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liver disease and non-alcoholic
fatty liver disease: NHANES
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Zhilan Xie†, Ruxianguli Aimuzi†, Mingyu Si, Yimin Qu* and

Yu Jiang*

School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking

Union Medical College, Beijing, China

Objective: The hepatotoxicity of exposure to a single heavy metal has been

examined in previous studies. However, there is limited evidence on the

association between heavy metals mixture and non-alcoholic fatty liver disease

(NAFLD) and metabolic-associated fatty liver disease (MAFLD). This study aims

to investigate the associations of 13 urinary metals, individually and jointly, with

NAFLD, MAFLD, and MAFLD components.

Methods: This study included 5,548 adults from the National Health and Nutrition

Examination Survey (NHANES) 2003–2018. Binary logistic regression was used

to explore the associations between individual metal exposures and MAFLD,

NAFLD, and MAFLD components. Bayesian kernel machine regression (BKMR) and

Quantile-based g-computation (QGC) were used to investigate the association of

metal mixture exposure with these outcomes.

Results: In single metal analysis, increased levels of arsenic [OR 1.09 (95%CI

1.03–1.16)], dimethylarsinic acid [1.17 (95%CI 1.07–1.27)], barium [1.22 (95%CI

1.14–1.30)], cobalt [1.22 (95%CI 1.11–1.34)], cesium [1.35 (95%CI 1.18–1.54)],

molybdenum [1.45 (95%CI 1.30–1.62)], antimony [1.18 (95%CI 1.08–1.29)],

thallium [1.49 (95%CI 1.33–1.67)], and tungsten [1.23 (95%CI 1.15–1.32)] were

significantly associatedwithMAFLD risk after adjusting for potential covariates. The

results for NAFLD were similar to those for MAFLD, except for arsenic, which was

insignificantly associatedwith NAFLD. Inmixture analysis, the overall metalmixture

was positively associated with MAFLD, NAFLD, and MAFLD components, including

obesity/overweight, diabetes, and metabolic dysfunction. In both BKMR and QGC

models, thallium, molybdenum, tungsten, and barium mainly contributed to the

positive association with MAFLD.

Conclusion: Our study indicated that exposure to heavy metals, individually

or cumulatively, was positively associated with NAFLD, MAFLD, and MAFLD

components, including obesity/overweight, diabetes, and metabolic dysfunction.

Additional research is needed to validate these findings in longitudinal settings.
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metabolic associated fatty liver disease, non-alcoholic fatty liver disease, Bayesian kernel
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD), the leading cause

of cirrhosis and hepatocellular carcinoma, prevails worldwide

with an estimated prevalence of 32.4% (1). The prevalence of

NAFLD has increased parallel to the increasing prevalence of

obesity, type 2 diabetes, and other metabolic syndromes (2).

Recently, experts from European Liver Patients Association (ELPA)

proposed a new nomenclature, metabolic associated fatty liver

disease (MAFLD), to replace the earlier NAFLD term (3). The

new nomenclature changes the emphasis from excluding other liver

diseases or excessive alcohol consumption to identifying cases with

concomitant metabolic dysfunction (4). This change in definition

affects the prevalence, risk factors, and outcomes of these two

diseases (5, 6). The pooled prevalence of MAFLD was reported

to be 39.22%, which was higher than that of NAFLD at 33.86%

(5). Compared with NAFLD, MAFLD tended to be more closely

associated with obesity, diabetes, and high fibrosis scores (5).

Emerging data have also suggested that patients with MAFLD

tended to have higher risks of cardiovascular disease and all-cause

mortality than those with NAFLD (6). Furthermore, similar to

the increasing trend of NAFLD, the prevalence of MAFLD in

the United States also increased from 34.4% in 2011 to 38.1% in

2018 (7). Given their increasing prevalence and adverse outcomes,

identifying determinants of MAFLD and NAFLD is of substantial

public health interest.

NAFLD and MAFLD are heterogeneous disorders with genetic

and environmental factors involved in their pathogenesis and

progression. Beyond dietary factors and physical activity, previous

animal and human studies suggested that heavy metals may play

essential roles in the etiology of NAFLD and MAFLD (8, 9). Heavy

metals are metallic elements with high density and atomic weight

and have adverse health impacts on humans (10). Heavy metal

exposure is widespread in humans due to its various sources,

including the atmosphere, domestic effluents, industrial waste,

and agriculture (11, 12). Heavy metals threaten human health

because they are non-biodegradable and can be deposited in body

tissues or organs to produce harm after initial exposure (13).

