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Used as a communicative tool for risk management, risk maps provide a service

to the public, conveying information that can raise risk awareness and encourage

mitigation. Several studies have utilized risk maps to determine risks associated

with the distribution of Borrelia burgdorferi, the causal agent of Lyme disease in

North America and Europe, as this zoonotic disease can lead to severe symptoms.

This literature review focused on the use of risk maps to model distributions

of B. burgdorferi and its vector, the blacklegged tick (Ixodes scapularis), in

North America to compare variables used to predict these spatial models.

Data were compiled from the existing literature to determine which ecological,

environmental, and anthropic (i.e., human focused) variables past research has

considered influential to the risk level for Lyme disease. The frequency of these

variables was examined and analyzed via a non-metric multidimensional scaling

analysis to compare di�erent map elements that may categorize the risk models

performed. Environmental variables were found to be the most frequently used

in risk spatial models, particularly temperature. It was found that there was a

significantly dissimilar distribution of variables used within map elements across

studies: Map Type, Map Distributions, and Map Scale. Within these map elements,

few anthropic variables were considered, particularly in studies that modeled

future risk, despite the objective of these models directly or indirectly focusing on

public health intervention. Without including human-related factors considering

these variableswithin riskmapmodels, it is di�cult to determine how reliable these

risk maps truly are. Future researchers may be persuaded to improve disease risk

models by taking this into consideration.
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Introduction

Tick borne diseases are caused by pathogens transmitted by infected ticks to an

uninfected host. As the climate warms, it becomes possible for ticks to have increased

abundance, survival, and feeding activity, and to expand their geographic distribution

northwards (1, 2). Human activities and their impacts on natural habitats are further

altering the distribution of these disease vectors, and human-wildlife contacts are

increasing through means of socio-demographics (globalization, urbanization, etc...) and

public health systems [vector control and other health interventions (3)]. Due to the

constant changes in the environment, it is challenging to assess the risks associated

with these infections without predictive modeling. Many current and future scenario

predictive risk maps have been developed to monitor zoonotic infections for public health

interventions (4–7). Epidemiologic risk maps are effective visualization tools used to identify
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geographical areas of high risk for disease transmission and

potential future high-risk regions. Used as a communicative tool

for risk management, these maps provide a service to the public,

conveying information that can raise risk awareness and encourage

mitigation strategies (8–10). Since climate and land use changes

are constantly altering the dynamics between vector and host,

continuous monitoring of the emergence and expansion of the

disease vector is required. This is true of the spread of Lyme disease

and other tick-borne diseases (2, 3).

In eastern North America, Lyme disease is typically caused by

an infection of the spirochaete Borrelia burgdorferi via blacklegged

ticks [Ixodes scapularis (11)]. In humans, the infection can result

in a multisystem illness that substantially affects the individual’s

quality of life, if left untreated (12, 13). As a common and

widespread disease (14–16) that can lead to severe conditions

(17), effective communication tools for risk management of this

infection are necessary.

Risk maps for Lyme disease in North America tend to

focus on the impact climate change has on the distribution of

blacklegged ticks (18–22), since these ectoparasites are vectors for

B. burgdorferi (23) and their geographic range is increasing (1, 24).

The geographic range of blacklegged ticks is heavily dependent

on environmental variables such as temperature and precipitation

(25–28). The geographical ranges of their hosts also play a major

role (25). Blacklegged ticks require a single host for each life stage

(29, 30), and will migrate with these hosts, such as small mammals,

birds, and ruminants (31, 32).

Different variables have been considered to affect Lyme

disease distribution. These include ecological variables related to

blacklegged ticks [tick density, dispersion (33–35)] and their small

mammal reservoir and migratory avian hosts (36, 37), as well as

environmental variables such as temperature, humidity, and forest

fragmentation (20, 38, 39). Recent risk map publications have

adopted “One Health” approaches, which incorporate sociological,

ecological, and biological knowledge into their research (40, 41).

