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Introduction:Within the context of the yearly improvement of particulate matter

(PM) pollution in Chinese cities, Surface ozone (O3) concentrations are increasing

instead of decreasing and are becoming the second most important air pollutant

after PM. Long-term exposure to high concentrations of O3 can have adverse

e�ects on human health. In-depth investigation of the spatiotemporal patterns,

exposure risks, and drivers of O3 is relevant for assessing the future health burden

of O3 pollution and implementing air pollution control policies in China.

Methods: Based on high-resolution O3 concentration reanalysis data, we

investigated the spatial and temporal patterns, population exposure risks, and

dominant drivers ofO3 pollution in China from2013 to 2018 utilizing trend analysis

methods, spatial clusteringmodels, exposure-response functions, andmulti-scale

geographically weighted regression models (MGWR).

Results: The results show that the annual average O3 concentration in China

increased significantly at a rate of 1.84µg/m3/year from 2013 to 2018 (160µg/m3)

in China increased from 1.2% in 2013 to 28.9% in 2018, and over 20,000 people

su�ered premature death from respiratory diseases attributed toO3 exposure each

year. Thus, the sustained increase in O3 concentrations in China is an important

factor contributing to the increasing threat to human health. Furthermore,

the results of spatial regression models indicate that population, the share of

secondary industry in GDP, NOx emissions, temperature, average wind speed, and

relative humidity are important determinants of O3 concentration variation and

significant spatial di�erences are observed.

Discussion: The spatial di�erences of drivers result in the spatial heterogeneity of

O3 concentration and exposure risks in China. Therefore, the O3 control policies

adapted to various regions should be formulated in the future O3 regulation

process in China.

KEYWORDS

surface ozone, spatial-temporal pattern, exposure risks, health risks, dominant drivers

1. Introduction

Within the context of the yearly improvement of particulate matter (PM) pollution in

Chinese cities, O3 concentrations are increasing instead of decreasing and are becoming the

second most important air pollutant after PM (1). According to the data published by the

China General Environmental Monitoring Station, the daily maximum hourly average 90th

percentile concentration of O3 in 338 prefecture-level cities in China increased from 140.0

µg/m3 in 2014 to 151.0 µg/m3 in 2018, and the number of days exceeding the standard

increased from 6.1% in 2014 to 8.4% in 2018, and the O3 concentration in some regions has

exceeded the secondary concentration limit (160 µg/m3) for air quality in China (2). Long-

term exposure to high O3 concentrations not only affects urban air quality (3), damages

human health (4), reduces food production (5), affects atmospheric radiation balance (6),

and even influences global climate change (7). Due to its importance to the atmospheric
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environment and climate change, O3 has received continuous

attention from the scientific community and relevant regulatory

administrations in the past decades.

To deeply understand the O3 pollution in China, a large

number of researchers have conducted extensive investigations on

O3 pollution levels, spatial and temporal patterns, trends, exposure

risks, and drivers in China from different spatial and temporal

scales over the past decade (8–10). For example, Gong et al.

(11) revealed the dominant meteorological controls on surface O3

pollution in 16 Chinese cities from 2014 to 2016 using a generalized

additive model (GAM); Cao et al. (12) studied the spatial and

temporal patterns of O3 pollution and ecological risks in the rainfed

area of West China, Southwest China, based on ground-based data.

Zhan et al. (2) estimated the health risk due to O3 pollution in

the Yangtze River Delta (YRD) region between 2015 and 2019

based on the exposure-response function, and their results showed

that the population of premature respiratory deaths due to O3

pollution was 5,889 cases per year from 2015 to 2019, and found

that the population of premature deaths was extremely sensitive to

O3 pollution. In addition, Gao et al. (3), Maji et al. (13), and Lu

et al. (14) also performed relevant studies on health risks due to O3

pollution in China from different regions.

The numerous studies mentioned above are important

references for a comprehensive assessment of the O3 pollution in

China, but these studies still have the following shortcomings. First,

there is significant spatial heterogeneity in surface O3 pollution,

with a few individual cities or regions of O3 pollution not being

a substitute for the level of O3 pollution in China. Second, there are

potential spatial associations between exposure risk and health risk

of populations to surface O3 pollution, and unfortunately, previous

studies have tended to ignore their interrelationships. Third, the

effects of drivers on O3 concentrations are spatially variable, and

previous studies have tended to focus on the combined effects of

drivers on O3, neglecting the spatial and temporal differences in

the effects of drivers on O3 concentrations.

Therefore, the main objectives of this study include: (1)

investigating the spatial and temporal patterns and trends of O3

concentrations in China using trend analysis and spatial clustering

based on a high spatial and temporal resolution O3 concentration

dataset; (2) examining the spatial and temporal associations of

population exposure risk and health risk attributable to O3

pollution using population exposure risk models and exposure-

response functions; and (3) revealing the drivers of differences in

O3 distribution in China from a spatial perspective based on a

multi-scale geographically weighted regression (MGWR) model.

