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Background: Obstructive sleep apnea (OSA) is associated with impaired sleep

quality and autonomic dysfunction. Adenotonsillectomy significantly improves

subjective and objective sleep quality in children with OSA. However, the

postoperative changes in heart rate variability (HRV) indices (indicators of cardiac

autonomic function) and their importance remain inconclusive in childhood OSA.

This retrospective case series aimed to investigate the association of sleep HRV

indices, total OSA-18 questionnaire score (a subjective indicator of sleep quality)

and polysomnographic parameters (objective indicators of sleep quality), and

e�ects of adenotonsillectomy on HRV indices, total OSA-18 questionnaire score

and polysomnographic parameters in children with OSA.

Methods: Seventy-six children with OSA were included in baseline analysis,

of whom 64 (84%) completed at least 3 months follow-up examinations

after adenotonsillectomy and were included in outcome analysis. Associations

between baseline variables, and relationships with treatment-related changes

were examined.

Results: Multivariable linear regression models in the baseline analysis revealed

independent relationships between tonsil size and obstructive apnea-hypopnea

index (OAHI), adenoidal-nasopharyngeal ratio and very low frequency (VLF) power

of HRV (an indicator of sympathetic activity), and normalized low frequency

power (an indicator of sympathetic activity) and OAHI. The outcome analysis

showed that adenotonsillectomy significantly improved standard deviation of all

normal-to-normal intervals, and high frequency power, QoL (in terms of reduced

total OSA-18 questionnaire score), OAHI and hypoxemia. Using a conceptual serial

multiple mediationmodel, % change in OSA-18 questionnaire score and % change

in VLF power serially mediated the relationships between change in tonsil size and

% change in OAHI.
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Conclusions: The improvement in OAHI after adenotonsillectomy was serially

mediated by reductions in total OSA-18 questionnaire score and VLF power.

These preliminary findings are novel and provide a direction for future research

to investigate the e�ects of VLF power-guided interventions on childhood OSA.

KEYWORDS

adenotonsillectomy, children, heart rate variability (HRV), mediation, obstructive sleep

apnea, quality of life

1. Introduction

Over 4% of children worldwide suffer from obstructive

sleep apnea (OSA) (1). OSA, characterized by snoring and

abnormal breathing during sleep, is a chronic disorder with

many comorbidities, including cardiovascular sequelae (2) and

cognitive/behavioral problems (3). OSA considerably reduces sleep

quality in children (4). Furthermore, childhood OSA has been

associated with hypofunction in brain autonomic control regions

(5), which can influence heart rate and heart rate variability

(HRV) by the interposition of cortico-subcortical pathways to the

sympathetic nervous system (SNS) and parasympathetic nervous

system (PNS) (6).

Unlike clinical signs and symptoms, which are often direct

presentations of a disease, HRV reflects more indirect underlying

pathophysiological process, either causal, mediating, or reactive,

which allows measurements of the HRV to serve as a biomarker

in a wide range of health conditions (7). Time domain and

frequency domain HRV analysis on electrocardiograms are useful

for diagnosing different clinical and functional conditions (8). For

example, 24-h HRV indices are significantly associated with sleep

disturbance and depression symptoms of medical students (9). In

children with OSA, sleep fragmentation, arousal, and hypoxemia

may increase SNS activity (10). However, sleep stage-specific

HRV measurements have shown significantly downregulated PNS

activity in children with sleep-disordered breathing (11). Studies on

HRV in children with OSA have reported inconsistent results (12–

14), and thus further investigations on cardiac autonomic function

in this population are warranted.

Hypertrophy of adenoids and tonsils is the most common

cause of upper airway obstruction in children (15), and

adenotonsillectomy is the first-line treatment for childhood

OSA (12, 16). Adenotonsillectomy significantly reduces the

severity of OSA in terms of apnea-hypopnea index (AHI)

and sympathetic activity (17) and sustainably improved

quality of life (18). However, approximately 70% of children

have residual OSA (19), which still threatens children’s

health. Further, changes in OSA-related HRV indices are not

related to changes in AHI and hypoxemia (14). Accordingly,

the aims of this study were to evaluate the reproducibility

of sleep HRV analysis, the associations of sleep HRV

and sleep quality, and the changes in HRV indices after

adenotonsillectomy in children with OSA, and understand

how these changes relate to adenoid-tonsil size and improvements

in polysomnographic parameters.

2. Materials and methods

2.1. Study participants

The Institutional Review Board of Chang Gung Medical

Foundation approved this retrospective case series (No.

202200882B0). The requirement for written informed

consent was waived because the current study was based on

a secondary analysis of existing data. This study followed the

World Medical Association’s Declaration of Helsinki and the

Strengthening the Reporting of Cohort Studies in Surgery

guidelines (20).

We included consecutive children who underwent

adenotonsillectomy for OSA at Chang Gung Memorial

Hospital, Linkou Main Branch (Taoyuan, Taiwan) between

March 1, 2017 and September 30, 2021. The inclusion

criteria were: (1) age 5–12 years, and (2) obstructive

AHI (OAHI) ≥ 2.0 events/h or obstructive apnea index

(OAI) ≥ 1.0 events/h (21, 22). The exclusion criteria were

(1) patients with craniofacial, neuromuscular, or chronic

inflammatory disorders (23, 24), or (2) patients without

available polysomnographic data. All the children underwent

extracapsular tonsillectomy with tonsillar pillar suturing and

adenoidectomy that aimed to improve the upper airway

obstruction by the principal investigator (L-AL) in a single

stage under general anesthesia (25). Children with follow-up

polysomnographic data were included in outcome analysis

(Figure 1).

2.2. Clinical variables

Age, sex, body mass index (BMI), tonsil size,

adenoidal-nasopharyngeal ratio (ANR) and evening blood

pressure (BP) (2, 26), OSA-related quality of life, and

polysomnographic parameters were recorded. All the clinical

measurements were performed before and at least 3 months

after adenotonsillectomy.

The tonsils were graded with a size scale from 1–4 (1: tonsils

within the tonsillar; 2: tonsils visible outside the anterior pillars; 3:

tonsils extending three-quarters of the way to the midline; 4: tonsils

meeting at the midline) (27).

The ANR (distance from the point of maximal convexity of the

adenoid shadow/the distance between the posterior border of the
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FIGURE 1

Flow diagram. OSA, obstructive sleep apnea.

hard palate and the anteroinferior edge of the sphenobasioccipital

synchondrosis) was measured on neck lateral view (28).

2.3. Sleep quality

2.3.1. Subjective measurement
All parents evaluated their children’s OSA-related quality of life

using the Chinese version of the OSA-18 questionnaire (29), which

includes 18 items grouped into 5 domains: sleep disturbance (4

items), physical suffering (4 items), emotional distress (3 items),

daytime problems (3 items), and caregiver concerns (4 items). Each

item was scored using a 7-point ordinal scale. The total score was

calculated as the sum of the 18 items (overall range, 18–126) and

has been shown to have excellent test-retest reliability (30).