This approach aims to examine and integrate human-related or

anthropic variables thatmay influence human health or risk (22, 42)

including those variables beyond human demographics.

For instance, one may expect that human exposure and the

risk of becoming infected by Lyme disease is also dependent

on individual human behavior (e.g., knowledge, activity). As

such, outdoor workers have been found to be more at risk for

zoonotic diseases than those who are outdoors recreationally,

due to their degree of exposure to the environment (43), and

those with immune deficiencies may be more at risk for severe

symptoms (44). Studies have included surveys of a population

to gauge their knowledge on their risks to Lyme disease or tick

infections (22, 42, 45, 46). Socio-economic status and ethnicity

have also been found to play a role in Lyme disease risk

(42, 47, 48). Knowing that not all individuals are equally at

risk for being infected with diseases, including Lyme disease,

it should be expected that studies in which Lyme disease risk

maps are developed would include variables associated with

human characteristics and behaviors. For these studies to be

relevant to public health, variables associated with humans

(i.e., social, economic, risk perception) should be taken into

consideration, as these factors directly affect the risk posed to

the public.

Here, we reviewed the literature to identify the variables past

research has considered influential to the distribution of Lyme

disease via blacklegged ticks in North America. Variables that

researchers routinely included in risk models were examined, and

those human variables that were often disregarded but may be

informative were highlighted. By calling attention to the lack of

human variables found in previous risk maps, future researchers

may be persuaded to enhance models by including anthropic

factors to improve disease risk prediction.

Methods

Collection of data

We focused on past studies that are comparable due to

similarities in geography [same continent, overlapping tick

populations (49, 50)], disease vector, and spirochaete strain (B.

burgdorferi). For this reason, we focused on one tick vector

(black-legged tick) which is endemic to eastern North America

(17). On March 31, 2023, a descriptive literature review was

conducted following methods by Paré and Kitsiou (51) using

Google Scholar, PubMed, and CrossRef with the inclusion criteria

terms: “Ixodes scapularis,” “blacklegged ticks,” “risk map” (exact

phrase), “Lyme disease,” “risk assessment,” and “B. burgdorferi.”

This literature review concentrated on eastern North American

(across Canada, the United States, and Mexico) risk assessments of

Lyme disease transmitted by blacklegged ticks only. Geographical

scale varied across studies, with some focusing on areas at the

municipality, provincial/state, regional, or national scale. However,

it should be noted that there are several risk assessments for

Lyme disease concentrated in Europe and western North America

where other tick species and spirochaete vectors can transmit

Lyme disease (17, 20, 52). Only studies in which analyses included

at least one risk map in their results was considered for this

review, as we were specifically interested in comparing studies

that produced risk map models to evaluate risk. We performed a

systematic review following PRISMA (Preferred Reporting Items

for Systematic Reviews and Meta-Analyses) guidelines (53). The

initial search consisted of 145 studies published between 2000 and

2022 with the above criteria. Twenty studies were excluded, as

they did not include a risk map in their results. Twelve more

studies were excluded since their results were based outside of

North America, another two studies were excluded as they focused

on different vectors or bacteria and diseases and one article

was removed from the literature review as it was retired and

no longer considered relevant. Finally, 49 government reports,

reviews, and theses were removed, leaving a total of 61 peer-

reviewed articles meeting our criteria to be included in analyses

(Figure 1; Supplementary Table 1).

Once the literature review was completed, data on the

models within the articles were collected. This included collecting

information on the number of ecological, environmental, and

anthropic variables used in the studies to develop risk map

models. Frequency counts for the number of each ecological,

environmental, and anthropic variable in a risk map model were

recorded. Ecological variables included variables that influence or

dictate the relationship between an organism and its environment
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FIGURE 1

Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) flow diagram for systematic review which included searches of

databases for risk maps related to Lyme disease and blacklegged tick (Ixodes scapularis) distributions.