This study has important practical implications for assessing the

future health burden caused by O3 pollution and its resulting

health costs in China; meanwhile, it has important implications for

how to equitably allocate healthcare resources and environmental

management costs in the future planning and construction of

healthy cities and smart cities in China.

2. Materials and methods

2.1. Study area

This study focuses on China, including 31 provinces in

the Chinese mainland, excluding Hongkong, Macau, Taiwan,

FIGURE 1

Study area spatial distribution map.

and Hainan. Based on the social, natural, economic, and

human environment, these 31 regions were further categorized

into seven geo-administrative regions, including North China

(Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia), South China

(Guangdong, Guangxi, Hainan), East China (Shanghai, Anhui,

Fujian, Jiangsu, Jiangxi, Shandong, Zhejiang), Central China

(Henan, Hunan, Hubei), Southwest China (Yunnan, Guizhou,

Sichuan, Chongqing, Tibet), Northwest China (Shaanxi, Gansu,

Ningxia, Qinghai, Xinjiang), and Northeast China (Heilongjiang,

Jilin, Liaoning) (Figure 1).

2.2. Data source

The daily maximum 8-h O3 concentration (MDA8) reanalysis

dataset of 10 × 10 km from January 1, 2013, to December 1,

2018, is from the tracking air pollution in China (http://tapdata.

org/). The dataset is based on a machine learning algorithm

and multi-data information fusion inversion. Its comprehensive

construction combines ground monitoring data, satellite remote

sensing data, high-resolution emission inventory data, air quality

model simulation, and other multi-source data, which greatly

improves the spatial and temporal accuracy of the data inversion

results compared with the previous air quality reanalysis data (15).

The daily O3 concentrations in 360 prefecture-level cities in China

during the study period were obtained from the China National

Environmental Monitoring Center (http://www.cnemc.cn/sssj/). In

order to reduce the error in the calculation of the health risk model,

we calculated the 90th percentile concentration of the MDA8 O3

concentration from the interannual scale based on the daily MDA8

O3 concentration as the threshold.

The population size (Pop), the proportion of secondary

industry to GDP (S_GDP), disposable income per capita (P_GDP),

and soot emissions (Dust) for 360 prefecture-level cities in
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FIGURE 2

Research framework.

China during the study period were obtained from the China

Statistical Yearbook (http://www.stats.gov.cn/tjsj/ndsj/#). The

nitrogen oxide (NOx) and volatile organic compound (VOC)

emissions were obtained from the China Multiscale Emissions

Inventory Model (http://meicmodel.org/). The 1 × 1 km spatial

resolution population data were obtained from the World pop

dataset (https://www.worldpop.org/).

The daily meteorological data were obtained from the China

Meteorological Data Network (http://data.cma.cn/) during the

study period. The meteorological data obtained in this study

mainly include air temperature (Tem, ◦C), sea level pressure (Pa,

Pa), relative humidity (Hum, %), 2-m mean wind speed (WS,

m/s), 1-h precipitation (Pre, mm), and 10-min mean visibility

(Vis, m).

2.3. Trend analysis

Trend analysis is usually used for the analysis of temporal

dynamics of air pollutants to explore the interannual rate of

pollutant changes (16). In this paper, the rate of change of

O3 concentrations in China from 2013 to 2018 was analyzed

based on the trend analysis method, which is calculated as

Equation (1):

Trend =
n×

∑n
i=1

(

i× O3i

)

−
(
∑n

i=1 i
) (

∑n
i=1 O3i

)

n×
∑n

i=1 i
2 −

(
∑n

i=1 i
)2

(1)

Where O3 indicates the O3 concentration of each cell; n

indicates the time span, here the time span is 6; and i is the

time unit.

2.4. Population exposure risk model

Previous studies have shown that significant heterogeneity in

the spatial distribution of air quality concentrations and population

density leads to major spatial differences in the exposure risks of

populations to air quality (17). In addition, health risks due to

exposure to pollutants are usually defined as a function of the

multiplication of population density and pollutant concentration

(18). Although the exposure risk intensity in the area can be

quantified to some extent, it cannot distinguish the severity of the

local area relative to the whole. To address this issue, we introduced

a model for the relative exposure risk of the population attributable

to O3 exposure, as shown in Equation (2), which can evaluate the
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exposure status in each pixel of the cells (19):

Ri =
Pi × Ci
n
∑

i=1
Pi ×

Ci
n

(2)

where Ri indicates the risk of population exposure in grid cell i;

Pi indicates the number of exposed populations in grid cell i; Ci

indicates the O3 concentration in grid cell i, and n indicates the total

number of grid cells in the study area. To better reflect the spatial

difference of relative population exposure risk, we categorized the

population exposure risk as extremely low risk, low risk, lower

risk, higher risk, high risk, and extremely high risk by using the

reclassificationmethod in ArcGIS10.8 software. The corresponding

exposure risk values are Ri = 0, 0 < Ri≤ 1, 1 < Ri≤ 2, 2 < Ri≤ 3,

3 < Ri≤ 5 and Ri> 5, respectively. A higher value of R indicates a

higher exposure risk.