2.3.2. Objective measurement
All participants underwent full-night, in-laboratory

polysomnography (Nicolet Biomedical Inc., Madison, WI,

USA) (23). OAHI, OAI, arousal index, mean blood oxygen

saturation (SaO2), minimal SaO2, sleep stages and total sleep time

were scored and manually verified by the study investigators (L-PC

and Y-SH) using a standard approach of the American Academy

of Sleep Medicine (31). For example, the AHI was calculated by

dividing the sum of all apneas (defined as a ≥ 90% reduction in

airflow for a duration of ≥ 2 consecutive breaths) and hypopneas

(defined as a ≥ 30% reduction in airflow in association with

electroencephalographic arousal or a ≥ 3% reduction in SpO2

for a duration of ≥ 2 consecutive breaths) by the hours of total

sleep time.

2.4. Sleep heart rate variability analysis

Electrocardiographic polysomnography signals were analyzed

using HRV software (profusionSLEEPTM, version 4.5, build 502,

Compumedics, Abbotsford, Australia). For artifact correction,

automated annotations of electrocardiographic signals, such as

loose leads, motion artifacts, and broken wires (32), were manually

verified by trained technicians who had been certificated by the

domestic board of the Taiwan Society of Sleep Medicine and

shown substantial-to-almost perfect reliabilities in the scoring of

respiratory events (intraclass correlation coefficients [ICCs] ranged

from 0.66 to 0.98) (33). According to standard guidelines, time-

domain indices, including standard deviation of all normal-to-

normal (N-N) intervals (SDNN), number of pairs of adjacent N-

N intervals differing by more than 50ms in the entire recording

divided by the total number of all N-N intervals (pNN50),

and square root of the mean of the sum of the squares

of differences between adjacent N-N intervals (RMSSD) were

recorded. In addition, frequency-domain indices, including total

power (0.0033–0.4Hz), very low frequency (VLF) power (0.0033–

0.04Hz), low frequency (LF) power (0.04–0.15Hz), normalized
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TABLE 1 Indices, units, descriptions, and meanings of heart rate variability.

Variable Unit Description Meaning

Time-domain indices

N-N ms Time interval between N-N heartbeats

SDNN ms Standard deviation of all N-N intervals. Total capacity of the regulation system (35)

pNN50 % Number of pairs of adjacent N-N intervals differing by more than 50ms divided by the

total number of all N-N intervals.

Increased parasympathetic activity (35)

RMSSD ms The square root of the mean of the sum of the squares of di?erences between adjacent N-N

intervals.

Increased parasympathetic activity (36)

Frequency-domain indices

Total power ms2 The variance of N-N intervals over the approximately the temporal segment

(approximately ≤ 0.4Hz)

Total capacity of the regulation system (35)

VLF power ms2 Power in very low frequency range (≤ 0.04Hz) Sympathetic activity (36)

LF power ms2 Power in low frequency range (0.04–0.15Hz) Baroreceptor activity (37)

LF% % LF power / (Total Power–VLF power)× 100 Sympathetic modulation (38)

HF power ms2 Power in high frequency range (0.15–0.4Hz) Parasympathetic modulation (39)

LF/HF ratio Ratio LF [ms2]/HF [ms2] Sympathovagal balance (34)

HF, high frequency; LF, low frequency; LF%, normalized LF power; N-N, normal-to-normal; pNN50, proportion of N-N50 divided by the total number of N-N intervals; RMSSD, square root

of the mean of the sum of the squares of di?erences between adjacent N-N intervals; SDNN, standard deviation of all N-N intervals; VLF, very low frequency.

LF power (LF%), high frequency (HF) power (0.15–0.4Hz), and

LF/HF ratio were also recorded (Table 1) (34–39).

2.5. Reproducibility assessment

Reproducibility of the HRV measurements was assessed

using ICCs (two-way random model; absolute agreement type)

from data quantified from separate sleep HRV measurements

performed at least 3 months apart in a sample of 12 children

with stable residual OSA [defined as postoperative OAHI

within (preoperative OAHI−5.6 events/h) to (preoperative

OAHI + 6.8 events/h), compatible with the upper and

lower limits of agreement of OAHI measured on the

first and second night in children and adolescents] (40).

This sample represented children who did not undergo

adenotonsillectomy. ICCs evaluated reproducibility as “poor”

(< 0.001), “slight” (0.001–0.020), “fair” (0.021–0.40), “moderate”

(0.41–0.60), “substantial” (0.61–0.80), and almost perfect

(0.81–1.00) (41).

2.6. Statistical analysis

Data were analyzed using SPSS version 25.0 (IBM Corp.,

Armonk, NY, USA) and GraphPad Prism 9.0 for Windows

(Graph Pad Software Inc., San Diego, CA, USA). Changes in

scores were calculated as postoperative minus preoperative values.

Percentage change [(change in score/preoperative value) × 100]

was calculated for variables of interest. Because all the children

underwent extracapsular tonsillectomy, the change in tonsil size

was equal to the negative value of tonsil size and used for further

statistical analysis.

Using the Shapiro-Wilk test to examine normality, descriptive

statistics were expressed as mean (standard deviation) for

normally distributed continuous variables, median (interquartile

range [IQR]) for skewed variables, and number (proportion) for

categorical variables.

For continuous variables, the independent-samples t-test or

Mann-Whitney U test was used to assess between-group changes;

the paired-samples t-test or Wilcoxon signed-rank test was used

to assess within-group changes as appropriate. Differences in

categorical variables between two subgroups were analyzed using

Fisher’s exact test.

To facilitate comparisons with previous studies, linear

regression models, or mediation and moderation analysis, non-

normally distributed data of reference studies were transformed

to normal after estimation from the sample size (n), median

(m), and the first (q1) and third (q3) quartiles (42, 43). The

sample standard deviation was estimated to be [(q3 – q1)

/ η] where η = η(n) = 2Φ−1[(0.75 × n – 0.125) / (n +

0.25)] (42). In addition, non-normally distributed continuous

variables were transformed to normal using a two-step approach:

fractional rank and inverse-normal transformation (44). For

comparisons with reference values, the one-sample t-test

was applied.

Relationships between variables of interest were assessed

using Pearson and Point-Biserial correlation tests as appropriate.

Multivariable linear regression models, including all variables,

with manual selection based on a probability of F < 0.05 were

used to identify independent variables. The variance inflation

factor of each predictor was calculated to adjust for intervariable

relationships within the model. The regression model was repeated

after removing all variables with a variance inflation factor ≥ 5 to

reduce multicollinearity (45).

Conditional process analysis was performed to evaluate the

mediators and moderators between changes in tonsil size/ANR
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TABLE 2 Demographics of the participants in the baseline analysis and those included and excluded from the outcome analysis.