Toxicology studies have shown that heavy metals (lead, cadmium,

and arsenic) could disturb the hypothalamic dopaminergic system

and endoplasmic reticulum proteostasis (14), impair adipogenesis

and adipocytokines secretion, and induce hepatic inflammation

and steatosis (15, 16). In addition, exposure to heavy metals was a

risk factor for many metabolic abnormalities, such as diabetes (17),

metabolic syndrome (18), obesity, and hypertension (17). Several

previous studies reported positive associations between mercury

(19), arsenic (20), lead (9), cadmium (21), and metal mixture

(22, 23) with NAFLD. However, the evidence of the association

between heavy metals and the risk of MAFLD is limited. The

exact physiological roles of other metals in MAFLD and NAFLD

patients are still unknown. Additionally, previous studies on metals

generally evaluated the influence of single metals, but this approach

could not reflect the reality that individuals are exposed to multiple

metals simultaneously.

To fill these knowledge gaps, we conducted this study among

US adults who participated in the National Health and Nutrition

Examination Survey (NHANES) 2003–2018 survey cycles to

examine the associations of urinary metal mixtures and individual

metals with MAFLD, NAFLD, and MAFLD components using

Bayesian Kernel Machine Regression (BKMR) and Quantile based

g-computation (QGC). Our study might be informative and

instructive for MAFLD and NAFLD etiology and prevention.

2. Materials and methods

2.1. Study population

The NHANES examines a representative sample of the

resident population across the United States, combining interviews

and physical examinations (24). Written informed consent was

obtained from each participant, and the NHANES protocol was

approved by the National Center for Health Statistics (NCHS)

Institutional Review Board.

The current study is based on an analysis of data from

the combined eight continuous NHANES survey cycles (2003–

2018). Two earlier cycles of NHANES (1999–2000 and 2001–2002)

were not included because arsenic species were not measured in

those cycles. Urinary measurements of heavy metals were taken

from 14,058 adults 20 years of age or older. We excluded 8,510

participants due to the missing data in (1) the calculation of

the U.S. fatty liver index (USFLI) (remaining, n = 6,068), (2)

covariates (i.e., ratio of family income to poverty, education,

smoking status, and physical activity) (remaining, n = 5,548),

leaving 5,548 participants for the analyses of MAFLD. The NAFLD

analysis sample additionally excluded individuals with excessive

alcohol consumption (n = 725), positive HBV surface antigen (n

= 29), and positive HCV RNA (n = 66). The final sample size

for NAFLD analyses was 4,750. The flow chart of the inclusion

and exclusion criteria for the sample population was presented in

Supplementary Figure 1.

2.2. Measurements of heavy metals

A total of 14 heavy metals were measured in urine,

including total arsenic (As), arsenobetaine (Asb), dimethylarsinic

acid (DMA), monomethylarsonic acid (MMA), barium (Ba),

cadmium (Cd), cobalt (Co), cesium (Cs), mercury (Hg), lead (Pb),

molybdenum (Mo), antimony (Sb), thallium (Tl), and tungsten

(W). Arsenic is a metalloid rather than a heavy metal. DMA, Asb,

and MMA are metabolites of As. However, As might induce toxic

effects by combining and inactivating sulfhydryl enzymes similar to

heavymetals (10, 25). Thus, we also listed As, Asb, DMA, andMMA

as heavy metals according to previous studies (17, 26). Detailed

information on the sample preparations and detectionmethods was

summarized in Supplementary Table 1 and previously published

elsewhere (27). The detection rate (%) and limit of detection (LOD)

of heavy metals are presented in Supplementary Table 2. Metal

concentration below the LOD was recorded as the LOD divided

by the square root of two. Urinary creatinine was measured by

Jaffé rate reaction before 2010 and Enzymatic Roche Cobas 6000

Analyzer in later research cycles.
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2.3. Assessment of outcome

We used USFLI, a well-validated steatosis score, to define

hepatic steatosis as a substitute for the liver biopsy (28,

29). The details of the calculation formula are presented in

Supplementary material. Hepatic steatosis was defined to be

present in the USFLI score ≥30 (29). This cut-off point has been

previously validated with a sensitivity and specificity of 62 and 88%,

respectively (30).

MAFLD was defined by the presence of hepatic steatosis,

demonstrated by serologic score (USFLI ≥ 30), with at least

one of the MAFLD components (4): overweight/obesity [body

mass index (BMI) ≥25 kg/m2], diabetes mellitus [fasting glucose

levels ≥7 mmol/L, or hemoglobin A1c (HbA1c) ≥6.5%, or 2-h

post-load plasma glucose levels (2h-OGTT) ≥11 mmol/L], and

metabolic dysfunction (at least two metabolic risk abnormalities).

The diagnostic criteria of metabolic abnormalities are displayed in

Supplementary material (31). NAFLD was defined as the USFLI ≥

30 in the absence of viral hepatitis (HBV or HCV) and excessive

consumption history of alcohol (alcohol consumption ≥30/20 g/d

for men and women) (28). The difference between was summarized

in Supplementary Table 3.