2.5. Health risk model

In this study, a standard damage function was applied to

estimate the population of premature deaths from respiratory

diseases due to O3 exposure. The specific equations are shown in

Equations (3) and (4), and the relationships shown in the following

equations have been extensively applied in previous studies (14, 20,

21).

RR =

{

eβ(x−x0), x > x0
1, x ≤ x0

(3)

1M = y0 × Pop× [(RR− 1)/RR] (4)

where RR is the relative risk; (RR−1)/RR is the attributable

fraction; xi is the O3 concentration in a city i or grid i; x0 is the

threshold concentration; β is the exposure-response coefficient,

which represents the additional health risk associated with an

increase in unit O3 concentration (22, 23); 1M is the number of

premature deaths of respiratory diseases attributable to exposure to

the O3 environment; y0 is the baseline mortality rate of respiratory

diseases, and pop is the number of the exposed population. In this

study, the mortality rate of respiratory diseases was obtained from

the National Bureau of Statistics, where the crude mortality rate of

respiratory diseases y0 (1/100,000) in urban China from 2013 to

2018 was, 76.61, 74.17, 73.36, 69.03, 67.20 and 68.02, respectively.

β values in this study were obtained from Shang et al. (24), per 10

µg/m3 with a value of 0.48% (95% CL: 0.38%, 0.58%). Song et al.

(25) concluded that the exposure-response coefficients obtained

from a meta-analysis by Shang et al. (24) based on a 33–time series

and case-crossover study conducted could to some extent reflect the

health risks attributed to air pollution in China. Meanwhile, which

has widely been used in several past studies for China (26, 27).

2.6. Multi-scale geographically weighted
regression

Comparedwith the classical geographically weighted regression

model (GWR), the MGWR model was a flexible regression

model (28). Each regression coefficient was obtained based on

local regression, and the bandwidth is specific. In addition, the

GWR model uses weighted least squares in the fitting operation,

while the MGWR model was equivalent to a generalized additive

model (GAM), which could perform regression analysis on spatial

variables with linear or non-linear relationships, and was also

an effective tool for dealing with various complex non-linear

relationships of spatial variables (29). Assuming that there are n

observations, for observation i ∈ {1,2,3,. . . , n} at location (Ui, Vi),

the MGWR were calculated as follows (30):

yi = β0(Ui,Vi)+
∑

jβbwj(Ui,Vi)Xij + εi (5)

where yi is the response variable O3 concentration, β0(Ui, Vi) is the

intercept, Xij is the jth predictor variable i, βbwj(Ui, Vi) is the jth
coefficient, bwj in βbwj indicates the bandwidth used for calibration

of the jth conditional relationship, εi is the error term. In addition,

the spatial kernel function type selected during themodel operation

is bisquare, the bandwidth search type is golden, and the model

parameter initialization type takes GWR estimation as the initial

estimation model.

2.7. Research framework

This study used the trend analysis method, spatial

autocorrelation model, population exposure risk model,

exposure-response function, and MGWR model to analyze

the spatial-temporal pattern, exposure risk, health risk, and driving

factors of O3 concentration in China from 2013 to 2018. Firstly, we

use the trend analysis method and spatial autocorrelation model

to explore the changing trend and spatial-temporal distribution of

O3 concentration in China. Secondly, we selected the population

exposure risk model and exposure-response function to investigate

the population exposure risk and health risk attributed to O3

pollution, and discussed their temporal and spatial correlation

characteristics. Finally, we use the MGWR model to reveal

the dominant factors of spatial distribution difference of O3

concentration in China. Additionally, in this study we used

O3 concentration reanalysis data at 10 × 10 km resolution and

population raster data at 1 × 1 km resolution to investigate the

exposure risks and health risks attributed to O3 pollution. To

spatially match the 10 × 10 km O3 concentration reanalysis

data, we used the aggregation module of ArcGIS10.6 software to

quantitatively change the spatial resolution of the 1 km×1 km

population data. During the aggregation calculation, the output

image element cell size was set to 10 × 10 km, i.e., 0.01◦×0.01◦,

and the nearest neighbor assignment method was selected for the

aggregation technique. Figure 2 shows the research framework of

this paper.

