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Diabetes mellitus-induced hyperglycemia is responsible for multiple pathological

ocular alternations from vasculopathy to biomechanical dyshomeostasis.

Biomechanical homeostasis is crucial to maintain the normal physiological

condition of the eyes. Biomechanical features vary in eye tissues regarding di�erent

anatomical positions, tissue components, and cellular functions. The disturbance in

biomechanical homeostasis may result in di�erent ocular diseases. In this review, we

provide a preliminary sketch of the latest evidence on the mechano-environment of

the eyeball and its possible influencing factors, thereby underscoring the relationship

between the dyshomeostasis of ocular biomechanics and common eye diseases (e.g.,

diabetic retinopathy, keratoconus, glaucoma, spaceflight-associated neuro-ocular

syndrome, retinal vein occlusion and myopia, etc.). Together with the reported

evidence, we further discuss and postulate the potential role of biomechanical

homeostasis in ophthalmic pathology. Some latest strategies to investigate the

biomechanical properties in ocular diseases help unveil the pathological changes

at multiple scales, o�ering references for making new diagnostic and treatment

strategies targeting mechanobiology.
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Introduction

Diabetes mellitus (DM) imposes a heavy economic burden worldwide with a detrimental
impact on ocular health. Chronic exposure to hyperglycemia exerts toxicity to cells
and aggravates the metabolic dysfunction in ocular tissues at both physiological and
pathophysiological scales. Glucose-rich ambiance is the major culprit of DM-related eye
diseases, which could stimulate the polyol pathway, boost the production of advanced
glycation end-products (AGEs), activate protein kinase C, increase oxidative stress, and upsurge
inflammatory pathways (1). For instance, hyperglycemic conditions promote the activity of
aldose reductase in the polyol pathway and induce chronic accumulation of sorbitol in the
lens, which further raises the osmotic pressure along with the excessive oxidative stress, and
eventually contributes to the onset of cataracts (2). Meanwhile, DM-induced hyperglycemia
could trigger subsequent ocular changes that range from the impairment of vascular supply to
the elevation of intraocular pressure (IOP). As reported, for every 10 mg/dL increase in fasting
serum glucose, IOP increases by 0.09 mmHg in men and 0.11 mmHg in women (3). The IOP
level was found to be lower in DM patients with adequate control of the blood sugar than in
those without (4). Moreover, owing to the end-organ effect of uncontrolled glucose levels, DM
has also been considered as a potential risk factor for other deleterious abnormalities such as
glaucoma (5). Therefore, maintaining biomechanical homeostasis is vital for eye health in the
context of oculopathy management including DM and glaucoma.

As the only visual sensation organ, the eye is physiologically subjected to multiple sources
of pressure, which is referred to as ocular biomechanics (Figure 1). The term “biomechanics”
defines the physical responses of biological tissues under different pressure influences (6).
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Starting with the anterior compartment, the cornea is the outermost
component of the eye globe. Exposed to the open air, the
cornea directly bears the exterior stimuli generated by atmospheric
pressure (7), eye movement (8), and tear film motion (9), etc. To
counterbalance, the internal stresses were fostered by aqueous humor
(10) and IOP (7). As the continuous tissue of the cornea, the anterior
sclera also percepts comparable stresses and strains (11). However,
the posterior sclera [peripapillary sclera and scleral canal connected
to lamina cribrosa (LC)] is mainly affected by “external” stresses
imparted by cerebrospinal fluid pressure (CSFP) from the back
of the eye globe (12). Regarding the anterior chamber angle, the
aqueous outflow is driven by the mechanical strain on the trabecular
meshwork (TM) and the shear stress arising from the circumferential
flow through the Schlemm’s canal (SC), thereby modulating the IOP
homeostasis (13). Additionally, SC and TM are also subjected to the
ocular pulse generated from either cardiac pulsation in the retina
and choroid or the pressure oscillations in the episcleral vessels (14).
The lens capsule completely encloses the crystalline lens, with its
thicker and more durable anterior capsule (toward aqueous humor)
accommodating to the IOP (15), and the posterior capsule (toward
vitreous cavity) facing the intravitreal pressure (16). The viscosity and

FIGURE 1

Schematic illustration of biomechanical homeostasis in di�erent ocular tissues. Red arrows indicate intrinsic stress formed in the globe, whereas blue

arrows represent the counterforce or “external” pressure outside the eye. Created in BioRender.com.

elasticity properties of the capsule membrane exhibit high resistance
to extrinsic mechanical strength and intrinsic deformative stress
occurring in the lens shape alterations (16). Under physiological
status, the anterior and posterior chamber is interconnected by the
iris-lens channel allowing the aqueous flow. The pressure difference
between these two chambers is relatively equilibrated, with only
<1 mmHg difference in human eyes estimated by a mathematical
model (17).

