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Urbanization is an inevitable process in human social progress; additionally, the
ecological environment is the carrier and foundation of human social development.
Considering central Shanghai, China, as an example, this study quantitatively analyzed
the coupling coordination relationship between urbanization and the ecological
environment based on urban functional zones; remote sensing images, Open Street
Map roads, and point of interest data were analyzed for the urban functional zones
via the remote sensing-based ecological index (RSEI), comprehensive nighttime
light index (CNLI), and coupling coordination degree (D). The results revealed that
urban functional zones in central Shanghai were mainly mixed functional zones and
comprehensive functional zones, which formed a spatial structure that gradually
radiated outward from the urban core. Additionally, CNLI values were high; the
proportion of CNLI between 0.6 and 1 was 94.37%. Moreover, the RSEI showed spatial
di�erentiation; it was low in the center and gradually increased outward. Additionally,
D was at the primary coordination level. The coupling coordination type in the core
area corresponded to an ecological environment lag, which gradually transitioned
to a state of systematic balanced development from the core area outward, but
showed sluggish urbanization in some areas. This quantitative analysis of the
coupling coordination between urbanization and the ecological environment based
on urban functional zones provides e�ective scientific references for optimization of
spatial planning.
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1. Introduction

China has been open to the world since reforms more than 40 years ago. During this period,
the urbanization rate has increased from 17.92% in 1978 to 63.89% in 2020 (1). Urbanization
is the driving force of socio-economic development and promotes population transformation,
industrial restructuring, industrial development, scientific and technological progress, cultural
exchange, and more. However, with the advancement of urbanization, highly concentrated
populations and the rapid expansion of construction land have led to changes in species richness,
climate, vegetation phenology, air quality, water quality, human settlements, and the marine
environment (2–15). Ecological and environmental problems have gradually come to the fore
and seriously affect the sustainable development of the region. Nevertheless, these issues have
gradually become the basic conditions that restrict urban sustainable development. Therefore,
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analyzing the coupling coordination between urbanization and the
ecological environment has become a critical issue in the field of
sustainable urban development.

In 2015, the United Nations adopted the 2030 Global Sustainable
Development Goals (SDGs), which aim to make cities and human
settlements inclusive, safe, resilient, and sustainable (16). In 2021,
China’s 14th Five-Year Plan explicitly called for a new, improved
urbanization strategy that enhances the quality of urbanization
development. This new urbanization strategy includes accelerating
the citizenship of transferred agricultural populations, improving the
spatial layout of urbanization, and comprehensively upgrading the
quality of cities (17, 18). Sustainable cities and human settlements
focus on sustainable development, and new urbanization prioritizes
ecological livability and harmonious development. Therefore, their
goals are highly compatible. The relationship between urbanization
and the ecological environment is an important element of both
sustainable cities and human settlements and new urbanization.

Research on the coupling coordination between urbanization
and the ecological environment has mostly focused on geography,
urban planning, ecology, environmental science, and economics.
Related theories include the environmental Kuznets curve, planetary
boundaries theory, tele-coupling theory, sustainable livelihood
framework, STIRPAT model, meta-coupling framework, and
coupling coordination degree model (19–24). Studies have examined
the national, regional, urban agglomeration, provincial, and city
scales (19, 25–28). Research methods have included system analyses,
mathematical models, and GIS spatial analyses. These studies have
mainly focused on the coupling coordination relationships between
urbanization and ecological environmental quality, ecological risk,
ecological security, ecosystem service value, ecosystem health, geo-
ecological environment, and energy efficiency (29–40). Exploring
the coupling and coordination relationships between urbanization
and the ecological environment can aid in understanding the
spatial differentiation and development status of these two factors,
which is important for the effective use of geographical location
advantages, reasonable urban development planning, and sustainable
regional development.

