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Introduction

Mosquito is an ancient creature, which can be traced back to the age of dinosaurs (1).

There are more than 3,500 species of mosquitoes, in which Aedes, Anopheles and Culex bear

primary responsibility for the spread of human diseases (2). Because of their small size and

strong adaptability, mosquitoes can transmit bacteria, viruses, or parasites, which threaten

>40% of the world’s population. Thus mosquitoes are becoming an increasingly serious global

public health challenge (3). When mosquitoes carrying pathogens bite people, they inject the

pathogens into the human skin through a suction mouthpiece, following which the pathogens

attack the subcutaneous immune cells at the bite site (4). The pathogens are amplified in

these cells and released into the blood, causing systemic infection, and the symptoms include

fever, encephalitis, arthritis, and hemorrhagic fever. However, mosquitoes transmit diseases

without being affected. Although recent studies have shown that mosquitoes do not transmit the

COVID-19 virus, the COVID-19 global pandemic is hampering mosquito-borne disease control

efforts, such as disruptingmalaria services (5). This not only increases the risk ofmosquito-borne

pathogens transmission but also lead to a significant increase in the number of cases and deaths

(6, 7). According to the statistics of the World Health Organization, more than 700,000 deaths

caused by mosquito-borne diseases annually (8). In fact, not only humans, but most other land

mammals are also victims of mosquito bites (9). Therefore, accelerating technical research on

the prevention of these mosquito-borne diseases can prevent unnecessary deaths.

Despite the efforts of all countries in preventing mosquito-borne diseases, achieving effective

and sustainable mosquito control is still challenging (10, 11). Efficient sterilization and mosquito

control are required to significantly reduce the risk of disease transmission and guarantee

restrategy of public health problems. Currently, chemical and physical methods of killing

mosquitoes are used, although they have obvious shortcomings. Long-term use of chemical

methods is harmful to the human body; in addition, chemical reagents pollute the environment

(12, 13). In contrast, although the physical methods are reliable, their use is associated with more

limitations; for example, high-voltage electricity is dangerous and it relies on a continuous power

supply (14–16).

The triboelectric nanogenerator (TENG) is a new technology based on electrification of

mechanical interface friction and electrostatic induction coupling effect. The advantages of

TENG include a wide selection of materials, simple structure, low cost, high efficiency, and high

output voltage (17). It has also been widely used in fields involvingmotion (18), pressure (19, 20),

inertia (21) and vibration (22, 23) to convert mechanical energy to electrical energy; furthermore,

it can also be used in conjunction with wind energy (24), water energy (21, 25), and other fields

(26, 27). As most mosquito control equipment require external power supply, the limitations of

mosquito control and sterilization are manifold, especially in outdoor and remote areas. TENG
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technology is effective for integrated self-powered equipment.

Therefore, development of an environment-friendly and

maintenance-free control equipment for sterilization and infection

is necessary.

Here, we envisage a self-powered strategy for sterilization and

infection control based on TENG structure, which can be used for

mosquito eradication and sterilization to control the number of

mosquitoes and the pathogens they transmit, thereby reducing the

risk of disease transmission (Figure 1A). This strategy will open up

a new avenue for self-powered supply system in infectious disease

control and may promote family health care and public health.

Analysis

Epidemic status of mosquito-borne diseases

Mosquito-borne diseases are natural foci diseases transmitted by

vectormosquitoes, whichmainly includeAedes, Anopheles, andCulex

mosquitoes (Figure 1B). Aedes is distributed worldwide, especially

in the tropics and subtropics. It is the largest genus of mosquitoes,

including 38 subgenera and nearly 1,000 species, and is the main

vector of urban yellow fever (29), chikungunya virus (30) and dengue

fever (31, 32). Experimental infection models have shown that it

can also transmit Venezuelan equine encephalitis, western equine

encephalitis, eastern equine encephalitis, rift valley fever,zika virus,

and other viruses by biting and sucking blood (33, 34). Thus, it is

one of the most dangerous mosquitoes. Reports show that the dengue

virus transmitted by Aedes mosquitoes causes nearly 96 million

symptomatic cases and 40,000 deaths every year. At the same time,

more than 3.9 billion people in 129 countries are still at risk of

contracting dengue fever (35).