The posterior chamber of the eye is a spherical cavity filled with
gel-like vitreous humor buffering the mechanical stimuli exerted
on the lens or retina under both static and dynamic nature
(18, 19). Specifically, the vitreous chamber serves as a torsionally
oscillating sphere in the eye rotation process. The subsequent vitreous
motion would result in a small shear stress on the retina in a
radius manner (20). Bruch’s membrane (BM) is a thin acellular
lamina at the inner layer of the choroid, subjected to constant
pressure-induced mechanical stress resulting from the choroidal
flow changes resonating cardiac pulsation (21). As the physical
and biochemical barrier between the retinal pigment epithelium
and the choroid, BM facilitates metabolic transportation across
tissues via the stress-strain (22). The biomechanics at the optic
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nerve head (ONH) of the posterior orbit are regulated in a more
complex way. Anatomically, the eye and the brain are connected
by the optic nerve passing through the translaminar region and
the subarachnoid space. Biochemically, the translaminar cribrosa
pressure difference (TLCPD), formed by IOP and intracranial
pressure (ICP) across the ONH, establishes significant levels of
pressure gradient along the nerve tract (23). Meanwhile, other
properties, including orbital tissues and pia mater, are also involved
in the mechanical features imposed on the optic nerve (12). Taken
together, these features delicately manifest the regional specialization
of ocular biomechanical dynamics.

Under normal physiological conditions, the ocular biomechanics
is generally kept in a dynamic-balanced fashion, with temporary
fluctuations in stresses and strains. As the predominant and solely
modifiable risk factor in glaucoma, IOP has a clear circadian
oscillation pattern. Thus, the 24-h IOP recording is better at
reflecting the biological features of IOP (24). The normal IOP,
lying between a range of 10–21 mmHg, can be termed as “normal
resting IOP.” The normal resting IOP is influenced by multiple
extrinsic factors. Specifically, the IOP level alters with eye movement,
generally increasing in the eye upgaze phase, and decreasing in
the inferonasal gaze phase (25). Weekly and seasonal variations
of IOP are also observed (26). Notably, eyelid-related maneuvers
such as eyelid squeezing or rubbing can trigger a transient IOP
spike excessing normal range on a time scale of less than a
second (27). Here, we defined this specific type of IOP elevation
as “transient IOP fluctuation.” Under normal conditions, these
transient “attacks” would not lead to any observable functional or
structural damage. One possible speculation is that these short-term
IOP spikes are managed by some mechanical response units which
can help neutralize and prevent the potential damage caused by
pressure insults.

At the cell level, the mechanical response unit mainly refers to the
mechanosensitive channels, categorized into Na+-permeable, K+-
permeable, and non-selective cation (TRP, Piezo) channel families.
These channels serve as bandpass filters allowing transmission
of certain types of mechanical loading pressure such as tension,
stretch, shear flow, and compression at specific amplitude. Previous
studies identified the expression of Piezo and TRP family channels
in the cornea (28), TM (29), and retina (30), which exerts a
vital impact on the regulation of inflammation, oxidative stress,
cell apoptosis, and neurotransmission, etc. (31). Widely distributed
mechanosensitive channels serve as the multi-functional mechanical
transducer and play parts in maintaining ocular biomechanics. The
disruption of mechanical homeostasis initiated by the dysfunction
of mechanosensitive channels or other pathological stimuli may
exacerbate the damage to the stressed tissues, thus leading to the
occurrence and progression of ocular diseases.

Disorder of biomechanical homeostasis
in ocular diseases

Diabetic retinopathy

Diabetic retinopathy (DR) is one of the most prevalent
complications of DM. The progression of DR is associated with
chronic DM status, hyperglycemia, hypertension, dyslipidemia,
higher body mass index, and smoking (32). Recent studies

demonstrated the potential association between glaucoma and DR,
as they share several common risk factors (e.g., blood pressure,
obesity, serum total cholesterol, etc.) and pathophysiological features
(e.g., impairment of vascular supply, and neuroretina degeneration,
etc.) (33, 34). We previously confirmed that the body mass index
(BMI) is positively correlated with CSFP (35), and the latest meta-
analysis demonstrated that obesity (BMI > 30 kg/m2) was a risk
factor for non-proliferative DR. Collectively, we speculated that
the high BMI induces the elevation of CSFP, which may lead
to the dysfunction of capillary reflux and the upregulation of
retinal venous pressure. Retinal venous pressure is reported to be
increased in both DR and glaucoma (36). The elevated retinal venous
pressure causes hypoxia and tissue edema, resulting in potential
pathologic changes including microaneurysm and cotton wool spots
at the early stage of DR. Moreover, the increased retinal venous
pressure may trigger mechanosensitive channels such as TRPV4
in endothelial cells. TRPV4 activation is linked to higher BRB
permeability, and the genetic ablation of TRPV4 could efficiently
alleviate retinal edema and BRB compromise in diabetic mice (37,
38). Thus, targeting mechanosensitive channels like TRPV4 could be
a promising therapeutic strategy for the treatment of DR.