2.4. Statistical analysis

The proportions of categorical variables and median (inter-

quantile range, IQR) of continuous variables are presented

among comparison groups. We compared baseline characteristics

using Chi-square tests for categorical variables and the Mann-

Whitney U-test for continuous variables. Before association

analysis, we adopted a covariate-adjusted standardization method

to adjust for the urine dilution of urinary metal, which was

generally applied by previous studies due to lower statistical

bias than former methods (32, 33). In this approach, log-

transformed creatinine was first regressed on the variables

[race, gender, age (in years), and BMI were included in the

present study] known to affect urine dilution (34). Then a

ratio is produced by dividing observed creatinine values by the

predicted creatinine values obtained from the previous model.

Finally, we standardized metal concentration by dividing the

biomarker concentration by this ratio. Binary logistic regression,

Bayesian Kernel Machine Regression (BKMR), and quantile-

based g-computation (QGC) were then applied to evaluate the

associations below.

2.4.1. Binary logistic regression
Binary logistic regression models were applied to evaluate the

associations of individual metals with NAFLD, MAFLD, and its

components. In regression models, dilution-adjusted heavy metals

were modeled as continuous (Ln-transformed) and categorical (i.e.,

quartiles). A linear trend test was performed by modeling the

categorized metals as ordinal variables. Given the sex difference

in the prevalence of NAFLD and MAFLD (35), these association

analyses were further stratified by sex.

2.4.2. Bayesian kernel machine regression
BKMR was implemented to estimate the joint and potential

non-linear association of metal exposure with MAFLD, NAFLD,

and MAFLD components. BKMR is a statistical approach

combining Bayesian and statistical learning methods to investigate

mixed exposure-response functions using a Gaussian Kernel

function (36). This approach is a non-parameter statistical method

without hypothesis testing but visualizes the exposure-response

associations of each chemical and the joint influence of all

chemicals. The probit BKMR model was applied to binary

outcomes. The core function formula in this study is presented

as follows:

8− 1(P(Yi = 1))= h(Asi + Asbi +DMAi + Bai + Cdi + Coi

+ Csi +Hgi+Moi + Pbi + Sbi+ Tli +Wi)+ xiβ

Where 8−1 is a probit link function and (Yi = 1) represents

the probability of the relative outcome. Other covariates and their

coefficients are denoted by xi and β, respectively. The function h()

represents the exposure-response function considering the non-

linear and interactive relationship between exposure and a latent

continuous outcome (>0 equal to MAFLD or NAFLD, <0 equal

to non-MAFLD or non-NAFLD). A possible interpretation of h(z)

in the probit BKMR model could be the correlation between metal

exposures and a latent outcome. We applied the option of variable

selection and 20000 iterations by the Markov Chain Monte Carlo

algorithm. A posterior inclusion probability (PIP) was calculated

to evaluate the relative importance of metal exposure to health

outcomes (37). The BKMR results contain univariate exposure-

response and cumulative mixture exposure relationships.

2.4.3. Quantile-based g-computation
To validate the association of exposure to multiple metals

with the outcomes, we employed the QGC for mixture analyses.

QGC is a parameter-based statistical method that combines

weighted quantile sum regression (WQS) and g-computation.

Compared to WQS, QGC has particular advantages in allowing for

directional heterogeneity and non-linear or non-additive effects of

components of the mixture (38). This novel strategy was used to

estimate the change in MAFLD, NAFLD, andMAFLD components

risk for a synchronous one-quartile increase for all 13 heavy metals.

The plot depicts heavy metal and health outcomes prediction at

the joint exposure levels via g-computation and bootstrap variance

with bootstrap up to 200.

2.4.4. Covariates
We selected covariates based on a priori as potential

confounders (20, 39, 40). Age at interview (“≥20 and <40,”

“≥40 and <60,” “≥60”), gender (male, female), education (High

school or less, College, Graduate or higher), race/ethnicity

(Hispanic, Non-Hispanic White, Non-Hispanic Black, Other),

smoking status, and physical activity were collected using self-

administered questionnaires. The ratio of family income to poverty

(PIR) was calculated by dividing annual family income by the

poverty threshold and dichotomized (PIR < 1 and PIR ≥ 1)
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for analysis. Smoking status was grouped into three categories:

current smoker (smoking at least 100 cigarettes in lifetime, and

smoking every day or some days at the time of interview),

former smoker (smoking at least 100 cigarettes in lifetime, but

not smoking at the time of interview), and never smoker (having

not smoked 100 cigarettes during life). The participants engaged

in vigorous or moderate recreational activities were identified as

having regular physical activity. Diabetes, hypertension, BMI, HDL

cholesterol, and high TG were not adjusted due to application

in MAFLD diagnosis. The samples were weighted to reduce the

selection bias among subgroups for age, gender, and race/ethnicity

in the NHANES survey. However, these variables for calculating

sample weights are already included in the models, especially for

BKMR and QGC models. Therefore, as recommended, we used

unweighted estimation for the main results and logistic models

incorporating sampling weights in the sensitivity analysis (22, 41,

42).