The female Anopheles mosquito, also known as the malaria

mosquito, transmits malaria and filaria to humans. About 450 species

of Anopheles are known, most of which are distributed in the tropics,

mainly in Saharan Africa. Malaria is a life threatening disease caused

by the Plasmodium parasites, which are transmitted to humans

through Anopheles bites (36). In early days, the disease caused 0.725

to 1 million deaths every year, which set the Guinness World Record

and was also called the deadliest disease on earth. According to the

latest World Malaria Report (37), there were 241 million cases of

malaria in 2020 and 227 million cases in 2019. Although malaria is

preventable and treatable, an increase in the resistance of mosquitoes

to insecticides hampers the effectiveness of preventive measures (38).

Culex mosquitoes transmit pathogens causing filaria, Japanese

encephalitis, and other diseases. Lymphatic filariasis affects the

host’s lymphatic system, subcutaneous tissue, abdominal cavity, chest

cavity, and other places (39). In total, 863 million people in 47

countries are still threatened by lymphatic filariasis, and preventive

chemotherapy is required to prevent the transmission of this parasitic

infection (40). However, Japanese encephalitis also poses a threat to

public safety.

Today, despite the continuous development of medical

technology, pathogens still infect more than one million people

every year, posing a growing threat to public health. This is amplified

further by the lack of effective treatment methods for most infectious

diseases and the accumulation of mutations in viruses, which should

be tracked for early prevention and interruption of transmission.

Strategy for mosquito-borne disease
prevention based on self-powered supply

Basis of self-powered supply system based
on TENG

Currently, TENG is widely used in wearable electronics, the

Internet of Things, high-precision sensors, and other fields (41).

The main reasons for the large-scale use of TENG are as follows:

first, TENG allows extensive material selection and is inexpensive

(42). Its performance depends on the materials used to develop

them, as the friction charges and electrical properties differ with

materials. According to the principle of potential superposition, the

output voltage and current are affected by the density of friction

charges. Therefore, the materials used to develop TENG must easily

generate friction charges and have different friction electrodes. TENG

is usually made of polytetrafluoroethylene (PTFE) (43), polyamide,

polyvinylidene fluoride (PVDF) (44), and silk (45).

Second, TENG has the advantages of simple structure, high

efficiency, and high output voltage. The four basic working modes

of TENG are vertical contact separation mode, horizontal sliding

mode, single electrode mode, and independent layer mode (46). In

the simplest design of TENG, the dielectric films of two different

materials are stacked face to face, and their respective back surfaces

are coated with metal electrodes in the vertical contact separation

mode structure. These two layers of dielectric films contact each other

to form opposite charges. An induced potential difference is formed

between the two electrodes when the films are separated, which

causes the current to flow between the connected metal electrodes.

The typical high voltage outputs of TENG can exceed 2 kV for single

electrode TENG, 15 kV for independent layer TENG, 7 kV for contact

separated TENG and 8 kV for disk TENG, respectively (47).

Third, TENG can be integrated with other systems to realize

different types of self-powered microsystems, build a functional

and structural integrated microsystem of micro mechanical energy

collection management storage utilization, and provide a sustainable

power supply for micro-electro-mechanical system (MEMS) devices

and micro integrated systems in different environments. TENG not

only collects exercise energy, but also powers wearable electronic

devices. It is also used to collect the energy generated from life

activities, such as heartbeat and breathing, and to provide power for

in vitromonitoring devices and implanted electronic medical devices

for disease treatment and prevention. The realization of self-powered

supply based on TENG equipment has more advantages than the

existing mosquito-borne disease prevention technologies.

Mosquito killing and sterilization strategy based on
self-powered supply

Currently, preventing the spread of infectious diseases at the

prevention stage, which will safeguard the public considerably, is the

most critical issue that requires attention. The TENG technology can

be integrated into sensor devices (48, 49), wearable electronic devices

(50) andmedical devices (51) to realize self-powered supply function.