Although previous studies have analyzed the coupling
coordination relationship between urbanization and the ecological
environment at various levels and scales, certain limitations remain.
Most previous studies constructed indicator systems based on
socio-economic statistical data, which results in tedious and time-
consuming evaluation processes (19). Moreover, the caliber of
socio-economic statistics leads to poor spatial resolution of the
research results; thus, they cannot reflect coupling coordination
relationships at the pixel level (41, 42). Additionally, previous studies
have mainly focused on national, regional, urban agglomeration,
provincial, and city scales but have failed to express spatial locations
and interrelationships of the various functional elements within cities
in detail, so that suggestions for optimizing the urban spatial pattern
could not be provided (25–27, 41, 42). Furthermore, urbanization
in previous studies mainly refers to the urbanization of geographic
space, whereas, other studies show that population urbanization
provides the largest contribution to urbanization (43). Moreover, few
studies have explored the impacts of population urbanization on the
ecological environment.

Owing to recent developments, satellite remote sensing has
become an effective assessment method for regional urbanization

and the ecological environment by remedying defects, such as poor
timeliness and low spatial resolution, in socio-economic statistics.
Moreover, each city is a complex whole composed of various
types of urban functional zones, and the proportion and spatial
differentiation characteristic of each functional zone notably affect
their operation efficiency, which in turn affects the socio-economic
development of the city (44). As the core city of the Yangtze River
Delta urban agglomeration, Shanghai has been the most affected
by urban diseases and ecological and environmental problems due
to its high population density, rapid expansion, severe pollution,
and high-risk resource and environmental security threats (45).
Therefore, considering central Shanghai as the study area, this
study combined population urbanization and geographic space
urbanization and quantitatively analyzed the coupling coordination
relationship between urbanization and the ecological environment at
the pixel level based on urban functional zones.

Overall, this study aimed to accurately identify urban functional
zones based on Open Street Map (OSM) road data, point
of interest (POI) data, and kernel density estimation methods.
Additionally, we examined the spatial patterns of various parameters.
The comprehensive nighttime light index (CNLI) was calculated
based on nighttime lighting data to reflect the urbanization
level throughout geographic space. The remote sensing-based
ecological index (RSEI) was calculated based on the normalized
difference vegetation index (NDVI), land surface temperature (LST),
wetness (WET), and normalized difference bare soil index (NDBSI)
to reflect the quality of the regional ecological environment.
Furthermore, we aimed to analyze the coupling coordination
relationship between urbanization and the ecological environment
based on urban functional zones via the coupling coordination
degree model.

2. Materials and methods

2.1. Study area

The municipality of Shanghai is the international economic,
financial, and trade center of China (Figure 1). Shanghai is located
on the west coast of the Pacific Ocean, between 105◦17

′

E-110◦11
′

E
and 28◦10

′

N-32◦13
′

N. Central Shanghai includes the Huangpu,
Xuhui, Changning, Jing’an, Putuo, Hongkou, and Yangpu Districts
and the Pudong New Area (within the outer ring only), which is
a highly urbanized area with a compact urban spatial form, high
population density, economic vitality, and convenient transportation.
Therefore, central Shanghai is a typical and representative area
for studying the coupling coordination relationship between
urbanization and the ecological environment based on urban
functional zones.

2.2. Data processing

Considering the research goals and data accessibility, the
data utilized in this study included OSM road data, POI data,
remote sensing image data (Landsat 8 OLI TIRS, NPP-VIIRS, and
Worldpop), and administrative division data. The details are shown
in Table 1.
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FIGURE 1

Location of the study area (A) China, (B) Shanghai, and (C) central Shanghai.

TABLE 1 Data sources and descriptions.

Data types Data descriptions Time Data sources

OSM Roads 2020 OpenStreetMap

POI Point 2020 AMAP Data Open Platform

Landsat 8 OLI TIRS 30 m 2020.07-2020.08 United States Geological Survey

Population 100 m 2020 https://www.worldpop.org

NPP-VIIRS 500 m 2020 https://www.ngdc.noaa.gov

Administrative division Boundaries 2022 http://xzqh.mca.gov.cn/map

2.3. Methods

2.3.1. Identification of urban functional zones
2.3.1.1. Dividing research units based on OSM road data

OSM data were used to divide the city into different research
units. The specific process was as follows: First, based on OSM road
classification data, motorway, trunk, primary, secondary, tertiary,
residential, and unclassified roads were selected and classified as OSM
roads I, II, III, and IV. Road network data was obtained via processing
the extendline, trimline, and topological check. Subsequently, 40-, 20-
, 10-, and 5-m buffers were generated according to the respective road
classes, and the buffers were removed from the study area (46, 47).
Finally, research units with small areas were discarded to generate
the independent research units.