2.4.5. Sensitivity analyses
To test the robustness of our results, we conducted several

sensitivity analyses. First, we used the natural log-transformed

heavy metals in regression models to validate the role of creatinine.

Second, we reanalyzed the regression model accounting for

sample design, sampling weights, and strata. NHANES selected

representative participants using a complex, multistage, and

probability sampling design. Specifying the sampling design

parameters (including sample weights) should be considered to

reduce biased estimates (43). For combing multiple survey cycles,

the sample weight was calculated by “WTMEC2YR (variable name

of weight)/n (the number of survey circles)” (43). SAS PROC

SURVEYLOGISTIC was used for logistic regression analyses while

incorporating survey design. BKMR and QGC methods do not

support the survey design, and these analyses were limited to

conventional binary logistic regression.

Statistics analyses were performed using SAS 9.4 (SAS Institute

Inc., Cary, NC) and R 4.1.1 (44). BKMR and QGC were conducted

using “bkmr” and “qgcomp” packages, respectively. The P-value

was 0.05 for the significance level.

3. Results

3.1. Population characteristics

A total of 1,811 (32.6%) and 1,624 (34.2%) individuals were

diagnosed with MAFLD and NAFLD, respectively. Participants

with MAFLD were older, less educated, Hispanic, and more likely

to be current/past smokers and less physical activity than those

without MAFLD (Table 1). The characteristics of participants with

NAFLD were similar to those with MAFLD. Cases with MAFLD

or NAFLD had a higher prevalence of MAFLD components (i.e.,

diabetes, overweight/obesity, and metabolic dysfunction).

Among 14 metals in the present study, we excluded

MMA from the association analyses because the detection rate

was <50% (Supplementary Table 2). The distribution of urinary

metals stratified by MAFLD and NAFLD was presented in

Supplementary Table 4. The participants with MAFLD or NAFLD

had significantly higher levels of heavy metals. The Spearman

correlations among these heavy metals varied from weak (0.05)

to strong (0.82), as presented in Supplementary Figure 2. The

strongest correlations were detected between DMA and As (r

= 0.82).

3.2. Associations of single metal exposure
with MAFLD, NAFLD, and MAFLD
components

The results from the binary logistic regression models adjusted

for the covariates are shown in Table 2. We found a significant

positive association between As [OR 1.09 (95%CI 1.03–1.16)],

DMA [OR 1.17 (95%CI 1.07–1.27)], Ba [OR 1.22 (95%CI 1.14–

1.30)], Co [OR 1.22 (95%CI 1.11–1.34)], Cs [OR 1.35 (95%CI

1.18–1.54)], Mo [OR 1.45 (95%CI 1.30–1.62)], Sb [OR 1.18

(95%CI 1.08–1.29)], Tl [OR 1.49 (95%CI 1.33–1.67)], and W [OR

1.23 (95%CI 1.15–1.32)] with MAFLD. For NAFLD, patterns of

associations with heavy metals were similar to those of MAFLD,

except for As, where no significant association between As and

NAFLD was observed (Table 2). The significant linear trend of

the associations with these two outcomes was also observed

when heavy metals were modeled as quartiles (P trend < 0.05,

Supplementary Figures 3, 4). Additionally, Cd was significantly

associated with MAFLD compared in Q2 [OR 1.30 (95%CI 1.08–

1.56)], Q3 [OR 1.43 (95%CI 1.18–1.74)], and Q4 [OR 1.25 (95%CI

1.01–1.54)] to Q1, respectively, suggesting a non-linear association.

Sex-stratified analyses revealed that the associations of these heavy

metals with MAFLD and NAFLD were generally similar (P-

int > 0.05, Supplementary Table 5) except for Hg, with stronger

associations observed among females (P-int < 0.001). Positive

associations generally remained significant when no adjustment

for urinary dilution was made (Supplementary Table 6, model 1)

or the NHANES complex survey design, the sample weight, was

incorporated (Supplementary Table 6, model 2).

The associations of heavy metals with MAFLD components

are presented in Supplementary Figure 5. The positive associations

of Co, Cs, Mo, Tl, and W with MAFLD were also observed for

diabetes mellitus, overweight/obesity, and metabolic dysfunction,

specifically central obesity, insulin resistance, and prediabetes. The

positive associations of MAFLD with As, DMA, and Sb were also

observed for diabetes mellitus, whereas positive associations with

Ba were observed for overweight/obesity.

3.3. Associations of metal mixture exposure
and MAFLD, NAFLD, and MALFD
components

The results of the QGC models showed that a quartile

increase in the metal mixture was significantly associated with

increased odds of being MAFLD [OR 1.58 (95%CI 1.40–1.78)].

As shown in Figure 1, Tl (0.21) contributed most to the positive

association between heavy metals and MAFLD, followed by Mo

(0.16), W (0.16), and Ba (0.16). Pb had the largest negative

contribution to the overall effect, followed by Hg. We also observed

a quartile increase in the QGC index was significantly associated
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TABLE 1 Demographic characteristics of participants grouped by MAFLD and NAFLD, NHANES 2003–2018 (N = 5,548).