Variable Participants
included in the
baseline analysis

Participants
included in the

outcome
analysis

Participants
excluded in the
outcomeanalysis

P valuea

N 76 64 12

Clinical variables

Age at diagnosis (years) 7 (6–9) 6 (5–9) 7 (6–10) 0.417

Male sex, n (%) 59 [78] 47 [73] 12 (100) 0.058

BMI (kg/m2) 17.4 (15.3–22.8) 17.3 (15.0–21.9) 21.1 (15.6–26.8) 0.133

Tonsil size 3 (3–4) 3 (3–4) 3 (3–4) 0.703

ANR 0.800 (0.697–0.872) 0.800 (0.710–0.864) 0.691 (0.585–0.848) 0.093

Systolic BP (mmHg) 104.2 (18.0) 103.5 (17.2) 107.9 (22.1) 0.440

Diastolic BP (mmHg) 65 (59–71) 65 (59–71) 66 (57–76) 0.825

Subjective sleep quality (assessed by the OSA-18 questionnaire)

OSA-18 score 81.3 (15.4) 81.8 (15.7) 78.4 (14.1) 0.486

Objective sleep quality (assessed by polysomnography)

OAHI (events/h) 5.5 (2.3–12.6) 5.8 (2.4–13.1) 6.3 (2.4–10.4) 0.943

OAI (events/h) 0.4 (0.1–1.5) 0.6 (0.2–1.7) 0.5 (0.18–1.5) 0.908

Arousal index (events/h) 9.8 (7.2–16.5) 9.9 (7.3–16.9) 9.0 (6.7–15.2) 0.397

Mean SaO2 (%) 97 (97–98) 97 (97–98) 97 (96–98) 0.480

Minimal SaO2 (%) 84 (90–92) 90 (84–92) 90 (83–92) 0.797

N1 sleep (%) 10 (6–15) 10 (6–16) 9 (7–14) 0.569

N2 sleep (%) 39.1 (8.6) 39.2 (9.2) 39.0 (4.8) 0.911

N3 sleep (%) 28 (22–35) 27 (22–35) 29 (23–35) 0.711

REM sleep (%) 19.3 (5.9) 19.1 (5.8) 20.2 (6.3) 0.556

TST (min) 337 (321–352) 337 (320–353) 329 (321–349) 0.437

Sleep heart rate variability indices

Heart rate (bpm) 76 (70–82) 76 (70–85) 76 (70–82) 0.770

N-N interval (ms) 791.8 (97.3) 793.7 (95.6) 781.6 (93.3) 0.694

SDNN (ms) 96.6 (32.6) 98.3 (34.1) 87.4 (21.7) 0.163

pNN50 (%) 36.9 (19.0) 37.1 (19.2) 35.8 (5.5) 0.840

RMSSD (ms) 67 (50–105) 63 (49–114) 69 (53–80) 0.680

Total power (ms2) 8688 (4614–14944) 9454 (4499–15430) 7560 (5233–9443) 0.298

VLF power (ms2) 1509 (1095–2540) 1509 (1095–2727) 1479 (895–1833) 0.340

LF power (ms2) 1236 (760–2150) 1243 (734–2507) 992 (804–1526) 0.243

LF% (%) 37 (28–47) 38 (29–48) 33 (27–42) 0.494

HF power (ms2) 2140 (1113–4228) 1970 (1103–5155) 2183 (1248–4412) 0.669

LF/HF ratio 0.59 (0.40–0.90) 0.62 (0.40–0.92) 0.50 (0.40–0.70) 0.459

Data are expressed as mean (standard deviation), median (interquartile range), or number (%).
aData were compared between participants included in the outcome analysis and those excluded using the independent-samples t-test, Mann-Whitney U test, or Fisher’s exact test as appropriate.

ANR, adenoidal-nasopharyngeal ratio; BMI, body mass index; BP, blood pressure; bpm, beats per min; HF, high frequency; LF, low frequency; LF%, normalized LF power; N-N, normal-to-

normal; OAHI, obstructive apnea-hypopnea index; OAI, obstructive apnea index; OSA, obstructive sleep apnea; pNN50, proportion of N-N50 divided by the total number of N-N intervals;

REM, rapid eye movement; RMSSD, square root of the mean of the sum of the squares of di?erences between adjacent N-N intervals; SaO2 , blood oxygen saturation; SDNN, standard deviation

of all N-N intervals; TST, total sleep time; VLF, very low frequency.
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TABLE 3 Sleep heart rate variability indices in normal controls and in children and adolescents with OSA.

Variable Our
study

Gasior’s
study
(47)

Isaiah’s
study
(14)

Muzumdar’s study (17) Nisbet’s study (13) Kirk’s
Study (48)

Publication year 2020 2020 2011 2013 2020

Nation Taiwan Poland USA USA Australia Canada

Participants OSA NC OSA M-S OSA Mild OSA M-S OSA OSA/obesity

Case number 76 312 404 18 39 29 12

Age (years) 7.2 (2.1) 10.1 (2.5) 6.0 (4.5) 4.9 (2.4) 4.3 (0.1) 4.2 (0.2) 12.8 (5.1)

Male sex, n (%) 59 (78) 159 (51) 195 (48) 13 (72) 26 (67) 18 (62) 10 (83)

OAHI (events/h) 10.2 (12.6) NA 4.6 (4.6)∗ 31.9 (24.8)∗ 3.1 (0.9) 15.5 (12.3) 13.8 (14.5)

Sleep stage FN FN FN N1, N2 N3 REM N1, N2 N3 REM N1, N2 N3 REM FN

Heart rate (bpm) 77 (9) NA NA 100 (17)a 100 (15)a 107 (16)a NA NA 82 (7)

N-N interval (ms) 792 (97) NA NA 630 (120)b 620 (100)b 580 (110)a NA NA 732 (62)

SDNN (ms) 97 (33) 54 (30) 97 (37) NA NA NA 54 (25)

pNN50 (%) 37 (19) 34 (52) 36 (24) NA NA NA NA

RMSSD (ms) 76 (38) 71 (91) 81 (45) 61 (55)b 43 (29)b 76 (57)b NA NA NA

Total power (ms2) 10,460 (7,238) 5,348 (9,534) 8,838 (6,990) NA 7,632 (5,908) 6,021 (6,145) 5,287 (4,103) 9,040 (5,905)a 6,600 (6,144) 5,827 (4,789)a NA

VLF power (ms2) 2,032 (2,284) 171 (284) 1,712 (1,186)a NA NA NA NA

LF power (ms2) 1,727 (1,457) 2,023 (3,789) 1,382 (1,186) 360 (342) 184 (148)b 307 (293) 1,298 (1,024) 758 (781) 909 (606) 1,959 (1,023)a 848 (780) 1,075 (603)a NA

LF% (%) 39 (15) NA NA NA NA NA 41 (17)

HF power (ms2) 3,149 (3,029) 3,766 (6,993) 2,742 (3,340) 902 (1,202)b 483 (497)b 412 (449)b 4,418 (3,610)a 3,985 (3,859) 2,416 (2,186)a 7,382 (3,608)a 4,126 (3,856) 2,183 (2,186) NA

LF/HF ratio 0.80 (0.66) 0.72 (0.82) 0.53 (0.36) 1.60 (2.7)a 1.20 (1.60)a 3.0 (5.4)a 0.70 (0.62) 0.40 (0.25) 1.10 (0.62) 0.70 (0.54) 0.30 (0.27)b 0.90 (0.54) 1.40 (1.18)

To facilitate comparisons with previous studies, data are summarized as mean (standard deviation) after estimation from the sample size, median, and interquartile range.
aHigher than controls, P < 0.05; bLower than controls, P < 0.05.
∗Only AHI was available.

