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West Nile virus is the most common mosquito borne disease in North America

and the leading cause of viral encephalitis. West Nile virus is primarily transmitted

between birds and mosquitoes while humans are incidental, dead-end hosts.

Climate change may increase the risk of human infections as climatic variables

have been shown to a�ect the mosquito life cycle, biting rate, incubation period

of the disease in mosquitoes, and bird migration patterns. We develop a zero-

inflated Poisson model to investigate how human West Nile virus case counts

vary with respect tomosquito abundance and infection rates, bird abundance, and

other environmental covariates. We use a Bayesian paradigm to fit our model to

data from 2010–2019 in Ontario, Canada. Our results show mosquito infection

rate, temperature, precipitation, and crow abundance are positively correlated

with human cases while NDVI and robin abundance are negatively correlated with

human cases. We find the inclusion of spatial random e�ects allows for more

accurate predictions, particularly in years where cases are higher. Our model is

able to accurately predict the magnitude and timing of yearly West Nile virus

outbreaks and could be a valuable tool for public health o�cials to implement

prevention strategies to mitigate these outbreaks.
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1. Introduction

West Nile virus (WNV) is the most prevalent mosquito-borne disease in North America

(1). The virus is transmitted from mosquitoes to humans through biting. WNV can range

from no symptoms to severe, where the illness affects the central nervous system. Only 20%

of people infected with WNV will develop symptoms while <1% of people develop severe

neurological symptoms (2, 3). It was first detected in the United States in 1999 and spread

quickly over the next 5 years across the US and Canada and has become endemic (4, 5).

Since WNV emerged in the United States, it has become the largest arboviral infection in

the contiguous United States (6). The first human case of WNV was detected in Ontario,

Canada in 2002 (7). Since then, a WNV surveillance program was implemented in Canada

to monitor WNV prevalence in humans, mosquitoes, birds, and other mammals (7). WNV

transmission occurs mainly through mosquitoes that can become infectious after biting an

infected bird (4). Humans and othermammals are dead end hosts that can become infectious

but are unable to transmit the virus back to uninfected mosquitoes (2, 4).

Many environmental factors are known to have an effect on WNV transmission as well

as on the mosquito life cycle. In a study by García-Carrasco et al. (8), WNV outbreaks were

predicted in Europe using an environmental and spatio-environmental risk model. They

found that maximum temperatures, presence of rivers, and density of horses and poultry
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were the best environmental predictors for WNV. In terms

of predicting the location of WNV outbreaks, the spatio-

environmental model which incorporates latitude and longitude

as a proxy for spatial structure predicted the best, suggesting that

bird migration rate also plays a role in the geographical pattern of

WNV. Another environmental factor that has been correlated with

incidence rates for West Nile Virus is the normalized difference

vegetation index (NDVI) (9, 10). NDVI provides an index for

healthy vegetation and serves as a proxy for suitable conditions for

mosquito development (11).

Mosquitoes carry the potential to transmit pathogens from

reservoir hosts to humans. In particular, Culex mosquitoes are the

main vectors involved in the spread ofWNV in North America due

to their preference for avian blood meals, especially the American

Robin (4, 12–14). Giordano et al. (13) found the abundance of bird

species can have unpredictable impacts on transmission of the virus

due to the feeding preferences of mosquitoes on certain vectors. In

late summer, Culex sp feeding behavior shifts away from birds to

human blood meals (15). This coincides with the peak of human

cases in most years.

Climate warming may also change the expansion of vector

hosts, leading toWNV spread and becomemore severe in new parts

of the world (16, 17). It can lead to an increase in the frequency

and intensity of extreme weather events, such as heatwaves, floods

or droughts, which could intensify the interaction between vectors,

viruses and hosts (18, 19). Drought, for example, can lead to an

increase in the abundance of mosquitoes (20, 21). In regards to

FIGURE 1

Population of Ontario by PHU.

Canada, Ludwig et al. (22) showed that as temperatures continue

to rise due to climate change, there is an increased risk of vector

borne diseases in Canada.