Intriguingly, the possible association between DM and
keratoconus (KC) was also reported. McKay et al. (39) proposed
a similar collagen crosslinking mechanism in the development
of both diseases, they hypothesized that DM is associated with
increased ACEs that led to inter- and intramolecular crosslinking,
thus increasing the corneal rigidity. On the contrary, KC is
characterized by decreased mechanical stiffness and secondary
corneal ectasia. Hence, excessive crosslinking in DM may protect
against KC development, but further studies are required to verify
this hypothesis.

Keratoconus

The cornea is the outermost transparent tissue of the eye,
its biomechanical properties, such as strength and stiffness,
are determined by its five composing layers, namely epithelium,
bowman’s layer, stroma, Descemet’s membrane, and the endothelium.
The imbalance of biomechanical homeostasis cross cornea
contributes to the occurrence of corneal diseases such as KC.
KC is a progressive corneal ectasia condition featured as a cone-
shaped cornea with local thinning corneal stroma. Top risk factors
of KC include family history, eye rubbing, eczema, asthma and
allergy (40). Associated with disorganization and undulation of tissue
structure, the alteration in ocular biomechanics plays an essential
role in the pathogenesis of KC. Bettahar et al. (41) reported that eye
rubbing is a considerable contributing factor in corneal degeneration
of KC patients. Rubbing action triggers several mechanical insults,
including IOP spikes, altered shear stress, and high hydrostatic tissue
pressure. For instance, vigorous rubbing can skyrocket the IOP
to more than 10 times of a normal resting IOP, generating more
dramatic pressure strain on the cornea (7). Mechano-transducers
like YAP in stromal cells and β-catenin in epithelial cells are
associated with the regulation of substrate stiffness and protease
production in KC (42, 43). A comprehensive understanding of the
mechanobiology of corneal diseases may pave the way for new
avenues for therapeutic approaches.
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Glaucoma

Glaucoma is an irreversible visual impairment disease with
substantial changes in ocular biomechanical properties. The main
risk factors for glaucoma include aging, elevated IOP, family
history of glaucoma, and high myopia (44). The biomechanical
disturbance is indispensable in the pathogenesis of glaucoma.
Moreover, the glaucomatous biomechanical stress is generated
by several ocular tissues (e.g., TM, iris, peripapillary sclera,
and ONH), which exert direct or indirect biomechanical roles
in various subtypes of glaucoma. Here, we mainly discuss the
biomechanical features of glaucoma in predominant clinical subtypes
including primary congenital glaucoma (PCG), primary angle-
closure glaucoma (PACG), malignant glaucoma and primary open-
angle glaucoma (POAG).

PCG is characterized by the abnormal anatomical structure of the
TM and anterior chamber angle, thus resulting in aqueous outflow
resistance and IOP elevation in infancy (45). With the progression of
the disease, the affected eye may display a larger cornea or eyeball
size than normal individuals, which is named “hydrophthalmos”
or “buphthalmos.” Of note, these two terms involve different
etiologies and clinical features. Hydrophthalmos mainly refers to
the enlargement of the cornea, with or without the whole eyeball
expansion. Here, we speculate that the vitreous biomechanics might
be involved in the formation of hydrophthalmos. The vitreous cavity
is full of intact, dense and regularly structured vitreous gel without
vitreous liquefaction in infancy (46), which acts as a favorable
mechanical buffer to counteract the anterior pressure derived from
the elevated IOP. The posterior segment of the eye tissues is
less susceptible to mechanical stimuli than the cornea, thus the
primary ocular deformation occurs in the cornea. However, with the
constant IOP elevation and chronic damage to the eye tissues, the
biomechanical buffering role of the vitreous cannot fully offset the
excessive pressure impacted on the still-elastic young eye, eventually
forming “buphthalmos” featured by sclera distension and eyeball
enlargement (47).

