of heterogeneous
populations, together with the value of testing strategies and
traceability of close contacts, has been remarkable achievements.
Combining these systems with ML and AI methods increased
the predictive power of the models and facilitated the simulation
of scenarios.

Developing predictive systems for COVID-19 was one of the
significant challenges assumed by thousands of scientists during
the pandemic. The main achievements were developing models for
clinical diagnostic systems, ML for drug and vaccine discovery, and
forecasting models for epidemiological variables to support public
health policies and monitoring systems. In turn, the development
of predictive systems coupled with techniques such as protein
language models and molecular techniques facilitated the study of
variants at the genomic level. Such models helped to understand
how mutations affected critical viral proteins, helping drug and
vaccine designs.

The ongoing pandemic has introduced a complete set of
challenges, and currently, a novel multisystem disease defined
by the persistence or appearance of new symptoms after
SARS-CoV-2 infection has emerged. This complex entity-
denominated LC has yet to be fully elucidated, mainly because
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it is characterized by a wide range of clinical manifestations,
methodological limitations, and heterogeneous definitions that
make clinical and computational analysis difficult. Despite rapidly
emerging studies and growing evidence, current data needs
to be improved. A primary task is to establish an approach
to identify natural language data associated with potential LC
patients. This task will likely require well-designed prospective
studies, unified definitions of LC, an accurate distinction
of SARS-CoV-2-related symptoms, and adequate follow-up
times that include current patients, underrepresented groups,
children, and minority populations. It is granted that ML
strategies will play a critical role in the understanding of LC
and other upcoming challenges of the ongoing SARS-CoV-2
pandemic.
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13:883. doi: 10.3390/v13050883

23. Acevedo ML, Gaete-Argel A, Alonso-Palomares L, de Oca MM, Bustamante A,
Gaggero A, et al. Differential neutralizing antibody responses elicited by CoronaVac

Frontiers in PublicHealth 09 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1140353
https://doi.org/10.1016/j.mjafi.2021.05.005
https://doi.org/10.3389/fbioe.2020.00195
https://doi.org/10.1038/s41401-020-0485-4
https://doi.org/10.3390/v14030640
https://doi.org/10.1111/tmi.13383
https://doi.org/10.1136/bmj.m3883
https://doi.org/10.1056/NEJMp2016822
https://doi.org/10.1002/rmv.2171
https://doi.org/10.1016/S1473-3099(20)30785-4
https://doi.org/10.1126/science.abd9338
https://doi.org/10.1073/pnas.2014564118
https://doi.org/10.1126/science.abb5659
https://doi.org/10.1038/s41586-020-2405-7
https://doi.org/10.1126/sciadv.abd5393
https://doi.org/10.1016/j.cell.2020.06.043
https://doi.org/10.1093/oxfordjournals.epirev.a036121
https://doi.org/10.1093/cid/ciaa1275
https://doi.org/10.1126/science.abg8663
https://doi.org/10.1016/S0140-6736(21)02183-8
https://doi.org/10.1038/s41591-021-01583-4
https://doi.org/10.1126/science.abl4292
https://doi.org/10.3390/v13050883
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Sarmiento Varón et al. 10.3389/fpubh.2023.1140353

and BNT162b2 against SARS-CoV-2 Lambda in Chile. Nat Microbiol. (2022) 7:524–9.
doi: 10.1038/s41564-022-01092-1

24. Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al.
Effectiveness of Covid-19 vaccines against the B. 1.617. 2 (Delta) variant. N Engl J Med.
(2021) 385:585–94. doi: 10.1056/NEJMoa2108891

25. Kristiansen H, Gad HH, Eskildsen-Larsen S, Despres P, Hartmann R. The
oligoadenylate synthetase family: an ancient protein family with multiple antiviral
activities. J Interferon Cytokine Res. (2011) 31:41–7. doi: 10.1089/jir.2010.0107

26. Pulliam JR, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome
MJ, et al. Increased risk of SARS-CoV-2 reinfection associated with emergence of
Omicron in South Africa. Science. (2022) 376:eabn4947.

27. Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C, et al.
A global database of COVID-19 vaccinations. Nat Hum Behav. (2021) 5:947–53.
doi: 10.1038/s41562-021-01122-8

28. Hasell J. A cross-country database of COVID-19 testing. Sci Data. (2020) 7:345.
doi: 10.1038/s41597-020-00688-8

29. Khare S, Gurry C, Freitas L, Schultz MB, Bach G, Diallo A, et al.
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