2.3.1.2. Kernel density estimation of POI data
The POI data obtained by AMAP Map has issues such as cross

duplication; therefore, it is necessary to eliminate duplicate data

based on their attributes. Using the Urban Land Classification and
Planning and Construction Land Standard (GB_50137-2011) as the
standard, and considering the actual situation in central Shanghai, the
POI data were divided into six major categories, namely residential,
industrial, commercial, public, science and education, and green
square. The division criteria are detailed in Table 2 (48).

Kernel density estimation (KDE) is an empirical probability
density function used to estimate smoothing; its development is
based on the first law of geography, which reflects the regularity of
spatial location information and distance decay. KDE is widely used
in urban public service evaluation, traffic section risk assessment,
economic clustering, and other related studies (49–51). It is calculated
as follows:

f (s) =
n∑

i=1

1
h2 ϕ(

s− ci
h

) (1)
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TABLE 2 POI data classification.

Primary classification Secondary classification Quantity Proportion (%)

Commercial Shopping services, catering services, accommodation services, leisure, entertainment,
and finance

94857 28.78

Green Square Tourist attractions and park squares 2021 0.61

Industrial Corporations, industrial and mining plant, and industrial park 94146 25.56

Public Government agencies, healthcare services, and public facilities 91809 27.86

Residential Residential area and commercial residential area 21600 6.55

Science and education Institutions of higher learning, vocational colleges, middle schools, primary schools,
scientific, and educational places

25162 7.63

where f (s) is the KDE function located at position s, h is the
attenuation value (bandwidth), ci is the position of the ith POI, n
is the number of POI locations whose path distance from position
s is not higher than h, and ϕ is the predetermined kernel function.
The kernel function has minimal effect on the KDE results, whereas
the bandwidth has a notable effect. The larger the bandwidth, the
smoother the kernel density surface, masking hot spots in the study
area and obscuring their features. When the bandwidth is too small,
the kernel density surface becomes uneven, which can reveal fine local
features but cannot ensure continuity and correlation in large-scale
data, leading to fragmented result patches (52).

2.3.1.3. Identification of urban functional zones
Based on the KDE of the POI data and research units divided by

the OSM road data, the frequency density (Fi) of each type of POI
within each research unit was calculated. Among them, the weights
of residential, industrial, commercial, public, science and education,
and green square were 30, 40, 15, 50, 60, and 90, respectively (53). The
formula for calculating Fi is as follows:

Fi = (Wi ∗ di)/
s∑

j=1

(
Wi ∗ di

)
∗ 100% (2)

where Fi, Wi, and di are the frequency density, weight, and kernel
density of the ith type of POI within the research unit, respectively.
When the Fi of a POI type was ≥ 50%, the unit was considered as a
single type of functional zones; when the Fi of two types of POIs in
the research unit were both between 20 and 50%, the research unit
was considered as a mixed functional zone of two types. Other units
were classified as comprehensive functional zones.

2.3.2. Calculation of CNLI
The CNLI can reflect the intensity of human activity and the level

of urbanization in a region. In this study, the CNLI was constructed
based on the average relative light intensity (I) and the ratio of the
light area to the study area (S) to characterize the level of urbanization
(54, 55) as follows:

CNLI = I ∗ S (3)

I =
∑DNM

i=P (DNi ∗ ni)
NL ∗ DNM

(4)

S =
AreaN
Area

(5)

Where, DNi indicates the grayscale value of the ith image element
in the study area, ni is the total number of the grayscale image
elements in the region, P is the threshold value for error removal,
DNM is the maximum possible grayscale value, NL and AreaN are
the total number and area of image elements in the region that
satisfy the condition P ≤ DN ≤ DNM , and Area is the area of the
entire region.