(i.e., tick occurrence, B. burgdorferi prevalence). Environmental

variables included natural resource factors that define an ecosystem

or habitat (i.e., temperature, humidity, land cover). Anthropic

variables were defined as variables related to human beings

(i.e., population density, sex, age). As Lyme disease is primarily

transmitted via tick vectors (11), these observations do not provide

any information on how the disease circulates within a human

population. Further, certain predictor variables were simplified to

allow comparisons more easily. For example, forest cover and

vegetation index were categorized together, as were vapor pressure

and humidity, elevation and altitude, human population size and

density, and tick abundance and density (Supplementary Table 2).

Additional elements that characterized these risk models

were collected and recorded, including the year of publication

(Supplementary Table 3), the study’s focal location (Country), Map

Type (predictive vs. surveillance), the period of the study (year), the

focal Scale of study (local, regional, national), the distribution of

the study considered– vector (tick) vs. host (human or otherwise)

vs. vector and host (both considered)—the Tick Surveillance

methodology used for the model (passive vs. active vs. no tick

surveillance), and the Tick Life Stage the tick data was based on

(immature ticks vs. adult vs. all stages vs. no tick data; Table 1;

Supplementary Table 4). Map Type (predictive vs. surveillance)

was also included, whereby “predictive” maps referred to future

predictive map models, as they predict future scenarios, while

current predictive maps will be referred to as “surveillance” models,

as they pertain to current risks.

Most risk map models are predictive as they use modeling

to create these maps. However, some models are used to predict

risks associated with potential future geographical ranges and
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TABLE 1 The cumulative number of anthropic, environmental, and ecological variables used across map elements in the reviewed studies.

Map element Anthropic Environmental Ecological

Map Type Surveillance (38) 17 40 52

Predictive (25) 3 62 30

Map distribution Host (16) 14 24 19

Vector (33) 5 62 38

Host and vector (15) 2 16 26

Map scale Local (38) 14 58 54

Regional (17) 6 30 18

National (9) 0 14 10

Tick life stage Adult (3) 1 3 4

Immature (12) 1 30 16

All stages (32) 10 51 49

No tick data (16) 8 18 13

Tick surveillance Passive (18) 4 23 23

Active (19) 5 27 26

Active and passive (10) 0 15 16

No surveillance data (18) 14 22 10

Country Canada (27) 12 41 34

USA (31) 5 55 45

USA and Canada (3) 2 4 1

USA and Mexico (1) 1 0 1

USA, Canada, and Mexico (1) 0 2 1

The total number of variables for each variable group is the sum of those variables used across studies (n= 61). Numbers in brackets indicate the number of studies for that specific map element.

USA, United States of America.

distributions of Lyme disease (18, 38, 39, 54, 55), while others are

used to predict the current risk or prevalence (56–59). In addition,

Map Scale was considered and categorized by whether the study

focused their spatial scale by country (national), province or state

(regional), or a smaller unit (e.g., census division; local).

Synthesis of data

A non-metric multidimensional scaling (NMDS) analysis

was performed in R [(60); version 1.4.1717] using the “vegan”

package (version 2.6-2) to determine any significant differences

in the frequency of ecological, environmental, and anthropic

variables used across studies (n = 61), depending on their map

elements: Map Type, Map Scale, Map Distribution, Year, Tick

Life Stage, Map Surveillance method, and Country. Here, the

NMDS, which is commonly used as an ordination for community

ecology (61), was performed where “sites” were the individual

studies, and “environmental data” were the map elements that

influenced the abundance of “species” (ecological, environmental,

and anthropic variables).

Linear models were then used to determine if groups of

variables (ecological, environmental, and anthropic) differed in

frequency across the different map elements identified by the

NMDS. A binomial linear regression was conducted with Map

Type as the response variable (surveillance vs. predictive) and the

number of ecological, environmental, and anthropic variables used

in the studies as predictors. An ordinal linear regression with the

“logit” function and “equidistant” threshold was conducted (62)

with Map Distribution (as a factor) as the response variable (host

vs. vector. vs. host and vector), using the package “ordinal” [version

2019.10 (63)]. Post-hoc tests were conducted, and box plots were

used to visualize variation within those map elements that were

identified as significant by the NMDS.