The relative pupillary block between the iris and lens is the
common mechanism of PACG. The pathogenic structural changes
include lens antedisplacement, plateau iris configuration and iris
bombe, sequentially inducing the pupillary block accompanied by
the obstruction of aqueous humor. These changes raise the pressure
difference between the posterior chamber and anterior chamber,
contributing to the angle closure and IOP elevation (48). Severe acute
angle-closure glaucoma can lead to morphological changes of lens,
known as the glaucomatous fleck, which is an irregular grayish-white
spot in the anterior lens capsule at the pupillary area. It might relate
to nutritional disorders, or direct contact between the iris and the
anterior lens capsule under a high IOP attack (49).

Malignant glaucoma is featured with the progressive elevation
of IOP and resistance to therapeutics. It is also termed as ciliary
block glaucoma, vitreous displacement glaucoma, aqueous humor
misdirection syndrome, or vitreociliary block glaucoma. Although
the underlying etiology of malignant glaucoma is not well-elucidated,
some widely-accepted theories indicate that it may result from
the anterior displacement of irido-crystalline diaphragm elicited by
the swelling, hypertrophy, or anterior displacement of the ciliary
body, or by the laxity of zonular (50). The increasing pressure
difference in these compartments blocks the normal forward passage
of aqueous humor and traps the refluxed aqueous flow in the

vitreous cavity. The excessive pressure difference between vitreous
cavity and anterior chamber escalates the anterior displacement of
irido-crystalline diaphragm, accompanied by a flattened anterior
chamber (51). Recent research proposed potential risk factors such as
choroidal expansion and anterior vitreous abnormalities inmalignant
glaucoma, subsequent confirmation still needs to be performed (52).

The prominent role of TLCPD, established by IOP and CSFP
across the ONH, is well-acknowledged in the POAG etiology.
Our previous studies identified that patients with normal-tension
glaucoma had significantly lower CSFP and a higher TLCPD
when compared with the normal subjects (53). The increased
TLCPD may contribute to the LC deformation involving astrocyte
migration, axonal bundle disorganization and extracellular matrix
alternation (54, 55). Specifically, the individual role of these two
forming ingredients is not equivalent, IOP-driven biomechanical
effects display a more dominant role than CSFP (56). Multiple
mechanosensitive channels such as Piezo, TRPV4, and TREK-
1 are proven to have biomechanical effects in glaucoma on an
experimental basis. The chemical inhibition or genetic ablation of
these channels significantly ameliorates pathological phenotypes of
optic nerve degeneration caused by IOP elevation, indicating the
potential therapeutic roles of targeting mechanosensitive channels in
glaucoma (57).

Spaceflight-associated neuro-ocular
syndrome

After a long-term spaceflight, some astronauts were bothered
by visual changes associated with ocular conditions, which were
termed spaceflight-associated neuro-ocular syndrome (SANS) (58).
The occurrence of SANS is primarily attributed to the chronic
exposure of the astronauts to the unique microgravity environment
during long-term spaceflight. Other associated risk factors include
radiation exposure, inflated ambient CO2 concentrations, high
salt diets, intense resistance exercise, nutritional disturbance, and
genetic variations in the one-carbon metabolism pathway (59, 60).
Due to the prolonged microgravity exposure, SANS is generally
characterized as fluid redistribution in the optic nerve sheath
(ONS) and cerebrospinal fluid cavity (61). The cephalad fluid
shifts occurring with weightlessness elevate the biomechanical strain
transmitted to the ONH, as evidenced by progressive papilloedema
and globe-flattening (62). To better distinguish the pathologies, a
terrestrial analog called 6-degree head-down tilt bed rest (HDTBR)
was established. After 30 days of examination, similar ocular changes
of SANS were also identified in the HDTBR model with elevated
ICP (63). Moreover, the alterations of TLCPD are also suspicious in
the development of optic disc edema with increased ONS pressure
protruding the LC anteriorly (64). Several countermeasures have
been proposed to rebalance the biomechanical homeostasis at the site
of ONH in SANS cases. A lower body negative pressure apparatus has
been used to combat the cephalad fluid shift and showed a significant
reduction of ICP in HDTBR testing (65). To rebuild the positive and
posteriorly-directed pressure gradient, a swim goggles compression
experiment was adopted to increase IOP and restore the normal
TLCPD (64). These discoveries highlight the malignant impacts of
imbalanced TLCPD induced by idiopathic intracranial hypertension,
underscoring the fundamental role of biomechanical homeostasis in
ocular health.
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Retinal vein occlusion