2.3.3. Calculation of RSEI
The RSEI is an index for rapid and objective evaluation of

the quality of the regional ecological environment using remote
sensing data, which is between 0 and 1. The closer the RSEI
is to 1, the better the quality of the ecological environment;
the closer the RSEI is to 0, the worse the quality of the
ecological environment (56–58). The RSEI was determined by
first calculating each component index (NDVI, WET, NDBSI,
and LST) separately and standardizing them according to Table 3.
Subsequently, the first component of principal component analysis
(PC1) and related statistical results were obtained by combining the
characteristics of the four indexes; these were normalized to obtain
the RSEI.

In this table, ρRed, ρGreen, ρBlue, ρNir , ρSwir1, and ρSwir2
correspond to each band of the Landsat 8 OLI TIRS; Ts is the
land surface temperature; Ta is the atmospheric temperature,
which is generally constant and was taken as 293.16 in this
study; Ti is the brightness temperature of thermal infrared
band; a and b are constants and are−67.355 and 0.459,
respectively; ε is the surface specific emissivity; and τ is the
atmospheric transmittance.

2.3.4. Coupling coordination degree (D)
The D can characterize the interaction of two or more

systems and their coordination degree. It is mainly used
to analyze coordination levels and has widely been used in
the study of the coupling coordination relationships among
urbanization, social economy, the ecological environment,
and industrial structure (59–65). Urbanization includes both
geospatial urbanization and population urbanization. Geospatial
urbanization provides support and assurance for urbanization,
and population urbanization is the essence of urbanization.
In this study, the CNLI and population represented geospatial
and population urbanization, respectively. To explore the
coupling coordination relationship between urbanization and

Frontiers in Public Health 04 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1111044
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Luo et al. 10.3389/fpubh.2023.1111044

TABLE 3 Calculation of indicators.

Index Formula Result

NDVI NDVI = (ρNir−ρRed)/(ρNir+ρRed) (6)

WET WET = 0.1511 ∗ ρBlue + 0.1973
∗ ρGreen+0.3283
∗ ρRed+0.3407 ∗ ρNir
−0.7117
∗ ρSwir1−0.4559 ∗
ρSwir2

(7)

NDBSI IBI= { 2ρSwir1
(ρSwir1+ρNir )
−[ ρNir

(ρNir+ρRed)

+
ρGreen

(ρGreen+ρSwir1) )]}
/{

2ρSwir1
(ρSwir1+ρNir )

+[ ρNir
(ρNir+ρRed )

+
ρGreen

(ρGreen+ρSwir1) ]}

SI = (ρSwir1+ρRed )−(ρNir+ρBlue)
(ρSwir1+ρRed )+(ρNir+ρBlue)

NDBSI = (IBI + SI)/2

(8)

(9)

(10)

LST Ts = [a ∗ (1− C − D)
+ (b ∗ (1− C − D)
+ C + D) ∗ Ti − D ∗
Ta]/C
C = ε ∗ τ
D = (1− τ) ∗ [1+ (1− ε) ∗ τ ]

(11)

(12)
(13)

the ecological environment, we integrated the CNLI and population
at equal proportions (i.e., 0.5 each) into the urbanization system
and built the urbanization index. The formula for the D is
as follows:

C = {
U1∗U2[
(U1+U2 )

2

]2 }

1
2

(6)

T = α∗U1 + β∗U2 (7)

D =
√
C∗T (8)

where C is the coupling degree; U1 and U2 are the index
values of urbanization and the ecological environment,
respectively; T is their comprehensive evaluation value;
and α, β are coefficients. We considered that urbanization
and the ecological environment were equally important;
therefore, α = β = 0.5. The D is the coupling
coordination degree; the larger the D, the better the
coupling coordination degree and the more coordinated
the development level between urbanization and the
ecological environment.