AHI, apnea-hypopnea index; bpm, beats per min; FN, full night; HF, high frequency; LF, low frequency; LF%, normalized LF power; M-S, moderate-to-severe; N3, stage 3 sleep; NC, normal controls; N-N, normal-to-normal; pNN50, proportion of N-N50 divided by

the total number of N-N intervals; RMSSD, square root of the mean of the sum of the squares of differences between adjacent N-N intervals; SDNN, standard deviation of all N-N intervals; VLF, very low frequency.
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FIGURE 2

(A–C) Full-night heart rate variability indices in normal controls and children and adolescents with obstructive sleep apnea. Data are summarized as

means and 95% confidence intervals. aThe one-sample t-test was applied for comparisons of related samples according to the reference values of

normal control (47). bThe paired-samples t-test or Wilcoxon signed-rank test was used to compare related samples according to the original

references (14, 48). *P < 0.05 and ≥0.01; **P < 0.01 and ≥0.001. NA, not available; ND, not detected; OSA, obstructive sleep apnea; SDNN, standard

deviation of all normal-normal intervals; VLF, very low frequency.

and % changes in polysomnographic parameters using the

SPSS PROCESS macro (version 4.1) (46). Bias-corrected 95%

confidence intervals (CIs) were estimated via bootstrapping

(5,000 runs) to verify mediation, moderated mediation, or

mediated moderation. A two-sided P < 0.05 was considered

statistically significant.

3. Results

3.1. Participants’ characteristics

Seventeen (22%) girls and 59 (78%) boys with OSA (median

OAHI, 5.5 [IQR, 2.3–12.6] events/h) were included in the
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TABLE 4 Reproducibility of sleep HRV measurements in twelve children with stable residual OSA after adenotonsillectomy.

Variable Preoperative Postoperative ICC 95% CI P-value

Time-domain indices

N-N interval (ms) 803 (685–870) 829 (728–855) 0.488 −0.123–0.823 0.053

SDNN (ms) 83 (66–102) 72 (59–111) 0.553 0.011–0.846 0.026

pNN50 (%) 27 (21–47) 27 (11–47) 0.256 −0.397–0.716 0.213

RMSSD (ms) 56 (44–83) 55 (33–73) 0.471 −0.136–0.815 0.060

Frequency-domain indices

Total power (ms2) 6,012 (3,350–13,102) 4,604 (3,222–10,158) 0.483 −0.063–0.814 0.045

VLF power (ms2) 1,814 (1012–2797) 1,901 (1,006–2,393) 0.634 0.290–0.833 0.001

LF power (ms2) 935 (350–1688) 645 (391–1,377) 0.720 0.270–0.911 0.004

LF% (%) 40 (30–50) 46 (31–59) 0.557 0.034–0.846 0.023

HF power (ms2) 1,460 (677–2468) 789 (358–2,547) 0.335 −0.318–0.756 0.146

LF/HF ratio 0.67 (0.43–1.01) 1.047 (0.45–1.51) 0.725 0.237–0.915 0.001

Bold font indicates statistically significant differences (P < 0.05).

CI, confidence interval; HF, high frequency; HRV, Heart rate variability; ICC, intraclass correlation coefficient; LF, low frequency; LF%, normalized LF power; N-N, normal-to-normal; OSA,

obstructive sleep apnea; pNN50, proportion of N-N50 divided by the total number of N-N intervals; RMSSD, square root of the mean of the sum of the squares of di?erences between adjacent

N-N intervals; SDNN, standard deviation of all N-N intervals; VLF, very low frequency.

baseline analysis (Figure 1), of whom 64 (84%) were included

in the outcome analysis and 12 (16%) were not included

due to no available follow-up polysomnography. All baseline

variables were comparable between these two subgroups

(Table 2).

3.2. Sleep heart rate variability

Distributions of HRV indices in baseline analysis are

summarized in Table 2. For comparing with previous studies,

the HRV indices in this study (full-night), normal controls

(full-night) (47), children with OSA (full-night) (14), children

with moderate-to-severe OSA (N3 sleep) (13, 17), and children

with OSA/obesity (full-night) (48) are summarized in Table 3.

Comparing with three representative full-night HRV studies

(14, 47, 48), SDNN, total power and VLF power in the

children with OSA were significantly higher than normal

values (Figure 2).

3.3. Measurement reproducibility of sleep
heart rate variability

To assess measurement reproducibility, we calculated ICCs

using HRV indices measured at least 3 months apart in 12 patients

with stable residual OSA after adenotonsillectomy (Table 4).

Their variables of interest were comparable to the patients with

altered OSA (Tables 5, 6). Most HRV measurements demonstrated

moderate (N-N interval, SDNN, RMSSD, total power, LF%) or

substantial (VLF power, LF power, LF/HF ratio) reproducibility.

Further, the reproducibility of pNN50 and HF power were fair (41).

3.4. Associations between variables of
interest at baseline

Nested data structure and significant correlations were found

among the polysomnographic parameters, several clinical variables

and HRV indices (Figure 3). However, total OSA-18 questionnaire

score was not associated with variables of interest. Using

multivariable linear regression models (Table 7), male sex, OAHI

and N3 sleep were independently associated with tonsil size, and

systolic BP, OAHI and VLF power were independently associated

with ANR. Furthermore, tonsil size, diastolic BP and LF% were

independently correlated with OAHI. Table 7 summarizes the

independent associations of other polysomnographic parameters

with the variables of interest.

3.5. Changes in the variables of interest
after adenotonsillectomy

The median follow-up period was 4 (IQR, 3–6) months.

In outcome analysis, mean SaO2, minimal SaO2 and rapid eye

movement sleep significantly increased, and OSA-18 score, OAHI,

OAI, arousal index and N1 sleep significantly reduced after

adenotonsillectomy (Table 5).

Regarding HRV indices, SDNN, total power and HF power

significantly reduced after adenotonsillectomy (Table 6), and they

were still significantly different from normal values (47) (Figure 2).

3.6. Associations of percentage changes in
the variables of interest

Correlations of % changes in polysomnographic parameters

and % changes in clinical variables and HRV indices also
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TABLE 5 Clinical variables, subjective quality and objective sleep quality of the study sample by altered OSA status in the outcome analysis.