Variables Non-MAFLD MAFLD P
a-value Non-NAFLD NAFLD P

a-value

Demographic variable

Age, n (%) 0.001 <0.001

≥20 and <40 1,470 (39.3%) 442 (24.4%) 1,225 (39.2%) 388 (23.9%)

≥40 and <60 1,171 (31.3%) 617 (34.1%) 929 (29.7%) 523 (32.2%)

≥60 1,096 (29.3%) 752 (41.5%) 972 (31.1%) 713 (43.9%)

Sex, male, n (%) 1,727 (46.2%) 1,030 (56.9%) <0.001 1,379 (44.1%) 900 (55.4%) <0.001

Ratio of family income to poverty, ≥1, n (%) 3,019 (80.8%) 1,429 (78.9%) 0.107 2,511 (80.3%) 1,272 (78.3%) 0.113

Education, n (%) <0.001 <0.001

High school or less 1,663 (44.5%) 1,007 (55.6%) 1,414 (45.2%) 904 (55.7%)

College 1,092 (29.2%) 527 (29.1%) 904 (28.9%) 478 (29.4%)

Graduate or higher 982 (26.3%) 277 (15.3%) 808 (25.8%) 242 (14.9%)

Race, n (%) <0.001 <0.001

Hispanic 760 (20.3%) 643 (35.5%) 659 (21.1%) 591 (36.4%)

Non-Hispanic White 1,664 (44.5%) 806 (44.5%) 1,348 (43.1%) 714 (44.0%)

Non-Hispanic Black 885 (23.7%) 231 (12.8%) 750 (24.0%) 194 (11.9%)

Other race 428 (11.5%) 131 (7.23%) 369 (11.8%) 125 (7.70%)

Smoking, n (%) <0.001 <0.001

Never 2,132 (57.1%) 877 (48.4%) 1,886 (60.3%) 827 (50.9%)

Former 819 (21.9%) 595 (32.9%) 669 (21.4%) 513 (31.6%)

Current 786 (21.0%) 339 (18.7%) 571 (18.3%) 284 (17.5%)

Have regular physical activity, yes, n (%) 2,098 (56.1%) 765 (42.2%) <0.001 1,738 (55.6%) 679 (41.8%) <0.001

MAFLD components, yes, n (%)

Diabetes 342 (9.15%) 625 (34.5%) <0.001 317 (10.1%) 561 (34.5%) <0.001

Overweight/obesity 2,097 (56.3%) 1,778 (98.2%) <0.001 1,809 (58.0%) 1,549 (95.6%) <0.001

Metabolic dysfunction 2,331 (62.4%) 1,791 (98.9%) <0.001 1,976 (63.2%) 1,607 (99.0%) <0.001

High C-reaction protein 1,120 (40.3%) 920 (66.7%) <0.001 950 (41.0%) 837 (67.7%) <0.001

Central obesity 1,545 (41.3%) 1,584 (87.5%) <0.001 1,355 (43.3%) 1,400 (86.2%) <0.001

Insulin resistance 971 (26.0%) 1,731 (95.6%) <0.001 821 (26.3%) 1,557 (95.9%) <0.001

Low HDL cholesterol 698 (18.7%) 759 (41.9%) <0.001 610 (19.5%) 716 (44.1%) <0.001

Hypertension 1,400 (38.3%) 1,128 (63.1%) <0.001 1,177 (38.5%) 1,000 (62.5%) <0.001

Prediabetes 1,588 (44.0%) 1,126 (76.4%) <0.001 1,337 (44.5%) 1,018 (77.1%) <0.001

High triglyceride 647 (17.5%) 798 (44.5%) <0.001 529 (17.1%) 723 (45.0%) <0.001

MAFLD, Metabolic-associated fatty liver disease; NAFLD, Non-alcoholic fatty liver disease; LDL, Low-Density Lipoprotein; HDL, High-Density Lipoprotein.

Significance aP-value < 0.05 from Chi-square or Mann-Whitney U-test.

with NAFLD [OR 1.52 (95%CI 1.33–1.74)], diabetes [OR 1.38

(95%CI 1.19–1.59)], overweight/obesity [OR 1.43 (95%CI 1.26–

1.62)], and metabolic dysfunction [OR 1.35 (95%CI 1.20–1.51)].

Urinary Tl exposure was assigned the largest positive weights

with NAFLD and obesity/overweight. Urinary W and Ba exposure

were assigned to the strongest positive weights in the relationship

with diabetes and metabolic dysfunction, respectively (Figure 1;

Supplementary Figure 6).