3. Results

3.1. Urban functional zones

Based on the OSM road network data, central Shanghai
was divided into 6,219 research units and 20 types of urban
functional zones, including six single-type, 13 two-type mixed, and
one comprehensive functional zone types (Figure 2). The spatial
distribution of the single-type functional zones is shown in Figure 2A.
Public functional zones were the most numerous among these, at
1,666 units, which accounted for 26.79% of the total units. Figure 2B
shows the two-type mixed functional zones, the most numerous of
which were industrial-public functional zones, with 1,546 instances,
which comprised 24.86%. The comprehensive functional zones
totaled 944, accounting for 15.18% (Figure 2C). Overall (Figure 2D),
mixed functional zones and comprehensive functional zones were
predominant in central Shanghai, accounting for 54.91% of the
total units. These zones gradually decreased from the center of
the city to the perimeter, forming a spatial structure that gradually
radiates outward from the core of the city; this indicates that
the distribution of urban functional zones was reasonable, which
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helps improve the efficiency of urban operation and enhance urban
vitality. The single-type functional zones were scattered throughout
the core of the city but gradually clustered outward; this was
especially true of the industrial functional zones, which were
mainly concentrated in the Gaoqiao and Shanghai New Cao Yang
industrial parks.

3.2. Spatial patterns of the parameters

3.2.1. Comprehensive nighttime light index
The CNLI can reflect the urbanization level of a region, which

we utilized to reveal the urbanization levels in central Shanghai
from the perspective of urban functional zones. Utilizing ArcGIS,
the CNLI was divided into five classes: I (0–0.6), II (0.6–0.7),
III (0.7–0.8), IV (0.8–0.9), V (0.9–1.0). The results are shown
Figure 3A. The CNLI was high in the core of the city (with
an average value of 0.92) and gradually decreased toward the
periphery; simultaneously, it had good continuity, which indirectly
reflects the close connection between social and economic activities
and population flow within these areas. The percentages of the
II, III, IV, and V classifications were 7.51, 13.42, 26.20, and
47.24%, respectively.

3.2.2. Sensing-based ecological index
The RSEI ranged from 0 to 1 and, overall, was low in the

center of the city and gradually increased toward the periphery.
The RSEI was also divided into five classes using the equal interval
method in ArcGIS as follows: poor (0–0.2), fair (0.2–0.4), moderate
(0.4–0.6), good (0.6–0.8), and excellent (0.8–1). Figure 3B shows
that the RSEI in central Shanghai was primarily between 0.4 and
0.6; thus, the ecological environment was in moderate condition.
The RSEI in the core of the city was mostly between 0.2 and 0.4;
therefore, the ecological environment was fair in the city core. The
ecological environment quality in the periphery of the central city
was notably better than that in the core area, especially in some areas
in southeastern central Shanghai, where the ecological environment
was in excellent condition. Additionally, the area and proportion of
the five classes were separately calculated. The area in the moderate
class was 225.05 km2, comprising 51.39% of the area; the percentages
of the areas of the remaining classes in descending order were
as follows: fair (33.86%) > good (11.15%) > poor (3.16%) >
excellent (0.44%).

3.3. Spatial pattern of coupling coordination
degree (D)

The D was between 0 and 1 (Figure 4A) and was classified into
five classes using the equal interval method of ArcGIS (Figure 4B)
as follows: serious imbalance (0–0.2), moderate imbalance (0.2–0.4),
primary coordination (0.4–0.6), moderate coordination (0.6–0.8),
and high coordination (0.8–1), which accounted for 2.46, 23.32,
54.73, 18.69, and 0.80% of research units, respectively. The mean
D value in central Shanghai was 0.48, which indicates a primary
coordination level; this is closely related to the high urbanization
level and high population density in the region. In terms of the

spatial heterogeneity of the D, the core of Shanghai was generally
in a state of primary coordination. The D gradually increased from
the core area outward and gradually transitioned to the moderate
coordination level. In the eastern areas of central Shanghai, moderate
imbalance and primary coordination were predominant, indicating
that the D between urbanization and the ecological environment was
relatively low in this region. Nevertheless, some areas showed a high
degree of coordination, such as Gongqing National Forest Park and
Tongji University, which are mostly science and education, green
square, or public functional zones. Although the five types of the D
showed dispersed spatial differentiation, there were also clustering
phenomena in some areas, such as in a newly developed industrial
park, which was within the moderate imbalance level.