Variable All participants Stable residual OSA Altered OSA P Valuea

n 64 12 52

Clinical variables

Age at diagnosis (years) 6 (5–9) 8 (6–10) 6 (5–8) 0.132

Male sex, n (%) 47 (73) 10 (83) 37 (79) 0.490

BMI (kg/m2)

Preoperative 17.3 (15.0–21.9) 17.4 (15.3–23.0) 16.6 (14.7–21.9) 0.711

Postoperative 17.4 (15.1–22.8) 18.8 (16.4–24.5) 17.2 (15.0–22.2) 0.225

Change 4.0 (−0.4–1.4) 1.5 (−0.7–3.0) 0.4 (−0.4–1.1) 0.148

% Change 3 (−2–8) 7 (−4–16) 2 (−2–7) 0.135

Systolic BP (mmHg)

Preoperative 103.5 (17.2) 105 (100–113) 103 (94–113) 0.558

Postoperative 105.3 (15.3) 106 (96–120) 102 (94–115) 0.642

Change 1.8 (14.9) −1 (−9–10) 3 (−10–11) 0.783

% Change 3.2 (15.7) −1 (−7–10) 3 (−9–11) 0.680

Diastolic BP (mmHg)

Preoperative 65 (59–71) 61 (58–72) 65 (59–71) 0.444

Postoperative 64 (58–72) 64 (56–72) 64 (59–75) 0.530

Change −1 (−7–7) 2 (−4–14) −2 (−8–6) 0.136

% Change −2 (−11–12) 4 (−6–25) −3 (−12–9) 0.120

Objective sleep quality (assessed by the OSA-18 questionnaire)

OSA-18 score

Preoperative 81.8 (15.7) 89 (77–94) 82 (70–92) 0.404

Postoperative 52.0 (13.2) 54 (49–67) 50 (40–60) 0.127

Change −26.4 (22.7) −20 (−30–−6) −32 (−43–−14) 0.072

% Change −31 (24) −27 (−34–−3) −39 (−48–−22) 0.037

Subjective sleep quality (assessed by polysomnography)

OAHI (events/h)

Preoperative 5.8 (2.4–13.1) 5.0 (3.1–6.7) 7.7 (2.3–17.1) 0.318

Postoperative 1.4 (0.6–2.5) 3.0 (2.4–6.4) 1.2 (0.5–1.8) < 0.001

Change −3.7 (−11.2–−1.2) −1.8 (−3.4–0.9) −5.9 (−12.6–−1.6) 0.006

% Change −75 (−92–−45) −32 (−46–−20) −87 (−94–−64) < 0.001

OAI (events/h)

Preoperative 0.6 (0.2–1.7) 0.4 (0.1–1.5) 0.4 (0–1.5) 0.931

Postoperative 0 (0–0.3) 0.5 (0–0.8) 0 (0–0.2) 0.008

Change −0.3 (−1.0–0) −0.2 (−0.9–0.3) −0.3 (−1.1–0) 0.393

% Change −79 (−100–0) −55 (−98–95) −85 (−100–0) 0.185

Arousal index (events/h)

Preoperative 9.9 (7.3–16.9) 10.4 (8.0–15.5) 9.6 (7.2–17.7) 0.959

Postoperative 7.1 (6.0–9.2) 7.6 (6.0–9.0) 6.8 (6.0–9.8) 0.624

Change −2.9 (−8.9–−3.3) −2.2 (−7.3–−0.6) −3.1 (−10.7–−0.3) 0.371

% Change −33 (−53–−5) −23 (−49–−6) −34 (−53–−5) 0.667

(Continued)
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TABLE 5 (Continued)

Variable All participants Stable residual OSA Altered OSA P Valuea

n 64 12 52

Mean SaO2 (%)

Preoperative 97 (97–98) 98 (97–98) 97 (97–98) 0.508

Postoperative 98 (97–98) 98 (97–98) 98 (97–98) 0.927

Change 0 (0–1) 0 (0–1) 0 (0–1) 0.731

% Change 0 (0–1) 0 (0–1) 0 (0–1) 0.589

Minimal SaO2 (%)

Preoperative 90 (84–92) 90 (88–92) 90 (84–92) 0.904

Postoperative 92 (89–94) 91 (89–93) 92 (89–93) 0.316

Change 2 (−1–5) 1 (−2–6) 2 (0–5) 0.329

% Change 2 (−1–6) 1 (−2–6) 2 (0–6) 0.331

N1 sleep (%)

Preoperative 10 (6–16) 11 (6–16) 10 (7–16) 0.918

Postoperative 9 (7–12) 7 (6–10) 9 (7–13) 0.212

Change −2 (−9–2) −4 (−8–1) −2 (−9–3) 0.594

% Change −24 (−51–41) −30 (−55–23) −20 (−50–52) 0.439

N2 sleep (%)

Preoperative 39.2 (9.2) 46 (40–54) 39 (31–44) 0.012

Postoperative 41.6 (8.8) 47 (36–52) 41 (35–46) 0.232

Change 2.4 (10.5) 1 (−11–9) 4 (−2–10) 0.225

% Change 11.3 (32.3) 2 (−21–25) 10 (−8–32) 0.203

N3 sleep (%)

Preoperative 27 (22–35) 25 (21–28) 28 (22–37) 0.081

Postoperative 25 (21–31) 27 (20–30) 25 (21–32) 0.810

Change −1 (−8–5) 2 (−6–8) −4 (−9–4) 0.180

% Change 3 (−30–24) 7 (−18–32) −12 (−31–18) 0.235

REM sleep (%)

Preoperative 19.1 (5.8) 19 (15–22) 21 (16–23) 0.636

Postoperative 22.4 (6.3) 22 (21–26) 22 (18–27) 0.925

Change 3.3 (7.4) 6 (−1–9) 3 (−3–8) 0.564

% Change 28.4 (53.0) 27 (−7–53) 14 (−14–56) 0.667

TST (min)

Preoperative 337 (320–353) 338 (309–354) 337 (320–353) > 0.999

Postoperative 336 (321–350) 335 (278–352) 337 (321–350) 0.763

Change −6 (−32–21) −8 (−50–15) −4 (−32–23) 0.536

% Change −2 (−9–6) −3 (−13–5) −1 (−9–8) 0.547

Data are expressed as median (interquartile range) or number (%). Bold font indicates statistically significant differences (P < 0.05).

BMI, body mass index; BP, blood pressure; OAHI, obstructive apnea-hypopnea index; OAI, obstructive apnea index; OSA, obstructive sleep apnea; REM, rapid eye movement; SaO2, blood

oxygen saturation; TST, total sleep time.

revealed significant associations with nested data structure

(Figure 4). Using multivariable linear regression models (Table 8),

% changes in OSA-18 score, OAHI and HF power were

independently associated with change in tonsil size. Age at

diagnosis, male sex and % change in arousal index were

independently associated with change in ANR, and change

in tonsil size was independently correlated with % change

in OAHI.
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TABLE 6 HRV indices of the study sample by altered OSA status in the outcome analysis.