Results

Comparatively, certain map elements were more frequently

used across the studies assessed in this literature review. For

Map Type, there were more predictive maps than surveillance.

For Map Distribution, there were more vector (blacklegged tick)

distributions considered than human or both human and tick

distributions. Maps at the local scale were most common across

studies. All stages for Tick Life Stage were most frequently

considered vs. specific life stages. Both active and passive data

for Tick Surveillance was most frequently included in risk map

models and most studies in this assessment were based in the

United States (Table 1). The most common variable included in
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FIGURE 2

Frequency of the top 10 variables used within the 61 Lyme disease

risk map models in North American studies published between 2000

and 2022. Is abundance, Ixodes scapularis abundance; Is

occurrence, Ixodes scapularis presence/absence; Is—Bb preval =

Borrelia burgdorferi prevalence in Ixodes scapularis; LD, Lyme

disease.

TABLE 2 Non-metric multidimensional scaling (NMDS) goodness of fit

results of map elements classifying studies based on the frequency of

ecological, environmental, and anthropic variables incorporated in each

risk map model (n = 61).

Variables r
2 Pr (>r)

Year of publication 0.0421 0.289

Map Type 0.2268 0.001

Distribution 0.1221 0.012

Scale 0.0350 0.372

Tick life stage 0.0415 0.811

Tick surveillance 0.0352 0.653

Country 0.0468 0.730

Variables include Year of publication, Map Type, Map Distribution, Tick Life Stage, Country.

Number of permutations= 999. Statistically significant results are in bold.

Lyme disease or blacklegged tick risk maps was temperature (n =

28 studies). Of the 10 most frequently used variables in these map

models, six were environmental variables, four were ecological, and

none were anthropic (Figure 2). The results of the NMDS analysis

suggested that there were differences in the frequency of ecological,

environmental, and anthropic variables used across Map Type and

Map Distribution (Table 2; Figure 3; Supplementary Table 5).

When comparing Map Types (surveillance vs. predictive),

the difference in use of environmental variables was statistically

significant (p < 0.0173), with predictive maps using more of

these types of variables. For both types of risk maps, anthropic

variables were rarely used (Table 3; Figure 4A). Comparing across

Map Distributions, studies that included host distributions in risk

models considered more anthropic variables than studies that

included vector distributions (p < 0.0152). Meanwhile studies that

included both host and vector distributions tended to include more

ecological variables (p < 0.0291; Table 4; Figure 4B). There was no

significant difference across Year of publication, Surveillance Type

used, Map Scale, Country of study origin, or Tick Life Stage focused

on in studies (Table 2).

Discussion

Although there is a plethora of literature dedicated to

identifying factors that can influence an individual’s risk for Lyme

disease via tick vectors directly and indirectly (48, 64, 65), risk maps

that demonstrate the spatial breadth of these risks are less common.

The results of this review have shown that within this subset of

risk maps, there is no standardized risk score, or variable being

used across studies. Temperature was the most common variable

used in risk map models, however, it was included in less than

half of the risk maps considered. There is extensive research on the

relationship between blacklegged ticks and temperature, as it affects

a tick’s development, survival, and host-seeking behavior (19, 66,

67). These are significant factors that influence tick abundance and

distribution, and therefore influence the distribution and incidence

of Lyme disease (19, 68). In general, the most common variables

included in Lyme disease (or blacklegged tick) risk map models

were environmental and ecological, while anthropic were lacking.