We integrated the CNLI and population with 0.5 to create a
unified urbanization index (U). As shown in Table 4, these values
were combined with the RSEI (E) to classify the specific types
of coupling coordination into three major categories: ecological
environment lag, sluggish urbanization, and systematic balanced
development. The results show that within central Shanghai, the
main category was systematic balanced development; the percentages
of areas with ecological environment lag, sluggish urbanization,
and systematic balanced development were 10.53, 37.28, and
52.20%, respectively.

Combined with the classification of coupling coordination
shown previously, the specific types of coupling coordination
were further classified into 15 categories. As shown in Table 4,
the proportion of areas with primary coordination-systematic
balanced development was the highest, reaching 29.32%; this was
followed by primary coordination-sluggish urbanization at 20.67%.
Only two types had a percentage between 10 and 20%, namely
moderate imbalance-systematic balanced development and moderate
coordination-systematic balanced development; all other specific
types of coupling coordination were below 10%. Figure 4C shows the
spatial characteristics of the specific types of coupling coordination;
the predominant type of coupling coordination in the core of central
Shanghai was ecological environment lag. However, this gradually
transitioned to a state of systematic balanced development from the
core area outward but showed sluggish urbanization in some areas
of Pudong New Area, Baoshan District, and Changning District.
In general, this was consistent with the actual urbanization and
ecological situation of central Shanghai.

4. Discussion

4.1. Why utilize the perspective of urban
functional zones?

Accurate identification of urban functional zones plays a
significant role in spatial planning and sustainable development
decisions at various scales (66). The coupling coordination between
urbanization and the ecological environment is an important element
of urban sustainable development (67). This study examined this
relationship through the perspective of urban functional zones
because existing studies have mostly constructed indicator systems
based on socio-economic statistics, which have poor precision.
Moreover, the research scales of previous studies have mostly
been based on countries, regions, urban agglomerations, provinces,
and cities; thus, they cannot directly reflect spatial differences in
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FIGURE 2

Classification of urban functional zones in central Shanghai (A) single-type functional zones, (B) two-type mixed functional zones, (C) comprehensive
functional zones, and (D) all functional zones within central Shanghai.

FIGURE 3

Spatial patterns of the CNLI (A) and RSEI (B) in central Shanghai.
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FIGURE 4

Spatial pattern of the D in central Shanghai (A) 3D scatter plot of D, (B) classes of D, and (C) coupling coordination classifications.

the coupling coordination relationship between urbanization and
the ecological environment within cities (19, 25–27). Additionally,
urban roads are the basis for urban development and lead to
further development; moreover, they have far-reaching influences
on socio-economic development. Hence, the parcels formed by
urban road connections are the basic units of urban planning
and give rise to urban socio-economic functions. The OSM
road data have high positioning accuracy and good topological
relationships and are widely used in network and service-zone
analysis (68), thereby enabling accurate identification of urban
functional zones. Overall, multi-source data are more reasonable
for quantitatively exploring the coupling coordination relationship
between urbanization and the ecological environment within cities
based on urban functional zones.

In summary, we divided the study area into research units based
on OSM road data and identified urban functional zones based
on POI data. Subsequently, the CNLI and RSEI were calculated
based on remote sensing image data to quantitatively analyze the
coupling coordination relationship between urbanization and the
ecological environment within each urban functional zone. This
method overcomes the limitations of previous studies, considers
the urban spatial structure composed of urban roads, and expresses
the coupling coordination at a fine scale. Moreover, exploring the
coupling coordination relationship between urbanization and the
ecological environment within a city provides effective scientific
references for formulating urban development strategies and
optimizing spatial planning; it can also effectively promote socio-
economic development and construction of an ecological civilization.

Frontiers in Public Health 08 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1111044
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Luo et al. 10.3389/fpubh.2023.1111044

TABLE 4 Classification categories for the coupling coordination of urbanization and the ecological environment.