3. Results

3.1. Spatial and temporal distribution
patterns

Figure 3 shows the temporal and spatial distribution and

changing trend of the annual average concentration of MDA8
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(AMDA8, O3) from 2013 to 2017 in China. From 2013 to 2018,

the annual average O3 concentrations in China were 110.75,

108.21, 111.13, 115.57, 120.49, and 115.95 µg/m3, respectively, and

changed at a rate of 1.84 µg/m3/yr increase (Figure 3H). From a

spatial and temporal perspective, the highest annual average O3

concentrations were found in central China in 2013, 2015, and

2016, with annual average O3 concentrations of 121.87, 118.84,

and 122.78 µg/m3, respectively. The highest annual average O3

concentrations in 2014, 2017, and 2018 were all found in East

China, with annual average O3 concentrations of 116.98, 135.03,

and 137.91 µg/m3, respectively. In comparison, the lowest O3

concentration in 2013 occurred in the Northeast region (98.33

µg/m3), the lowest O3 concentrations from 2014 to 2017 occurred

in the Southwest region of China (90.86, 94.43, 99.20, and 104.27

µg/m3), and the lowest O3 concentration in 2018 occurred in

the Northwest region (103.44 µg/m3) (Figures 3A–G). Since 2013,

89.62% of China’s territory has experienced a significant increase

in annual average O3 concentrations, with 2.73% of the regions

experiencing an average rate of change in annual average O3

concentrations exceeding 5.00 µg/m3/yr. However, the rate of

variation of O3 concentration varies from region to region has

strong spatial variability. The rate of change of O3 concentration

in the Central Plains urban agglomeration is the most variable

in terms of the country, with its O3 concentration change rate

exceeding 4.0 µg/m3/yr. In contrast, the rate of change of O3

concentration in the Chengdu-Chongqing urban agglomeration

(−0.3 ± 1.0 µg/m3/yr), Southwest China (−0.5 ± 1.1 µg/m3/yr)

and South China (−1.0 ± 1.4 µg/m3/yr) decreases significantly

(Figure 3G).

Figure 4 represents the spatial clustering characteristics of the

rate of variation of O3 concentration at county-level units in China

from 2013 to 2018. The results show that the global Moran’s I index

is significant at the 1% level, indicating a consistent and enhanced

positive spatial autocorrelation in the rate of variation of O3

concentration (Figure 4A). The results of the hot spot analysis show

that there is a significant hot spot (HH) region for O3 concentration

growth rate, which is mainly contiguous and focused in Shaanxi,

Shanxi, central Inner Mongolia, Beijing–Tianjin–Hebei (BTH),

southwest Liaoning, central Henan, eastern Hubei, Anhui, Jiangsu,

and Shandong in China, which are the regions with the strongest

O3 growth rate in China. In addition, we found a significant

cold spot area (LL) covering a large part of China (about 90% of

the territory). These regions are mainly located in northeastern,

southern, southwestern, eastern, and northwestern China, where

the growth rate of O3 concentration is relatively low and even

decreasing regions are observed (Figures 4B, C). The standard

deviation ellipsometric analysis evaluated the overall variations in

the spatial pattern of O3 concentration growth rate from 2013 to

2018 in China (Figure 4D). It can be found that the regions with

significantly increased O3 concentration growth rates are mainly

concentrated in BTH, Shanxi, Shandong, Jiangsu, Jiangxi, Anhui,

Hubei, Henan, and Shaanxi in China. This result also indicates that

the above-mentioned regions are the primary contributors of O3

during the whole study period in China. Meanwhile, the center

of the median growth rate of O3 concentration is located north

of the standard deviation ellipse arithmetic center, indicating that

the growth rate of surface O3 concentration is greater in northern

China than in southern China.

3.2. The population exposure risk and
health risk

Overall, the total population exposed to O3 > 160 µg/m3

increased from 1.2% in 2013 to 28.9% in 2018, compared to a

decrease in the population exposed to O3 < 160 µg/m3 from 7.2%

in 2013 to 3.6% in 2018 (Figure 5). Figures 6, 7 represents the spatial

pattern of exposure risk levels attributed to O3 pollution in 2013,

2015, and 2018. We found that most regions have remained at

low (52.89–55.73%) or extremely low (19.48–20.48%) O3 exposure

risk levels over three time periods in China. From a temporal

perspective, only 4.83% of the territory of the country was at high

exposure to O3 pollution in 2013, and this percentage increased

to 6.45 and 7.19% in 2015 and 2018, respectively. Similarly, the

area of the territory exposed to extremely high risk also exhibits

a marked increasing trend, from 7.61% in 2013 to 9.62% in

2015 and further to 11.35% in 2018 (Figures 7A–C). Spatially, the

distribution patterns of O3 exposure risk levels were similar for the

three time periods of 2013, 2015, and 2018 in China. With the rapid

increase of O3 concentration in the North China Plain, the high

exposure risk level regions of BTH and YRD have been continuous,

which constitute a high O3 exposure risk level aggregation area

including the Bohai Rim, YRD, Pearl River Delta (PRD), Shanxi and

Guanzhong Plain urban clusters. Spatially, the distribution patterns

of O3 exposure risk levels were similar for the three time periods of

2013, 2015, and 2018 in China. In contrast, the extremely low risk

and lower risk areas of O3 pollution are widely distributed in China,

which is mainly located in most regions of northwest, southwest,

and northeast in China (Figures 7D–F).