Variable All participants Stable residual OSA Altered OSA P valuea

n 64 12 52

Time-domain indices

N-N interval (ms)

Preoperative 793.7 (95.6) 803 (685–870) 786 (735–849) 0.945

Postoperative 827.0 (100.5) 829 (728–855) 828 (763–915) 0.390

Change 33.3 (108.8) −25 (−112–107) 36 (−16–96) 0.216

% Change 5.1 (13.9) −3 (−13–15) 5 (−2–12) 0.279

SDNN (ms)

Preoperative 98.3 (34.1) 83 (66–102) 102 (75–125) 0.194

Postoperative 87.9 (29.6) 72 (59–111) 85 (69–110) 0.282

Change −10.4 (30.1) −5 (−29–9) −13 (−29–13) 0.712

% Change −4.8 (33.8) −5 (−28–14) −12 (−29–10) 0.606

pNN50 (%)

Preoperative 37.1 (19.2) 27 (21–47) 38 (25–54 0.340

Postoperative 36.6 (21.5) 27 (11–47) 40 (20–53) 0.242

Change −0.5 (19.0) 1 (−24–15) −1 (−12–14) 0.612

% Change 28.7 (135.5) 5 (−55–86) −2 (−30–39) 0.843

RMSSD (ms)

Preoperative 63 (49–114) 56 (44–83) 70 (49–116) 0.371

Postoperative 61 (38–85) 55 (33–73) 64 (41–94) 0.249

Change −9 (−30–10) −2 (−36–13) −10 (−28–8) 0.891

% Change −9 (−32–22) −1 (−40–38) −10 (−32–17) 0.945

Frequency-domain indices

Total power (ms2)

Preoperative 9,454 (4,499–15,430) 6,012 (3,350–13,102) 9,505 (4,831–16,300) 0.169

Postoperative 6,437 (4,058–10,980) 4,605 (3,222–10,158) 6,739 (4,503–12,675) 0.180

Change −2261 (−5568–1741) −608 (−7189–1401) −2,606 (−5,547–1,741) 0.904

% Change −18 (−50–17) −11 (−57–32) −23 (−50–17) 0.655

VLF power (ms2)

Preoperative 1,509 (1,095–2,727) 1,345 (771–2,718) 1,535 (1,157–2,727) 0.399

Postoperative 1,485 (1,032–2,102) 1,456 (852–3,691) 1,485 (1,063–2,102) 0.823

Change 92 (−734–540) 193 (−387–990) 42 (−779–497) 0.318

% Change 3 (−41–38) 19 (−30–56) 0 (−41–36) 0.460

LF power (ms2)

Preoperative 1,243 (734–2,507) 935 (350–1,688) 1,286 (791–2,657) 0.144

Postoperative 942 (474–1,406) 645 (391–1,377) 1,022 (671–1,535) 0.279

Change −155 (−924–231) 40 (−818–206) −285 (−925–248) 0.439

% Change −9 (−63–29) 9 (−56–96) −20 (−63–19) 0.249

LF% (%)

Preoperative 38 (29–48) 40 (30–50) 38 (28–48) 0.570

Postoperative 40 (32–50) 46 (31–59) 39 (32–49) 0.327

(Continued)
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TABLE 6 (Continued)

Variable All participants Stable residual OSA Altered OSA P valuea

n 64 12 52

Change 2 (−8–13) 4 (−3–13) 2 (−10–13) 0.570

% Change 5 (−19–42) 10 (−13–33) 3 (−22–43) 0.823

HF power (ms2)

Preoperative 1,970 (1,103–5,155) 1,460 (677–2,468) 2,234 (1,113–5,353) 0.122

Postoperative 1,364 (636–3,360) 789 (358–2547) 1,624 (812–3,420) 0.164

Change −531 (−1,870–301) −284 (−1601–282) −663 (−2229–301) 0.536

% Change −26 (−66–21) −15 (−70–120) −28 (−66–15) 0.559

LF/HF ratio

Preoperative 0.62 (0.40–0.92) 0.67 (0.43–1.01) 0.61 (0.40–0.92) 0.570

Postoperative 0.70 (0.48–1.19) 1.05 (0.45–1.51) 0.66 (0.48–1.05) 0.294

Change 0.08 (−0.08–0.40) 0.16 (−0.07–0.49) 0.07 (−0.13–0.36) 0.310

% Change 13 (−12–70) 20 (−10–69) 13 (−14–72) 0.606

Data are expressed as median (interquartile range) or number (%).
aData were compared using the Mann-Whitney U test or Fisher’s exact test as appropriate.

HF, high frequency; HRV, Heart rate variability; LF, low frequency; LF%, normalized LF power; N-N, normal-to-normal; OSA, obstructive sleep apnea; pNN50, proportion of N-N50 divided

by the total number of N-N intervals; RMSSD, square root of the mean of the sum of the squares of di?erences between adjacent N-N intervals; SDNN, standard deviation of all N-N intervals;

VLF, very low frequency.

3.7. Mediation and moderation analyses

Consistent relationships between “tonsil size and OAHI” and

“change in tonsil size and % change in OAHI” were observed.

Mediation and moderation analyses were performed from change

in tonsil size to % change in OAHI, especially with regards to HRV

indices, and only a significant conceptual serial multiple mediation

model was identified: change in tonsil size (independent variable),

% change in OSA-18 score (first mediator), % change in VLF power

(second mediator), and % change in OAHI (dependent mediator)

(Figure 5). The direct paths from change in tonsil size to % change

in OAHI, change in tonsil size to % change in OSA-18 score,

change in tonsil size to % change in VLF power, change in OSA-18

to % change in VLF power, and % change in VLF power to %

change in OAHI were significant. In contrast, the direct paths from

change in OSA-18 to % change in OAHI were not significant. The

serial mediation model revealed a positive total effect (β = 65.78,

standard error = 16.71, P < 0.001). The direct effect of change in

tonsil size on % change in OAHI (β = 44.47, standard error =

18.90, P = 0.022) was significant. For the indirect effects, the first

path from change in tonsil size to % change in OAHI through %

change in OAS-18 score (effect = 12.44, 95% CI:−5.18–32.99) was

not significant. The second path through % change in VLF power

(effect = 13.74, 95% CI: 0.01–33.36), third path through % change

in OAS-18 score and % change in VLF power (effect = −4.87,

95% CI:−13.69-−0.09), and indirect effect (effect = 21.32, 95% CI:

0.39–44.30) were significant.

4. Discussion

This study is the first to report that OSA-related quality

of life and VLF power were first and second mediators of

the relationship between tonsil size and improvement in

AHI using a conceptual serial multiple mediation model.

Beyond providing important mechanistic insights, these

results suggest that VLF power could be a new target for

OSA therapy in children. For example, exercise training can

decrease VLF power over time (49) and reduce AHI (50)

in adults.

Our results confirmed the reproducibility of sleep HRV

measurements at two time points.Mostmeasures showedmoderate

or substantial reproducibility, except for pNN50 and HF power.

The possible reason for this relatively lower reproducibility may

be related to sleep stage and arousal index. To the best of our

knowledge, no comprehensive reproducibility study has reported

HRV measurements in children with OSA. Accordingly, the

interpretations of sleep pNN50 and HF power should be made with

caution in this population.