In our study, the BKMR model was developed to estimate the

combined effects of 13 urinarymetal mixtures onMAFLD, NAFLD,

and the component of MAFLD. Figure 2 presents the cumulative

effect of the metal mixtures by comparing when all metals

were at their 50th percentile and 95% confidence interval. The

overall positive effects of metal mixtures on MAFLD and NAFLD

were observed. Figure 3 displays the dose-response relationship

with other metals set at median concentrations after adjusting

for the covariates. Positive exposure-response relationships were

observed between Ba, Mo, Tl, and W with MAFLD, while negative

associations were observed for Hg and Pb. Similar patterns were

observed for NAFLD. Additionally, the PIP for each metal was

estimated (Supplementary Table 7). Among metal mixtures, the

chemicals with the highest PIPs (1.00) were Ba, Cd, Hg, Mo, Pb,
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Tl, and W in the MAFLD model and Ba, Cd, Hg, Mo, Tl, and W in

the NAFLD model.

Regarding the components of MAFLD, we observed a

positive correlation of the overall metals mixture with diabetes,

overweight/obesity, metabolic dysfunction, central obesity,

prediabetes, insulin resistance, high C-reactive protein (CRP),

and high triglyceride (TG) (Figure 2; Supplementary Figure 7).

TABLE 2 Association of the urinary heavy metals with MAFLD and NAFLD

in all participants from NHANES 2003 to 2018.

Metal MAFLD, OR (95%CI) NAFLD, OR (95%CI)

Asb 1.03 (0.99, 1.07) 1.02 (0.98, 1.06)

As 1.09 (1.03, 1.16) 1.07 (1.00, 1.14)

Ba 1.22 (1.14, 1.30) 1.22 (1.14, 1.31)

Cd 1.08 (0.98, 1.19) 1.09 (0.98, 1.21)

Co 1.22 (1.11, 1.34) 1.22 (1.10, 1.35)

Cs 1.35 (1.18, 1.54) 1.32 (1.14, 1.52)

DMA 1.17 (1.07, 1.27) 1.12 (1.02, 1.23)

Hg 0.95 (0.89, 1.01) 0.92 (0.86, 0.99)

Mo 1.45 (1.30, 1.62) 1.51 (1.34, 1.69)

Pb 1.00 (0.91, 1.10) 0.98 (0.89, 1.09)

Sb 1.18 (1.08, 1.29) 1.19 (1.08, 1.31)

Tl 1.49 (1.33, 1.67) 1.47 (1.30, 1.67)

W 1.23 (1.15, 1.32) 1.23 (1.14, 1.33)

Estimates were presented as odds ratio (OR) and 95% confidence intervals (CIs). The models

were adjusted for age, gender, race, research cycle, education level, smoking status, PIR, and

physical activity. Bold font for P < 0.05.

For single metal response, the exposure-response of Ba and Tl in

MAFLD was similar to that of obesity/overweight and metabolic

dysfunction (Figure 3; Supplementary Figure 8).

4. Discussion

Using multivariate logistic regression, BKMR, and QGC

analysis of the metal mixture, we found that mixture of 13 analyzed

metals was significantly associated with MAFLD, NAFLD, and

the component of MAFLD. Tl, Mo, W, and Ba were positively

associated withMAFLD based on logistic regression and BKMR. Tl,

Mo, W, and Ba were also positively weighted in QGC. The positive

weight of Tl and Ba onMAFLDmay attribute to obesity/overweight

and metabolic dysfunction, while that of Mo and W may mostly

attribute to diabetes mellitus. Interestingly, urinary Hg and Pb were

inversely associated with MAFLD or NAFLD risk in BKMR and

QGC models.

Studies on the association between human exposure to

individual and joint metals andMAFLD are sporadic. In both QGC

and BKMR models, Tl, Mo, W, and Ba mainly contributed to the

positive associations of heavy metal exposure with MAFLD risk.

Findings in the single metal analysis of these metals also presented

similarly positive associations. In line with our study, Asprouli

et al. (45) reported a positive association of Tl with NAFLD

risk or liver function indices among Greece’s population. High Tl

toxicity is mainly due to increased reactive oxygen species (ROS)

and the interference of K-dependent reactions to secret insulin

(46). Concerning Mo, decreased serum Mo was associated with

a higher risk of NAFLD in Chinese males (47). The discordance

in results may attribute to disparities in the study population

or varied metrics used for the exposure assessment of metals.

FIGURE 1

Combined association (95%CI) and qgcomp weights of metal mixture with MAFLD, NAFLD, and components of MAFLD by QGC models. Models were

adjusted for age, gender, race, research cycle, education level, smoking status, poverty income ratio, and physical activity. Qgcomp, quantile

g-computation; MAFLD, metabolic associated fatty liver disease; NAFLD, non-alcoholic fatty liver disease; MD, metabolic dysfunction.
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FIGURE 2

Combined association (95%CI) of metal mixture with MAFLD, NAFLD, and components of MAFLD by BKMR models, comparing all chemicals set at

di�erent levels with their 50th percentiles. Models were adjusted for age, gender, race, research cycle, education level, smoking status, poverty

income ratio, and physical activity. BKMR, Bayesian kernel machine regression; MAFLD, metabolic associated fatty liver disease; NAFLD,

non-alcoholic fatty liver disease; MD, metabolic dysfunction.