Figure 8 indicates the spatial and temporal distribution of

premature deaths from respiratory diseases attributable to O3

exposure from 2013 to 2018. Overall, there was an average of

over 24,000 premature deaths from respiratory diseases due to O3

exposure per year in China from 2013 to 2018, and the growth

rate fluctuated at 1,178 cases per year (p < 0.05). Specifically, the

number of premature deaths attributable to O3 exposure increased

from 236,200 in 2013 to 272,300 in 2018, an increase of 36,100

cases compared to 2013. Spatially, the regions with <500 cases

of premature death due to O3 exposure are mainly located in

Tibet, Qinghai, east of Xinjiang, west of Sichuan, west of Inner

Mongolia, Liaoning, and Heilongjiang; the regions with more than

500 cases are mainly located in the region east of Hu line, mainly

including most of eastern China and western Xinjiang, central

Inner Mongolia, southern Gansu, most of southern China, most

of northern China, and Liaoning in northeast China. The regions

with more than 1,000 cases are mainly located in BTH, Sichuan–

Chongqing region, Fenwei Plain, East China Plain, Jianghan Plain,

Yangtze River Delta, and Pearl River Delta region. Meanwhile, the

regions with more than 1,000 cases of premature death due to O3

exposur e are further expanding over time.

3.3. The driver of the di�erence in the
spatial distribution of O3

Multicollinearity refers to the distortion of model estimates due

to significant correlations between the independent variables in the
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FIGURE 3

The spatial distribution and trend of O3 concentration from 2013 to 2018. Where, (A–F) represents the spatial distribution of O3 concentration; (G)

represents the trend change of O3 concentration; (H) represents the annual average O3 concentration variation; (I) shows the annual average O3

concentration change in di�erent regions of China.

linear modeling regression process. Therefore, before conducting

model regression analysis, to test whether there is multicollinearity

between each explanatory variable, we use variance inflation

factor (VIF) to test the multicollinearity problem between each

explanatory variable, and previous studies have shown that when

VIF ≥ 10, it indicates that there is a serious multicollinearity

problem between the dependent variable and the independent

variable. multicollinearity problem, which should be removed

from the actual model operation. The collinearity test in this

study was performed in SPSS 25.0 software and the results

of the analysis showed that the range of VIF values for all

explanatory variables was 1.000–9.765, which indicates that there

was no cointegration between the dependent and independent

variables. Table 1 indicates the diagnostic information of the

MGWR model for the socioeconomic and meteorological factors.

In terms of the number of valid parameters, the goodness–of–

fit R2 for the responses of socioeconomic and meteorological

factors to O3 concentrations are 0.861 and 0.799, respectively,

and the residual sum of squares (RSS) is 136.297 and 136.51

µg/m3, respectively, with the absolute values of the deficit

information criterion (AIC) and the log-likelihood value (Log-

likelihood) < 5,000. These regression results indicate that MGWR

uses fewer parameters to obtain regression results that are

closer to the true values and can be fully used to assess

the relationship between O3 pollution and socioeconomic and

meteorological factors.

Frontiers in PublicHealth 06 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1131753
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


He et al. 10.3389/fpubh.2023.1131753

FIGURE 4

Spatial clustering characteristics of the rate of change of O3 concentration in county-level units in China, 2013–2018. (A) Global spatial

autocorrelation test results; (B) Spatial distribution of the spatial clustering of O3 concentration variation rates; (C) Spatial distribution of cold and hot

spots for the rate of change of O3 concentration, in the cold and hot spot analysis we used Getis Ord Gi* analysis to calculate Z scores, where

|Zscores| > 1.65 corresponds to p < 0.10, |Zscores| > 1.96 corresponds to p < 0.05, |Zscores| > 2.58 corresponds to p < 0.01. Z scores are negative

indicating a cold spot, and a positive Z score indicates a hot spot; (D) Spatial distribution of the standard ellipse of the rate of variation of surface O3

concentration and the center of change in China from 2013 to 2018.