It should be noted that certain studies, such as Slatculescu et al. (69)

consideredmany anthropic variables, including population density,

walkability scores in an urban setting, median income, and drew

conclusions about the contribution of an individual’s variability on

their Lyme disease risk, however, they did not express these results

spatially in a risk map model. Similarly, several other ecological

variables often studied and considered influential to Lyme disease

and/or blacklegged tick distributions were rarely included in these

risk map models. For instance, blacklegged tick distributions are

affected by reservoir and migratory host distributions (36, 70)

while Lyme disease distributions can be influenced by the genetic

diversity of B. burgdorferi strains (49, 71). Without considering

these variables within risk map models, it is difficult to determine

how reliable these risk maps truly are.

Depending on the Map Type and Map Distribution used,

studies significantly differed in the number of ecological,

environmental, and anthropic variables used to produce risk maps.

Studies that utilized different Map Types also significantly varied

in their usage of environmental variables, where studies that

produced predictive maps used this group of variables more often.

Interestingly, predictive map studies also used anthropic variables

less often. This suggests that when research focuses on future

scenarios, they are reliant on how the environment may change,

but do not consider human behavior. Although it is difficult

to assess future trends in human behavior, it is still possible to

include anthropic variables such as socio-economic status and

demographic information (22) to gain a better understanding of

the patterns in human attributes that could influence their risk for

Lyme disease.

Across Map Distribution types, studies that included host

distributions in their risk maps had more anthropic variables than

other distributions (vector only or host and vector distributions).

Risk maps that included vector only or both host and vector
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FIGURE 3

Non-metric multidimensional scaling (NMDS) analysis of map elements classifying studies based on the number of ecological, environmental, and

anthropic variables incorporated in each study included in this review (n = 61). Variables displayed are significantly distinct variables across

studies—Map Type (surveillance vs. predictive), Map Distribution (vector vs. host vs. vector and host), and Map Scale (local, regional, national). Studies

that developed Predictive risk maps are in yellow, and studies that developed Surveillance risk maps are in blue.

TABLE 3 General linear model results for Map Type ∼ anthropic +

environmental + ecological, where family = “binomial” and the

independent variables are counts (the number of variables in each

category).

Variable
type

Estimate Standard
error

z value Pr (>|z|)

(Intercept) 0.5878 0.8051 0.730 0.4653

Anthropic 0.7311 0.6579 1.111 0.2665

Environmental −0.6633 0.2129 −3.115 0.0018

Ecological 0.6571 0.5070 1.296 0.1950

Null deviance = 81.772 on 60 degrees of freedom, residual deviance = 64.676 on 57 degrees

of freedom. AIC: 72.676, n= 61. Statistically significant results are in bold.

distributions tended to include more ecological variables. As

most host distributions in these risk map models were human

distributions, it is logical for human attributed variables to be

included in these models. Meanwhile, research that incorporated

both host and vector distributions, or only vector distributions

may be more likely to include variables from the environment,

as they are less directly focused on Lyme disease risk for humans

specifically. Rather, they use the result of their risk map model

that included disease vector distributions to indirectly make

conclusions for public health risks (18, 19, 42).

This review was limited to research that included risk maps

as results within a study, excluding studies that included maps

within introductions and methods for context. In some cases, a

single variable (e.g., tick distribution) was used as a proxy for Lyme

disease distribution and correlated with environmental or human-

related data [e.g., forest cover, urban development; (36, 72)]. Other

studies considered several variables, but these distribution models

were not applied to develop risk maps (38, 73). It should also be

noted that despite only 20 incidences of human-related variables

being included in these studies’ models overall (Table 5), more

recent research has begun to consider general public influence

within their studies by including citizen science or “Google trends”

to determine blacklegged tick and Lyme disease distributions (37,

89, 90). Other human demographic data can be acquired through

public government agencies such as population densities and

household incomes (69, 74–76). More personal and individualistic

information can be acquired via questionnaire surveys (22, 42, 45,

46).