Excessive amounts of essential Mo may also cause toxicity by

inducing the generation of reactive oxygen species (ROS) (48). For

Ba and W, despite rare evidence from the population study, the

hepatotoxicity of Ba and W was partially revealed by previous in

vivo research. In the hepatocyte of rats, the high dose of Ba might

increase the biomarkers with the implication of oxidative stress

and disturb the activities of membrane-bound ATPases (49). The

generation of ROS was similarly found in human liver cells exposed

to an increased dose of W (48). Thus, more epidemiological

studies are warranted to confirm the link between these metals

and MAFLD.

In addition, to elucidate the MAFLD risk and heavy

metal exposure, we also investigated associations with MAFLD

components and heavy metals. The increased risk of MAFLD

might be related to the development of diabetes mellitus,

obesity/overweight, and metabolic dysfunction. Consistent results

were shown by previous research. In U.S. adults or adolescents,

combined impacts of metals, including Ba and Tl, were associated

with obesity and type 2 diabetes (17, 50). Results from South Korea

suggested the positive association between joint effects of Hg, Pb,

and Cd with metabolic dysfunction, including hypertension, high

TG, and central obesity (18). These findings indicated that exposure

to heavymetals affectsmetabolic function, which is a significant risk

factor for MAFLD and NAFLD.

Although the underlying mechanisms are not fully understood,

both in vivo and in vitro studies provided valuable hints. Most

metals, such as Cd, Ba, Tl,W, and As could induce ROS production,

which in turn induces the release of apoptosis cytokine, activation

of hepatic stellate cells, and finally, formation of fibrosis (51, 52).

Meanwhile, the increased oxidative stress may also be generated

by impaired homeostasis of essential trace elements, which act as

important cofactors in many enzymes mediating such progress

(53, 54). In rat liver mitochondria, Co could induce oxidative stress,

in the presence of calcium, by highly damaging hydroxyl radical,

finally resulting in apoptosis (55). Notably, such adverse effects

are additive. For example, concurrent As and Cd exposure in rats

is more damaging than separate exposure in triggering oxidant

stress (56). Oxidant stress could also attribute to lipotoxic species,

which are produced due to the overwhelmed disposal of fatty acids

through beta-oxidation (57). In addition to ROS production, an

essential factor advancing the development of fatty liver, heavy

metals could directly disturb fatty acids’ metabolism and increase

fat accumulation in the liver (58). For example, Cd in vivo inhibits

the fatty acid oxidation in the mitochondrial of hepatocytes,
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FIGURE 3

Univariate exposure-response function (95%CI) showed associations of heavy metals with MAFLD, NAFLD, and MAFLD components. All the

remaining metal exposures are fixed at their median values. Results were adjusted for age, gender, race, research cycle, education level, smoking

status, PIR, and physical activity. BKMR, Bayesian kernel machine regression; MAFLD, metabolic associated fatty liver disease; NAFLD, non-alcoholic

fatty liver disease; MD, metabolic dysfunction; PIR, poverty income ratio.

potentially through the sirtuin 1 signaling pathway (59). As

could inhibit beta-oxidation of fatty acid by reacting with protein

sulfhydryl groups and inactivating enzymes (10). The inactivation

enzymes, less energy production, and more lipids production

may also accelerate the development of MAFLD components. For

example, Tl and Ba were associated with increased obesity, with

similar mechanisms (17). By disrupting lipid metabolism, Cd could

impair pancreatic β-cell function and exaggerate diabetes (60).

Previous evidence showed that lipid accumulation could lead to

hepatic insulin resistance and hepatic inflammation (61). Thus,

the lipid metabolism disturbance could be a link between the

comprehensive influence of metal exposure to fatty liver disease,

obesity, diabetes, and other metabolic syndromes.

Our result indicated that urinary Pb and Hg were negatively

associated with MAFLD risk, which was contrary to previous

findings using blood biomarkers (62). We propose several potential

explanations for this contradictory result. First, no significant

association was observed between Hg and Pb with MAFLD in

individual metal analysis. Thus, this inverse association might

be attributed to complex antagonism between metals. The

antagonistic interactions are common among metal mixtures

due to the competition for carriers, metabolic interference, and

morphological factors (63, 64). The adverse effects of these two

metals on fatty liver disease might be alleviated in the metal

mixture. Second, the various metrics (i.e., blood and urine)

assessing the exposure level of Hg and Pb may be another possible

reason. In U.S. populations, it is reported that the urinary Hg

declined over the period 1999–2016, whereas there was a steady

increase in blood organic Hg (65). Another research also suggested

the difference between urinary and blood lead in analysis (66).

However, the above hypothetical explanations need to be further

validated by future studies.