Figure 9 indicates the spatial distribution of regression

coefficients of socio-economic factors. The high values (>0.27)

of regression coefficients for the total population are mainly

located in North and East China, where the total population is

significantly and positively correlated with its corresponding O3

concentration. The influence of the share of secondary industry

on surface O3 in East and North China is significantly higher

than that in other regions, and its regression coefficient exceeds

0.08. We also find that over 80% of the regional disposable

income per capita is positively correlated with O3, with regression

coefficients ranging from 0.07 to 0.36. In contrast, Guangdong,

Shandong, and Northeast provinces show a significant negative

correlation between disposable income per capita and O3, with

regression coefficients, were below −0.02. The industrial dust

emissions in Sichuan and Chongqing are significantly (p < 0.001)

positively correlated with the corresponding O3 concentration with

a regression coefficient > 0.52, while industrial dust emissions

in cities located in East China are significantly (p < 0.01)

negatively correlated with the corresponding O3 concentration

with a regression coefficient ranging from −0.53 to −0.25,

where O3 concentrations in cities located in eastern Jiangsu and

Anhui provinces are more affected by the negative correlation of
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FIGURE 5

Probability distribution of the total population exposed to di�erent O3 concentrations from 2013 to 2018. The red and gray bars indicate the total

population and the proportion of the population exposed to di�erent O3 concentrations, respectively.

FIGURE 6

Proportion of regions with di�erent O3 exposure risk levels to the

total land area (%).

industrial dust emissions. The NOx emissions were significantly

and positively correlated with O3 concentrations in Central China,

East China, South China, Sichuan and Chongqing, and parts

of Southwest and Northwest China (p < 0.05), with regression

coefficients ranging from 0.60 to 1.26. There was a significant

(p < 0.01) negative correlation between VOCs emissions and

O3 concentrations in Hubei, Jiangxi, Zhejiang, Anhui, Jiangsu,

Shanghai, Guangdong, Fujian, and Guangxi cities with regression

coefficients ranging from−0.53 to−0.35.

Figure 10 shows the spatial differences in the effects of various

meteorological factors on O3 concentration. It can be found

that the temperature of cities in North, East, and Northeast

China showed a significant (p < 0.05) positive correlation

with O3 concentration, with regression coefficients ranging from

0.23 to 0.49. The relative humidity was negatively correlated

with O3 concentration in all cities during the study period.

Among them, cities in Heilongjiang, Jilin, Liaoning, Beijing,

Tianjin, north-central Hebei, northwestern Shanxi, western Inner

Mongolia, and northwestern Ningxia and northern Shaanxi

showed a weak negative correlation between relative humidity and

O3 concentration with a non-significant (p > 0.05) regression

coefficient of < −0.07. In contrast, cities in southern Zhejiang,

southern Anhui, Jiangxi, central Hubei, Hunan, Chongqing,

Guizhou, Yunnan, and cities in Fujian, Guangdong, and Guangxi

regions showed a significant (p < 0.01) strong negative correlation

between relative humidity (Hum) and its corresponding O3

concentration with regression coefficients ranging from −0.18

to −0.15. Wind speed (WS) showed a significant (p < 0.05)

negative correlation with O3 concentrations in Heilongjiang, Jilin,

Liaoning, Guangxi, southern Henan, Hubei, eastern Shandong,

Jiangsu, Shanghai, Zhejiang, Sichuan and Chongqing regions,

and northern Shanxi, with regression coefficients ranging from

−0.02 to −0.06. It is particularly noteworthy that cities in

BTH, southwestern Shanxi, northern Henan, central Shaanxi,

Ningxia, southern Gansu, western Shandong, and Anhui have

a significant positive correlation between their wind speed and

O3 concentration with regression coefficients >0.45. For air

pressure, cities located in northern China showed a significant (p

< 0.05) negative correlation between air pressure (Pa) and O3
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FIGURE 7

Spatial distribution pattern of population exposure risk levels attributed to O3 pollution from 2013 to 2018. (A–C) Indicates the spatial distribution of

population exposure risk levels in 2013, 2015, and 2018, respectively; (D–F) Indicates the spatial clustering of population exposure risk levels in 2013,

2015, and 2018, respectively.

concentration, with regression coefficients ranging from −3.6 ×

10−3 to −1.3 × 10−3. Precipitation showed a significant (p <

0.05) positive correlation with O3 concentration in Heilongjiang,

Jilin, South China, Guangxi, and Guangdong, with regression

coefficients ranging from 3.93 to 19.21, while other regions showed

negative correlations. Visibility was positively correlated with O3

concentration in all cities.