Composite category Coordination
level

Subcategory Systematic
exponential
comparison

Subcategory Percent (%)

Coordinated development 0.8< D ≤ 1 High coordination E-U> 0.1 Sluggish urbanization 0.10

|E-U| ≤ 0.1 Systematic balanced
development

0.21

E-U<−0.1 Ecological environment lag 0.50

Transformation development 0.6< D ≤ 0.8 Moderate coordination E-U> 0.1 Sluggish urbanization 6.31

|E-U| ≤ 0.1 Systematic balanced
development

10.32

E-U<−0.1 Ecological environment lag 2.07

0.4< D ≤ 0.6 Primary coordination E-U> 0.1 Sluggish urbanization 20.67

|E-U| ≤ 0.1 Systematic balanced
development

29.32

E-U<−0.1 Ecological environment lag 4.75

Uncoordinated development 0.2< D ≤ 0.4 Moderate imbalance E-U> 0.1 Sluggish urbanization 9.03

|E-U| ≤ 0.1 Systematic balanced
development

11.60

E-U<−0.1 Ecological environment lag 2.68

0< D ≤ 0.2 Serious imbalance E-U> 0.1 Sluggish urbanization 1.17

|E-U| ≤ 0.1 Systematic balanced
development

0.75

E-U<−0.1 Ecological environment lag 0.53

4.2. Di�erences among various types of
urban functional zones

The refined urban functional zones (Figure 2) were categorized
into commercial, industrial, residential, public, green square, and
science and education functional zone types. As shown in Figure 5A,
public-dominated functional zones were predominant in central
Shanghai, accounting for 64.91% of the total units, followed
by industrial-dominated functional zones at 29.18% of the total.
Figure 5B shows differences in the CNLI among functional zones.
The CNLI was high throughout; notably, the average CNLI value
in public and industrial-dominated functional zones was above 0.90.
The mean RSEI value was ∼0.50; the RSEI was higher in residential-
and public-dominated functional zones (Figure 5C). Figure 5D shows
differences in the D among various types of functional zones. The D
of green square-dominated functional zones was the lowest, whereas
the D was the highest in public-dominated functional zones. The
D in the remainder of functional zones decreased from residential-
to industrial-, science and education-, and commercial-dominated
functional zones.

The percentages of ecological environment lag, sluggish
urbanization, and systematic balanced development in the
different types of urban functional zones were calculated to
reveal spatial patterns in the D. The results are shown in Figure 6;
note that functional zone types with low numbers were removed
from the calculation. The commercial, green square, industrial-
science and education, residential, residential-public, science and
education, and comprehensive functional zones primarily showed
sluggish urbanization. In contrast, ecological environment lag was
predominant in commercial-public, industrial-commercial, and

public-green square zones. Additionally, industrial, industrial-
public, public, and public-science and education zones mainly
showed systematic balanced development. Although comprehensive
functional zones predominantly showed sluggish urbanization,
42.06% of these zones showed systematic balanced development,
indicating that their urbanization was nevertheless coordinated with
the development of the ecological environment.

4.3. Recommendations for urban planning

The United Nations Sustainable Development Goals
(SDGs) propose that cities and human settlements should
be inclusive, safe, resilient, and sustainable. Similarly, new
urbanization is an urbanization process that harmonizes the
population, economy, resources, and environment and emphasizes
improving the capacity for sustainable urban development
(69). The coupling coordination between the development of
urbanization and the ecological environment is the core issue
for both SDGs and new urbanization. Central Shanghai is
the political and economic center of the city and has a high
level of urbanization and a highly aggregated population. As
urbanization continues to advance in Shanghai, the pressure on
the ecological environment will continuously increase. Therefore,
promoting high-quality development via new urbanization and
construction of an ecological civilization is a long-term test for
central Shanghai.

Research reveals that the impact of urbanization on coupling
coordination is 7.2 times higher than that of the ecological
environment; therefore, to improve the coupling coordination
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FIGURE 5

Di�erences in indices in various urban functional zones (A) functional zones by dominant type, (B) CNLI, (C) RSEI, and (D) D.

relationship between urbanization and the ecological environment,
increasing the quality of urbanization is important (42).
Territorial spatial planning provides a spatial blueprint for
urban sustainable development and integrates the functions and
characteristics of spatial planning; thus, it is an important tool
to improve the quality of urbanization (70). In the context of
the COVID-19 epidemic, new urbanization and the construction
of sustainable cities and human settlements should be set as
the goal; territorial spatial planning considered as the method;
urban functional zones used as the scale; the rational allocation
and renewal of the urban infrastructure and public service
facilities optimized; the coupling coordination relationship
between urbanization, population, and the ecological environment
improved; urban ecological resilience enhanced; and sustainable
development promoted.