Additionally, the inverse association between Hg with MAFLD

and NAFLD was merely shown in men. Previous studies also

reported the sex differences in health hazards of heavy metals.

Heavy metals tend to correlate positively with NAFLD or liver

fibrosis, more so in women than men (21, 22). Some hypotheses

may explain this difference. For example, a lack of iron may

contribute to the compensatory increase of heavy metal absorption

by women (67). Rat models showed the expression of organic anion

transporter (Oat) might also relate to the sex-specific organ toxicity

of Hg exposure (68). In the male rat, the declined expression of

Oat3 in the hepatocytes membranes after exposure would lower

the intake of Hg, leading to a higher accumulation of Hg in
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the female liver. However, no sex disparity was found in other

metals in our study, indicating future validation studies in a

sex-specific manner.

We found significantly positive associations of the overall metal

mixtures, including all 13 metals (As, Asb, DMA, Ba, Cd, Co, Cs,

Hg, Pb, Mo, Sb, Tl, and W), with the risk of MAFLD or NAFLD,

using BKMR and QGCmodels. Previous research on the combined

associations of metal exposure on fatty liver disease is somewhat

limited. Moon et al. utilized QGC to estimate the overall effects of

Hg, Pb, and Cd on the hepatic steatosis index (HSI) and NAFLD

risk (62). In this result among the Korean population, Elevated

levels of Pb and Hg in total blood were associated with high HSI

and increased risk of NAFLD. Similar results for the mixture of

Hg, Pb, and Cd were reported by another study using the weighted

quantile sum (WQS) regression model, QGC, and BKMR (69). In a

cross-sectional study of Chinese males, the least absolute shrinkage

and selection operator (LASSO) regression was used to explore the

associations of 22 serum metals with NAFLD, which reported a

negative association forMo, and a positive association with Zn (47).

Principle components analysis combined with Pearson correlation

coefficients was also used to investigate multiple metal exposures,

which suggested that the co-exposure to As-Hg, Pb-Cd, and Se-

Zn pair patterns were linked to metabolic syndrome (70). Another

two studies also used NHANES datasets for analysis. Li et al. used

WQS and participants from NHANES 1999–2014 for analysis (23).

Their results also showed a positive association between the metal

mixture and NAFLD. Contrary to BKMR and QGC, WQS makes

a unidirectionality assumption that all chemicals are positively or

negatively associated with the given exposure (38) and this study

merely incorporated the positive circumstance. Simultaneously,

their study failed to take account of creatinine, an importantmarker

affecting urinary concentrations of environmental contaminants

(32). In another study using NHANES 2017–2020 (22), controlled

attenuation parameter (CAP) and liver stiffness measurement

(LSM) were utilized for the indicators of NAFLD and liver fibrosis.

We used USFLI to diagnose NAFLD and MAFLD to include more

participants because these two indices were merely available in two

research cycles. No above studies applied the MAFLD or MAFLD

components as the health outcomes.

BKMR and QGC models were used for multiple-metal

exposure in this study. The BKMR model can resolve non-linear,

multiple, and complex interactions between mixed exposures

to metals or other chemicals (36). However, the BKMR model

is not based on parametric inference. Similar to the BKMR

model, QGC can address non-linear and non-additive effects but

provide parametric inference results. Our research involved more

diverse metals in the analysis and the final response function,

compared with prior studies (47, 62, 69, 70). There are other

established methods for analyzing mixture exposure in previous

studies, including WQS, latent class analysis (LCA), and Lasso.

Nevertheless, we were mainly interested in the overall association

and interactions of all metals and chose BKMR and QGC

for analysis.

There are several strengths of this study. First, to the best of

our knowledge, this is the first study to illustrate the association

between exposure to various heavy metals and MAFLD, the

novel nomenclature form of fatty liver disease. Second, we

explored the associations between heavy metals with MAFLD and

NAFLD directly and with MAFLD components, serving as indirect

evidence. Third, we used both BKMR and QGC models, which

have complementary advantages. However, this study still has some

notable limitations. First, this is a cross-sectional study, which does

not allow the determination of temporality. Future prospective

studies are required to investigate the causal relationships between

joint metal exposure andMAFLD and NAFLD. Second, a definitive

diagnosis of MAFLD and NAFLD by liver biopsy was unavailable

from the NHANES database. Thus, we used USFLI to identify liver

steatosis cases. However, compared with another generally used

index, the hepatic steatosis index (HSI), USFLI was suggested to

be more precise in the assessment of steatosis for the NHANES

database (30).

5. Conclusion

In conclusion, this study suggested that exposure to metal

mixtures is associated with the risk of MAFLD, NAFLD, and

MAFLD components in US adults. Tl, Mo, W, and Ba contributed

most to the MALFD risk, which could be instructive in MALFD

prevention. Our findings apply the new definition of fatty liver

disease and test its associations with risk factors in the real

world. However, given the cross-sectional design of the present

study, these findings are warranted to be confirmed by future

longitudinal studies.
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