4. Discussion

4.1. Spatial distribution di�erence of O3

concentration

The results of the spatial and temporal pattern analysis of O3

concentrations show that East, Central, and North China are the

regions with the highest growth of O3 concentrations in China from

2013 to 2018, which is mainly attributed to the huge amount of

anthropogenic emissions. The areas of East, Central, and North

China are one of the most densely populated and industrially

developed regions in China, and the massive industrial activities,

transportation, and human activities result in the emission of large

amounts of O3 precursors. In contrast, Southwest and South China

are the regions with the largest decreases in O3 concentrations in

China. Previous studies have found that Southwest and Northwest

China are located in high-latitude regions, and their corresponding

atmospheric vertical exchange and photochemical reactions are

stronger due to the special topography and intense solar radiation

compared to inland regions, resulting in higher background values

of O3 concentrations in these regions (9, 31). However, the extent

of the influence of solar radiation on O3 in southwest and southern

China is significantly weaker than the influence of anthropogenic

emissions compared to the dramatic increase in O3 concentrations

due to strong anthropogenic emissions in East, Central, and North

China (32).

4.2. Spatial heterogeneity of O3

concentration drivers

There are strong spatial variations in the influence of different

drivers on O3. Relative to lower population density regions, a

larger population size implies more energy consumption and

pollution emissions, meanwhile, it also further compresses the

green area of cities, leading to a significant reduction in the

ability of cities to mitigate air pollution, which better explains

why the positive correlation between population size and O3

concentration is significantly higher in densely populated northern

and eastern China than in other regions (21, 33). Previous studies

have shown that industrial emissions are the predominant source

of air pollution (34). Our study found that the share of secondary
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FIGURE 8

Spatial distribution of premature deaths attributable to O3 exposure in China, 2013 to 2018. (A–F) indicates the spatial distribution of premature death

population attributable to O3 exposure at the prefecture-level city scale from 2013 to 2018 in China, respectively.

TABLE 1 Diagnostic information of MGWRmodel.

Evaluation
indicators

Socio-economic
factors

Meteorological
factors

Residual sum of

squares (RSS)

136.297 136.506

Log-likelihood −423.861 −418.699

Degree of

Dependency (DoD)

0.498 0.476

AIC 1,160.521 1,045.466

AICc 1,220.301 1,083.609

BIC 1,925.094 1,515.614

R2 0.861 0.799

Adj. R2 0.835 0.763

industry in GDP had a significant positive correlation with O3

concentration, especially in central China, and eastern China,

where industrial production is dominant, and the contribution

of urban industrial production to O3 concentration is stronger

than in other regions. At the urban scale, the formation of O3

concentrations depends on the VOCs–NOx ratio (35). In general,

the higher the NOx emissions in cities, the lower the VOCs–NOx

ratio. For example, the formation of O3 in some cities located in

Central and Northern China is often limited by VOCs (36, 37).

In these cities, the reduction of VOCs emissions decreases the

formation of O3, but the reduction of NOx emissions increases

the formation of O3. This chemical reaction tends to depend

on the amount of VOCs and NOx emissions; the larger the

emissions the more intense their reaction and the larger the O3

emissions generated (38). In addition, industrial dust emissions

indirectly affect solar radiation intensity by affecting atmospheric

visibility, which further contributes to the O3 photochemical

reaction rate (39).

Temperature is an important ambient condition for

photochemical reactions, and higher temperatures can promote

the rapid production of O3 concentration, therefore, temperature

and O3 concentration are mostly positively correlated, especially

in cities in Northern, Eastern, and Northeastern China where the

solar temperature is higher in the warm season (40). The wind

speed has a diffusion and transport effect on pollutants in the

atmosphere. For example, O3 concentrations in cities in Northeast,

South, Central, and East China, and Sichuan and Chongqing

regions showed a significant (p < 0.05) negative correlation with

wind speed. However, our results found a significant positive

correlation between O3 concentration and wind speed in most

cities located in the North China Plain. Li et al. (41) attributed

the significant positive correlation between O3 concentration and

wind speed in the North China Plain region to the influence of
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FIGURE 9

The spatial distribution of regression coe�cients for the major socioeconomic factors of Pop (A), S_GDP (B), P_GDP (C), Dust (D), NOx (E), and VOCs

(F).

warm-season burning winds, especially from June to August each

year, when the burning winds blow from the mountains to the

northern and western parts of the North China Plain, bringing

dry the hot air further leads to a higher temperature in the region,

which accelerates the photochemical reaction of O3 production

to some extent. Relative humidity has a negative correlation with

O3 concentration. Previous studies have shown that water vapor

can not only absorb and release energy through changes in the

aqueous phase but also undergo internal reactions, especially

when controlling for other influencing factors, higher relative

humidity leads to higher water vapor saturation, resulting in easy

removal of O3 and its precursors and lower O3 concentrations

(42). In addition, water vapor can reduce solar ultraviolet radiation

through extinction mechanisms, thus affecting photochemical

reactions and O3 concentrations (43).