In this study, the coupling coordination relationship in the
core area of central Shanghai primarily manifested as ecological
environment lag, indicating that its ecological spatial pattern

should be further optimized; simultaneously, public awareness
of ecological environmental protection should be further
strengthened to enhance the environmental carrying capacity
and improve regional ecological and environmental benefits. The
coupling coordination relationship between urbanization and
the ecological environment in some areas at the periphery of
central Shanghai showed sluggish urbanization. The urbanization
process in these areas should be appropriately strengthened and
its quality actively improved. Additionally, the population flow
should be reasonably guided, such that the population level can
be gradually raised to alleviate the pressure on the ecological
environment caused by high population density and traffic
congestion in the core urban area. While accelerating urbanization,
we should also consider protecting the ecological environment
by implementing precise monitoring and management policies
and maintaining the steady progress of ecological civilization
construction. Moreover, enterprises should increase their investment
in green development, thereby improving the overall environmental
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FIGURE 6

Percentage of coupling coordination classifications in each urban functional zone.

quality of the city and realizing sustainable development in
the region.

4.4. Limitations

The exploration of the coupling coordination relationship
between urbanization and the ecological environment based on
urban functional zones has certain limitations. OSM road data
have high positioning accuracy and good topological relationships;
however, in their application to urban functional zone delineation,
the grades used have an influence on the final delineation results. In
future study, we will combine OSM data with high-resolution remote
sensing image data to improve the precision of the delineation, as
well as its consistency with the spatial structure and development
pattern of the city (71). Moreover, we only analyzed the coupling
coordination relationship between urbanization and the ecological
environment in central Shanghai, which is small in scale. In the
future, this relationship can be analyzed for urban agglomerations
and other larger areas. The impact of population urbanization
on the ecological environment can also be further refined to
provide solid theoretical support for the implementation of national
strategies, such as ecological environmental protection and high-
quality development (72).

5. Conclusions

We examined central Shanghai, China, via GIS spatial analysis
and KDE using multi-source data, such as remote sensing images,
OSM roads, and POIs, and analyzed the spatial differentiation of
the coupling coordination relationship between urbanization and
the ecological environment based on urban functional zones. The

main conclusions of this study are as follows: Central Shanghai had
a high urbanization level and a moderate ecological environment
quality. Additionally, the D mainly indicated a primary coordination
level, showing a gradual increase to a moderate coordination level
from the core area outward. The specific coupling coordination
types mainly showed a systematic balanced development; ecological
environment lag, sluggish urbanization, and systematic balanced
development were found in 10.53, 37.28, and 52.20% of study units,
respectively. At the same time, different types of urban functional
zones had different coupling coordination relationships. industrial,
industrial-public, public, and public-science and education zones
mainly showed systematic balanced development.

This study examined the relationship between urbanization
and the ecological environment from the perspective of urban
functional zones, which is conducive to understanding the spatial
differentiation and development status of urbanization and the
ecological environment within cities. This perspective not only
ensures a complete and accurate urban spatial structure and plot
size, but also avoids overly fragmented divisions, providing a new
perspective for related research. Moreover, with reference to the
limitations of previous research, exploring the coupling coordination
relationship between urbanization and the ecological environment
based on the perspective of urban functional zones also provides a
breakthrough idea for future generations to perform similar research.
Additionally, this study emphasizes the importance of population
urbanization in the urbanization process, which is important
for optimizing the spatial distribution of populations and urban
planning. In subsequent research, we will integrate multi-source
data, such as high-resolution remote sensing image data, to enhance
the recognition accuracy for urban functional zones and compare
the coupling coordination relationship between urbanization and
the ecological environment at multiple scales to provide theoretical
support for hierarchical and classified territorial spatial planning.
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