Therefore, the requirement of external power drives and sterilization

after mosquito control should be met.

On the one hand, though the voltage output of TENG is high,

the current of TENG is very low (52–54), which is safe for people
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FIGURE 1

The new paradigm of mosquito-borne disease control. (A) Structural design and photographs of the TENG-based self-powered sterilization and infection

control system (28). (B) Mosquito-borne diseases. (C) Strategy for mosquito-borne disease prevention based on self-powered supply.

(safe current < 30mA).1 On the contrary, as mosquitoes are very

1 https://www.d.umn.edu/~sburns/EE2212/L-Safe-Levels-of-Current-in-

the-Human-Body.pdf

small, their endurance is considerably much lower than that of

human beings, which can be killed by TENG outputs [as has been

demonstrated by Luo et al. (28)]. For conventional high-voltage

mosquito-killing device, external power sources are indispensable for
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driving the relevant devices, which will lead to risk such as power

Gide electricity leakage, and fire risk. For instance, electric mosquito

swatters are blamed for causing fire.2 In comparison, TENG can

convert low frequency, distributed, and irregular mechanical energy

into electricity, which do not need external power sources. This

can reduce the risk of electricity leakage and fire during electricity

transmission from the power Gride.

On the other hand, appropriate light sources can be selected

to trap mosquitoes according to their phototactic habits. According

to a survey, mosquitoes tend to gather near light sources in the

ultraviolet and blue ultraviolet wave bands, especially at 365, 405,

420, and 450 nm, among which the sources emitting light at 365 and

420 nm show the most outstanding mosquito-trapping performance,

with no significant difference between the effects of the two (16, 55).

Therefore, appropriate ultraviolet light source can be selected to trap

mosquitoes using electric shock.

Hence, the self-powered tool is harmless and safe for the human

body and can be used as a family-level tool. More importantly, the

mosquito killing and sterilization system based on TENG can not

only present a self-powered working strategy, but can also achieve

the goal of purifying air with high-pressure ionized oxygen anion,

killing bacteria using ultraviolet radiation and controlling the spread

of diseases (Figure 1C).

Discussion

The performance of TENG is the basis for long-term stable

operation of a self-powered equipment. However, realizing the stable

application of TENG is challenging. Ideally, only when the mosquito-

borne disease prevention technology is stable and reliable can these

interventions help to control the spread of infections and minimize

the damage to society and economy. To promote this, ongoing

research should focus on the following areas.

The self-powered equipment should collect micro mechanical

energy in various environments, such as wind energy, water energy,

and tidal energy. At the same time, efficient mosquito control

requires higher output voltage and energy. The output voltage,

energy, and charging cycle are the key parameters required to obtain

better mosquito control. Therefore, collisions caused by the natural

environment should be prevented, and the output performance

should be reliable and stable.

The four working modes of TENG depend on the contact friction

of different materials. However, the contact friction will lead to heat

loss and wear and tear of the friction interface. The surface charge

density of TENG will decrease with increase in its service time,

affecting its output performance. Therefore, in the future, means of

avoiding device wear to achieve more extensive and effective micro

energy collection and application should be investigated.

2 https://asiatimes.com/2018/04/electric-mosquito-swatter-blamed-

causing-fire/

Enriching the diversity of prevention measures and improving

the effectiveness of disease prevention is critical for preventing and

controlling the outbreak and transmission of mosquito-borne virus

diseases (28). Therefore, assessing the reliability and practicality of

new prevention means is extremely important. In this context, a

TENG with high durability and high output performance should

be developed to realize a self-powered strategy for mosquito-borne

disease control.

Conclusion

This paper discusses the epidemic situation and trend in the

development of mosquito-borne infectious diseases. It also analyzes

the theoretical basis of TENG as a self-powered equipment and

discusses its potential as a strategy to mosquito-borne diseases based

on TENG structure. In the future, with the continuous development

of TENG technology, the self-powered mosquito-borne disease

control strategy will also be improved gradually, especially in outdoor

and remote areas. The environmental protection and maintenance-

free sterilization and infection control strategy are important for

public safety.
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