There is a clear understanding that environmental factors

heavily influence the distribution of diseases and their vectors

(21, 52, 77, 78). However, very few studies consider that

human related factors may also influence these distributions

(22, 69). Further, human population growth, urbanization, and

travel can affect vector-borne distributions (3), particularly

when human movement or land development influences animal

movement, effectively altering the host dynamics of tick vectors

(79, 80). This is concerning, as the risks related to Lyme

disease directly affect human health, and human behavior can

affect infection rates (46, 69, 81, 82). Predictive Map Type

risk maps especially ignore how human-related factors may

influence Lyme disease risks for humans, and this may be due

to studies focusing on B. burgdorferi distribution rather than

infection rates.

Overall, it was found that risk maps that focused on Lyme

disease and blacklegged tick distributions differed across the

types of variables used according to the study goal and intended

use of the map. Because of these inconsistencies, it is difficult
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FIGURE 4

Frequency of ecological, environmental, and anthropic variables used across studies (n = 61) for varying map elements: (A) Map Types—predictive

(future scenario; n = 24) and surveillance (current distribution; n = 37), and (B) Map Distributions—host (n = 15), vector (n = 15), vector (n = 32), or

both vector and host (V & H; n = 14).

TABLE 4 Cumulative link model results for map distribution ∼ anthropic

+ environmental + ecological, where link = “logit,” threshold =

“equidistant” and the independent variables are counts (the number of

variables in each category).

Variable
type

Estimate Standard
error

z value Pr (>|z|)

Anthropic −1.7432 0.6016 −2.897 0.00376

Environmental −0.3410 0.1790 −1.905 0.05681

Ecological 1.0577 0.4504 2.348 0.01887

Threshold-

coefficients

Threshold −1.1201 0.7432 −1.507 –

Spacing 2.9951 0.4817 5.657 –

logLik=−51.82, AIC= 113.64, n= 61. Statistically significant results are in bold.

to compare and validate these models to accurately forecast

Lyme disease risks geographically or temporally. At the same

time, geospatial data related to anthropic factors can be difficult

to acquire. Our results bring attention to the fact that there

is no consistent “risk” variable or assessment across studies,

likely because these studies tend to vary in specific objectives,

despite the general intent of public health intervention. For

this reason, risk maps should be scrutinized more thoroughly.

As our knowledge on blacklegged ticks and B. burgdorferi

increases, we must continually re-assess how risk models have

predicted their geographic distributions over time. Differences

in tick exposure patterns and Lyme disease risk is likely across

regions and can depend on the scale and socioeconomic factors

included in the assessment (69). Future studies should consider

improvements for forecasting these risks, as well as exploring risk

assessments beyond comparison of blacklegged ticks and Lyme

disease. Expanding the scope to other tick-borne diseases or co-

infections of other bacteria including Babesia and Anaplasma

TABLE 5 List of peer reviewed articles included in the literature review

that incorporated anthropic variables in their risk assessments where a

map was produced as a result.

Paper ID Anthropic variables
used

References

MP9 - Human population density Lieske and Lloyd (74)

MP15 - Human population size

per county

Bisanzio et al. (76)

MP18 - Household income Little et al. (75)

MS3 - Age and sex of Lyme

disease patients

Tutt-Guerette et al. (84)

MS8 - Human population density

- Hiking behavior and Lyme

awareness survey

Tadiri et al. (45)

MS12 - Human population size per

census division

Gasmi et al. (85)

MS17 - “Lifestyle” categories based

on surveys

Ozdenerol et al. (42)

MS18 - Sociobehaviours; preventive

behavior score, knowledge

score, and risk perception

score

- Human population density

Bouchard et al. (22)

MS21 - Behavioral risk factors

- Reported tick exposure (by

survey respondents)

Aenishaenslin et al. (46)

MS25 - Human population density Self et al. (86)

MS26 - Human population density Glavanakov et al. (87)

MS28 - Human population density

- Google trends for Lyme

disease focused key words

Kutera et al. (88)

MS35 - Human population density Diuk-Wasser et al. (36)

MS36 - Human population density Larsen et al. (72)

Specific anthropic variables are described below along with their source.
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sp. (16, 83) may demonstrate further patterns with spatial

risk models.
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