4.3. The O3 control policy implications

In summary, O3 pollution in China is gradually increasing,

and more and more of China’s population is exposed to high

O3 concentration pollution. Scientific and effective reduction of

O3 concentration exposure levels in China is crucial to reduce

population exposure risks (44). Under these circumstances, this

study proposes policy recommendations on how to reduce O3

concentrations in Chinese cities from the perspective of the

drivers affecting the spatial distribution of O3 and epidemiology.

For O3 pollution areas dominated by O3 precursors (e.g., NOx,

VOCs, and CO), the authorities can ensure that their emissions

comply with government regulations by optimizing the industrial

structure and reducing the emissions of O3 precursors. Meanwhile,

the governmental department should focus on the synergistic

management of PM2.5 and O3 compound pollution. Research

shows that NOx is not only an important precursor for O3

generation but also an important precursor for PM2.5 (45).

Therefore, strengthening the NOx deep regulation and emission

reduction is a key step to promote synergistic control. Furthermore,

the O3 abatement measures in the future should pay attention to

different seasonal O3 control measures and strengthen regional

cooperation for O3 pollution prevention.

For O3 pollution regions dominated by meteorological factors,

the department should forecast the variation of O3 concentration

due to the change of meteorological factors promptly, meanwhile

develop a detailed O3 pollution early warning program to

reduce the risk of public exposure and explore a sustainable

development path for O3 pollution management in China. From
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FIGURE 10

The spatial distribution of regression coe�cients for the major meteorological factors of TEM (A), Hum (B), WS (C), Pa (D), Pre (E), and Vis (F).

an epidemiological perspective, to protect public health and

improve the status of O3 pollution, it is crucial to establish

studies of health effects attributed to O3 exposure from a

national perspective. In addition, it is important for relevant

government departments to establish a mechanism to revise the

National Ambient Air Quality Standards (NAAQS) for regulatory

assessment and health risk prediction of future O3 air quality

standards in China (46).

4.4. Research limitations and future
prospects

Surface O3 distribution has strong spatial and temporal

heterogeneity, and there are significant differences in O3

concentrations with time scales. This study only focused on the

interannual spatial variability characteristics of O3 concentrations,

neglecting the seasonal variability of O3 concentration changes.

Furthermore, due to the lack of basic research data and inadequate

research methods, this study only focused on the number of

premature respiratory deaths attributed to O3 pollution in the

assessment of health risks attributed to O3 pollution, neglecting

the all-cause premature death group. Additionally, using the

same exposure risk coefficient (β) may lead to spatial errors in

the estimated health risks due to significant spatial differences

in O3 exposure levels. For example, Wang et al. (21) estimated

the population of premature deaths from respiratory diseases

caused by O3 pollution between 2013 and 2017 in China using the

method of Turner et al. (47), and their results found an average

of 186,000 deaths from respiratory diseases due to O3 pollution

during the study period. This is slightly lower compared to our

findings. A primary reason for this is that our study and Wang

et al. (21) used different exposure response coefficients and critical

thresholds. In addition, the interpolation of O3 concentrations

at large scales of pollution can also cause large errors in the

assessment results. Therefore, in the future, we hope to conduct

a detailed and comprehensive analysis of seasonal differences in

O3 pollution and all-cause health risks in China by utilizing more

detailed surface O3 monitoring data and meta-analysis methods.

To provide a scientific basis for the improvement of O3 pollution

in China.

5. Conclusions

In this study, we quantitatively investigated the spatial and

temporal patterns, trends, population exposure risks, health risks,
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and drivers of surface ozone in China from 2013 to 2018. We

observed the annual average O3 concentration of China increased

significantly at a rate of change of 1.84 µg/m3/yr from 2013

to 2018 (p < 0.05, R2 = 0.561). The significant increase was

mainly distributed in East China, Central China, and North

China. Meanwhile, the growth rate of O3 concentration has a

consistent and enhanced positive spatial autocorrelation (p< 0.05),

and there are significant hot and cold spots areas. During the

research period, there was an average of over 24,000 premature

deaths from respiratory diseases attributed to O3 exposure in

China from 2013 to 2018, and the growth rate fluctuated at 1,178

per year (p < 0.05). Spatially, there was a consistency in the

spatial distribution of exposure risk and health risk of populations

exposed to O3. The results of the multi-scale geographically

weighted regression model reveal spatial differences in the effect

of various factors on O3 concentration. The impact of the total

population, disposable income, the share of secondary industry

in GDP, and NOx emissions factors in eastern and northern

regions are significantly greater than impacts in central and western

regions. Meanwhile, we found that the effect of temperature

on O3 concentration in some cities in the north, east, and

northeast is significantly higher than that in other regions, and

relative humidity has a significant (p < 0.01) strong negative

correlation with O3 concentration in east, central, southwest and

south China.
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