Using full-night HRV measurements, SDNN, total power, and

VLF power in the children with OSA were significantly higher

than normal values (Figure 2) (14, 47, 48). SDNN and total power

represent total capacity of the regulation system, whilst VLF power

represents sympathetic activity (36) (Table 1). Although SNS and

PNS activities both contribute to SDNN and total power, long-

term recordings have revealed that SNS activity is more related to

these indices (51). The transition between normal and pathological

respiration can enhance SNS activity rather than PNS activity in

adults with OSA (52). Additionally, the results of this and previous

studies (13, 14, 53) suggest that sympathetic activity increases

during sleep in children with OSA; however, SDNN in the 12 obese

children with OSA in this study was comparable to normal values

(47) (Table 3). This discrepancy may be explained by the patients’

weight status, since childhood obesity is significantly related to low

SDNN (54). Furthermore, this study and Isaiah’s study (14) found

that % changes in SDNN and total power were not related to %
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FIGURE 3

Associations of polysomnographic variables with clinical variables and sleep heart rate variability indices. Data are summarized as Pearson’s or

Point-Biserial rho, as appropriate. Blank spaces mean two-sided P ≥ 0.05.

change in OAHI. Therefore, these changes could not be simply due

to improvements in OAHI after adenotonsillectomy.

The baseline values and % changes in tonsil size and ANR

were not consistently associated with most HRV indices. Despite

increased ANR being related to decreased VLF power in children

with OSA, the causal relationship between adenoid hypertrophy

and reduced sympathetic activity could not be supported by the

post-operative changes. Nevertheless, our findings suggested a

positive relationship between change in tonsil size and % change in

HF power of HRV (parasympathetic modulation). We hypothesize

that tonsillectomy may directly injure or cause scar formation,

thereby reducing function of the lingual branch of the hypoglossal

nerve, interrupting baroreceptor signaling at the carotid sinus,

influencing vagus nerve function, eventually resulting in decreased

parasympathetic modulation and increased sympathetic activity

of cardiac autonomic function during sleep. This condition may

further interfere with the relationships between % change in SDNN

or total power and % change in OAHI.

Our results demonstrated significant relationships between the

change in tonsil size and % change in OAHI as well as relationships

between the change in tonsil size and % change in OSA-18 score

as previous studies (29, 55). Tonsil size has been significantly

associated with the change in OSA-18 score after tonsillectomy in

children with sleep-disordered breathing (56). Although a change

in AHI has been associated with a change in OSA-18 score (23),

we found that this association was not independent in this study.

In simple mediation and moderation models, % change in OSA-18

score neither mediated nor moderated the relationship between the
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TABLE 7 Multivariable linear regression models of independent associations of tonsil/adenoid sizes and polysomnographic parameters with other

variables in the baseline analysis.

Baseline variables Independent variables β (95% CI) VIF P value Adjusted R
2

Clinical variables

Tonsil size Male sex −0.33 (-0.60-−0.06) 1.00 0.019 0.216

OAHI 0.01 (0.001–0.02) 1.01 0.027

N3 sleep 0.02 (0.01–0.04) 1.01 0.005

ANR Systolic BP −0.003 (-0.005-−0.002) 1.14 < 0.001

OAHI 0.003 (0.001–0.005) 1.16 0.005

VLF power −0.00001 (-0.00003-−0.000003) 1.02 0.018

Subjective sleep quality (polysomnographic parameters)

OAHI Tonsil size 7.96 (3.03–12.89) 1.02 0.002 0.243

Diastolic BP 0.29 (0.02–0.56) 1.04 0.034

LF% 0.25 (0.07–0.44) 1.06 0.008

OAI OSA-18 score 0.07 (0.001–0.14) 1.00 0.049 0.119

N-N interval −0.01 (-0.03-−0.003) 1.00 0.015

Arousal index N-N interval −0.05 (-0.08-−0.02) 1.46 0.001 0.283

LF power 0.01 (0.003–0.01) 2.72 < 0.001

HF power −0.001 (-0.003-−0.0002) 2.71 0.020

Mean SaO2 BMI −0.10 (-0.15-−0.05) 1.10 < 0.001 0.228

N-N interval 0.004 (0.001–0.01) 1.75 0.001

VLF power −0.0002 (-0.0004-−0.0001) 1.84 0.007

Minimal SaO2 BMI −0.50 (-0.74-−0.25) 1.09 < 0.001 0.319

N-N interval 0.04 (0.02–0.06) 1.75 < 0.001

VLF power −0.001 (-0.002-−0.001) 1.83 < 0.001

N1 sleep pNN50 −0.22 (-0.38-−0.06) 2.08 0.007 0.146

LF power 0.004 (0.002–0.01) 2.08 0.001

N2 sleep LF power −0.002 (-0.003-−0.0004) 1.00 0.012 0.072

N3 sleep Tonsil size 3.59 (0.04–7.14) 1.00 0.048 0.123

pNN50 0.15 (0.01–0.29) 2.13 0.038

VLF power −0.001 (-0.003-−0.0001) 2.12 0.030

REM sleep Age −0.68 (-1.30-−0.05) 1.00 0.036 0.116

Tonsil size −2.88 (-5.38-−0.39) 1.00 0.027

TST LF power −0.01 (-0.01-−0.002) 1.00 0.013 0.070

ANR, adenoidal-nasopharyngeal ratio; BMI, body mass index; BP, blood pressure; CI, confidence interval; HF, high frequency; LF, low frequency; OAHI, obstructive apnea-hypopnea index;

OAI, obstructive apnea index; OSA, obstructive sleep apnea; N-N, normal-to-normal; pNN50, proportion of N-N50 divided by the total number of N-N intervals; REM, rapid eye movement;

SaO2 , blood oxygen saturation; TST, total sleep time; VIF, variance inflation factor; VLF, very low frequency.

change in tonsil size and % change in OAHI. However, in serial

mediation analysis, the relationship between the change in tonsil

size and % change in OAHI was mediated by % change in OSA-18

score and % change in VLF power in serial analysis, and also by %

change in VLF power alone (Figure 5).

VLF rhythm is a cardiac intrinsic rhythm which is essential

for health and happiness (36). Even though there is currently

no agreement on the physiological mechanisms responsible for

activity within the VLF band, low VLF power has been associated

with adverse outcomes and all-cause mortality (57, 58). This band

is generated by the stimulation of afferent sensory neurons in

the heart (59). In animal models, stressful stimulation (60) and

paradoxical sleep deprivation (61) have been shown to significantly

reduce VLF power (60). In this study, the inverse relationship

between % change in OSA-18 and % change in VLF power

suggested that reduced OSA-specific stress and sleep disturbance

may increase sleep VLF power.

However, VLF power is an independent predictor of AHI

in humans (62). VLF power is significantly elevated during

pathological respiration compared with normal respiration in OSA
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FIGURE 4

Associations of % changes in polysomnographic variables, % changes in clinical variables, and % changes in sleep heart rate variability indices. Blank

spaces mean two-sided P ≥ 0.05.

patients (52). Therefore, it is reasonable that reduced AHI may

contribute to a decrease in VLF power after adenotonsillectomy.