Retinal vein occlusion (RVO) is a constellation of hypertensive
retinopathies associated with multiple risk factors like aging, systemic
hypertension, cardiovascular disorders, hyperlipidemia, diabetes,
glaucoma, and thrombophilic mutations (e.g., antithrombin, protein
C or protein S) (66, 67). The physical obstruction of the retinal
venous system is generally induced by thrombosis, deformation of
the vein wall, and external biomechanical compression secondary
to glaucoma (68). Mechanically, it is postulated that the elevated
IOP compresses the LC and optic disc, thereby leading to the
stretching andweakening of the vessel wall, which further predisposes
the retinal vein to occlusion (69). An excessive dropout of
parapapillary choroidal microvasculature is also observed in RVO
patients (70). Meanwhile, the direct biomechanical insult of IOP
obstructs the retinal vein drainage and induces venous stasis,
consequently exacerbating the intimal proliferation in the vein (71).
Substantial evidence is required to further elucidate the underlying
biomechanical changes in RVO etiology.

Myopia

As the most common refractive condition, myopia often starts in
childhood and is manifested as short- or near-sightedness. Emerging
evidence has supported the role of nature (genetics and inheritance)
and nurture (environment and lifestyle) in the onset of myopia
(72). Specifically, the major risk factors include higher education
levels, prolonged near-work time, reduced outdoor activities, and
inherited genetic predispositions (e.g., MYP1 family, ZNF644, SCO2,
BSG, APLP2, etc.) (72–74). The biological deformation of myopia
is typically characterized by an elongated posterior scleral shell.
Severe scleral thinning in high myopia can lead to the biomechanical
deformation of the posterior scleral wall, manifested as posterior
staphyloma. It has been validated in several animal studies that the
sclera thins during experimental myopia, suggesting the distinct role
of scleral remodeling in the pathological axial elongation (75, 76).
Scleral remodeling is a process of micro-deformation in a volume-
conserving pattern, which results in the rearrangement of existing
tissue materials. In highly myopic eyes, this mechanical adaption
to the scleral tension is even greater than an equivalent IOP attack
in the aspect of globe enlargement and posterior thinning of the
eye wall (77). Besides, David et al. (78) have studied the impact of
vitreous torsional oscillation stress on the retina secondary to regular
ocular motion. They found that the high myopia eye is hypersensitive
to this chronic mechanical torsional stress, speculating it as the
underlying cause of rupture-induced retinal detachment occurred in
pathological myopia.

Discussion

Emerging evidence has associated biomechanical homeostasis
with ocular health. The biomechanical features of the anterior
segment (cornea, sclera, drainage route, and lens capsule) and the
posterior segment (vitreous, Bruch’s membrane, choroid, retina, and
optic nerve) of the eye have been documented with substantial
evidence, whereas the understanding of inner homeostasis between
different tissues remained unclear. Knowledge of these physical

interactions is pivotal not only to clarify the underlying pathogenesis
of a vast range of retinal and vitreoretinal diseases, such as DR, KC
and glaucoma, but also to optimize the surgical handling of ocular
tissues and the design of novel therapies.

Till now, the present studies of biomechanical analysis mainly
focus on glaucoma (79), DR (80) and high myopia (81). The
mainstream analytical methods of ocular biomechanics can be
summarized into three subcategories, including (1) computational
modeling (e.g., finite element modeling): a simplified model under
ideal conditions with substantial variations from real-life situations
(79); (2) microfluidic eye chips: a newly emerging 3D cell culture
system providing novel insights for biomechanical studies in vitro

(82); (3) the commercially available medical equipment (e.g., Corvis
ST and wearable IOP biosensor) for clinical assessment (83, 84).

Novel treatment approaches and concepts have been proposed
for the restoration of biomechanical homeostasis in ocular
disorders. For the anterior segment, corneal cross-linking is
widely utilized to increase corneal biomechanical resistance
in treating ectasia and KC (85). Similarly, as collagen fiber
crimping and re-alignment are observed in the development of
myopia, collagen crosslinking has also been recommended as a
potential therapeutic strategy for progressive myopia (86). For
the posterior segment, LC stiffening is a common pathology
in multiple ocular diseases like glaucoma and DR, which can
be triggered by elevated IOP and increased AGEs, respectively.
To alleviate the stresses and strains, collagenase treatment has
been investigated in human cadaver eyes for the reduction of
the biomechanical stiffness of LC (87). Besides, the posterior
segment ring implantation (e.g., intrascleral or subarachnoid
space ring) has been proposed as a potential countermeasure
to delay the LC deformation in glaucoma at the conceptional
level (12).

Altogether, biomechanical homeostasis is crucial to maintain
the physiological function of the eye. In-depth acknowledgment
of ocular biomechanics could help us better understand the
underlying mechanical properties and molecular mechanisms
in different ophthalmic conditions, further providing novel
diagnostic methods and countermeasures from the perspective
of mechanobiology.
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