Our mediation model also highlighted the possibility that changes

in VLF power may influence changes in AHI in children with OSA.

Sympathetic abnormalities were shown to precede the development

of mild OSA in a cohort of adults with no known diagnosis of OSA

(63). Although further direct evidence is warranted, these studies

suggest that a reduction in VLF power may help to alleviate the

AHI in children with OSA.

Therefore, the mediation role of VLF power on the relationship

between change in tonsil size and % change in AHI is of interest.

Increasing exercise intensity can reduce awake VLF power (49),

and morning exercise can increase sleep VLF power (64) in adults.

Besides, exercise training (65) or aerobic exercise combined with

resistance training can reduce AHI in adults. Therefore, VLF power

is modifiable and may be a marker of therapeutic efficacy and a

potential therapeutic target for OSA (66). However, in children

with adenotonsillar hypertrophy, it may be unlikely that addressing

the HRV independently will improve AHI unless there is a clear

demonstration the neuromuscular tone is improved to the point

that the tonsils do not medialize during sleep. Accordingly, future

studies should focus on VLF power-lowering interventions and

their effects on the severity of childhood OSA.

4.1. Strengths and limitations

Compared with previous studies (13, 14, 17, 48), the

greatest strengths of this investigation were the inclusion of a

sample of representative and well-characterized pediatric OSA

patients. Our results provided a preliminary yet comprehensive

documentation of the relationships of HRV indices with clinical
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TABLE 8 Multivariable linear regression models of independent associations of changes in tonsil/adenoid size and % changes in polysomnographic

parameters in the outcome analysis.

Outcome variables Independent variables β (95% CI) VIF P Value Adjusted R
2

Clinical variables

Change in tonsil size % Change in

OSA-18 score

0.01 (0.002–0.01) 1.10 0.005 0.309

% Change in OAHI 0.002 (0.001–0.004) 1.11 0.005

HF power 0.001 (0.0001–0.002) 1.03 0.025

Change in ANR Age at diagnosis 0.01 (0.001–0.03) 1.06 0.030 0.203

Male sex 0.06 (0.004–0.12) 1.04 0.037

% Change in

arousal index

−0.0002 (-0.0004-−0.0003) 1.02 0.026

Subjective sleep quality (polysomnographic parameters)

% Change in OAHI Change in tonsil size 65.79 (32.37–99.20) 1.00 < 0.001 0.189

% Change in OAI None

% Change in arousal index Change in ANR −317.27 (-593.74-−40.794) 1.02 0.025 0.329

% Change in LF power 0.84 (0.49–1.18) 1.02 < 0.001

% Change in mean SaO2 Age at diagnosis −0.17 (-0.31-−0.03) 1.05 0.020 0.296

% Change in

N-N interval

−0.05 (-0.08-−0.03) 1.74 < 0.001

% Change in pNN50 0.004 (0.002–0.01) 1.78 0.002

% Change in LF power 0.004 (0.001–0.01) 1.55 0.024

% Change in minimal SaO2 None

% Change in N1 sleep % Change in LF power 0.55 (0.21–0.88) 1.00 0.002 0.138

% Change in N2 sleep None

% Change in N3 sleep % Change in LF/HF ratio 0.09 (0.002–0.18) 1.00 0.045 0.050

% Change in REM sleep % Change in VLF power −0.17 (-0.34-−0.004) 1.00 0.045 0.048

% Change in TST % Change in LF power 0.17 (0.02–0.32) 1.00 0.031 0.060

BMI, body mass index; CI, confidence interval; HF, high frequency; LF, low frequency; OAHI, obstructive apnea-hypopnea index; OAI, obstructive apnea index; OSA, obstructive sleep apnea;

N-N, normal-to-normal; pNN50, proportion of N-N50 divided by the total number of N-N intervals; REM, rapid eye movement; SaO2, blood oxygen saturation; TST, total sleep time; VIF,

variance inflation factor; VLF, very low frequency.

variables and polysomnographic parameters before and after

adenotonsillectomy, which showed some novel and interesting

findings. However, limitations should be addressed. First, the HRV

results may have been affected by certain psychophysiological

changes (e.g., anthropometrics, lifestyle factors, acute or

chronic diseases) other than adenotonsillectomy. However,

the use of standardized, full-night, in-laboratory protocols

with moderate-to-substantial reproducibility in most HRV

indices among OSA patients with stable severity reduces this

concern. Second, approximately half of our subjects received both

adenotonsillectomy and medical treatment, and the heterogeneity

of care may have had a confounding effect. Nevertheless, these

interdisciplinary treatments are closer to real-world care for

OSA, and a greater variability in AHI changes may contribute to

better generalizability of this study. Third, 3 months may not be

long enough to show cardiovascular changes, and studies with a

longer follow-up period are warranted for this young population.

Finally, in this study, there was no evidence of direct mediations

of HRV on the relationship between adenotonsillectomy and

AHI or AHI on the relationship between adenotonsillectomy

and HRV indices (14), and this may be due to difficulties in

measuring HRV across various sleep stages. Among school-age

children, excessive body movements and parasomnia (67) make

the researchers need 2-min epochs to analyze HRV and choose

sleep periods free of respiratory events and movement artifacts

(17). However, frequency-domain measurements, such as VLF

power and LF/HF ratio, often require recording periods of at least

5min (34). Therefore, measuring HRV across various stages in

our study population is challenging. Nevertheless, averages may

not be sensitive enough to detect sleep stage-specific mediating

effects. In future studies, ultra-short-term HRV measurements

during different sleep stages should be conducted to accurately

assess the impact of nocturnal HRV changes on the management

of OSA.

5. Conclusion

In conclusion, we confirmed that analysis of

electrocardiographic polysomnography signals is a reliable
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FIGURE 5

A serial multiple mediation model of the e�ect of change in tonsil

size. Data are summarized as β and standard errors. *P < 0.05 and ≥

0.01; **P < 0.01 and ≥ 0.001. Solid lines indicate significant paths,

while a dotted line indicates a non-significant path. OAHI,

obstructive apnea-hypopnea index; OSA, obstructive sleep apnea;

VLF, very low frequency.

method to measure HRV over 3 months in children with OSA.

Adenotonsillectomy either reduced AHI or sympathetic activity

during sleep. Improved OSA-specific quality of life and reduced

sleep VLF power serially mediated the relationship between the

change in tonsil size and % change in AHI. These findings suggest

that HRV measurement may help monitor the sleep quality

status and the disease burden of childhood OSA and many other

venues. Our preliminary results also support applications of

wireless HRV measurements with high-fidelity psychophysiology

acquisition using edge computing in the patient’s natural sleeping

environment to overcome the highly obtrusive effects of visiting

the sleep laboratory (68). This technology can potentially be a

“platinum standard” of sleep studies instead of the traditional “gold

standard” of in-laboratory polysomnography.
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