Public health agencies across the US and Canada collect records

on mosquito abundance and viral testing for WNV through

mosquito trap data as well as human cases (2, 7). Through

these programs, the mosquitoes are classified and counted by

species based upon geographic locations. As WNV is of great

concern, Temple et al. (23) constructed a presence/absence model

to account for viral presence in mosquitoes, while accounting for

underlying environmental variables for the presence of West Nile

virus mosquito presence. They found a higher rate of mosquitoes

in the summer, with the leading predictors found to be the

number of freezing weeks, urban landscapes and the proportion

of Culex species. However, this study was tied to mosquitoes

instead of human cases. Giordano et al. (13) conducted the first

epidemiological study of human WNV cases in Ontario using data

from 2002 to 2013 in seven of themost populous PHUs. They found

a positive correlations for temperature, cumulative precipitation,

mosquito abundance, and the minimum infection rate. This study

also found strong spatial autocorrelation of the positive mosquito

pools but did not explore any spatial structure in the human WNV

case data. We develop a statistical model for human WNV cases

to better understand the relationship between human cases and

environmental variables across the 27 PHUs in lower Ontario. We

use a zero-inflated Poisson model, which is used to model data that

has an excess of zeros.We compare a spatial and non-spatial version
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FIGURE 2

Monthly human West Nile virus cases in all of Ontario from 2010 to 2019.

of the model to assess if there is an underlying spatial structure to

theWNV counts. To our knowledge, this has not been done before.

The paper is presented as follows. In Section 2, we introduce

the WNV data in Ontario, Canada and describe the environmental

variables used in the analysis. We also present the spatial and non-

spatial zero-inflated Poisson model for modeling WNV human

cases. In Section 3 we present and compare model results forWNV.

We conclude with a short discussion on the zero-inflated Poisson

model and future use in human case disease modeling.

2. Materials and methods

2.1. Data sources

Ontario is the most populous province in Canada with just

over 15 million residents and the third largest in size spanning

1.076 million km2 (Figure 1). Ontario is divided into 34 Public

Health Units (PHUs). We collected monthly human case data

from 2010 to 2019 for each PHU from the Public Health Ontario

website (24). We focus our analysis on the 27 PHUs located in

lower Ontario as upper Ontario is sparsely populated and has

had only 8 total cases reported across all 10 years in our data

set. Most human cases are reported between May and October

with a peak in August while very few cases are observed in

the winter months (Figure 2). We observe high variability in

human cases from year to year with some years having very

few cases, for example 2010 and 2014, and others having large

outbreaks i.e., 2012, 2017. It appears some spatial correlation

may be present in the case data as the majority of cases are

clustered around Toronto (Figure 3). While severe cases are likely

to be detected, most cases will not be reported. Hence, the

WNV cases reported are only a small subset of the true number

of infections.

We collected mosquito trap data, bird abundance, temperature

and precipitation, land cover, population, and Normalized

Difference Vegetation Index (NDVI) data to be used as potential

covariates to model the humanWNV cases.

Since 2002, each PHU has used mosquito traps to obtain

information on mosquito abundance and viral testing. Officials

place light traps to attract mosquitoes and return to collect the traps

on a weekly or biweekly basis from May through October. They

record the total abundance of mosquitoes collected in the trap.

A subset of this total is then further identified by species. Then,
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mosquitoes are pooled into groups and tested for WNV in a lab.

Each pooled sample is recorded as either positive or negative. A

positive pool indicates that at least one mosquito in the pool is

positive but does not provide insight into the number or fraction

of mosquitoes in the pool that are positive. Pool sizes range from

1-60 with the majority of pools containing less than 10 mosquitoes.

To account for the differences in pool sizes, the mosquito infection

rate is often used as a proxy.

A common correction is to use the Minimum Infection Rate

(MIR) which assumes that only one individual is positive for every

positive pool. This effectively ignores the pooling information and

provides a lower bound on the infection rate. This method is

appropriate only when infections are considered to be low (25).

Otherwise, the rate tends to be too narrow as it does not reflect the

information lost in pooling. Instead, since our data contains varying

pool sizes, we use the MLE method as described in Biggerstaff (26)

which incorporates the different pool sizes in the infection rate

calculation. Using this method, we assume the number of positive

mosquito pools, Xi for i = 1, ...,M, where M is the number of

distinct pool sizes, is binomially distributed as shown in Equation 1

where ni is the number of pools of size mi, and Xi is the number of

ni pools observed that are positive.

Xi ∼ Binomial(ni, 1− (1− p)mi ) (1)

We gathered observational bird data from Cornell’s citizen

science eBird project (27). We calculated the relative abundance for

several bird species known to be good carries of WNV including

the American Robin, House Sparrow, and American Crow (28).

Relative abundance is used to correct for the inherent sampling

bias present in the eBird data. Kilpatrick (29) found abundance

of bird species can have unpredictable impacts on transmission

of the virus due to the feeding preferences of mosquitoes on

certain hosts. Feeding preferences of Culex mosquitoes have also

been observed to change throughout the season with mosquitoes

preferring human blood meals more later in the year (12).

We collected temperature and precipitation data from weather

stations in Ontario using the weathercan package in R (30, 31).

We obtained 12 land classification proportions that had been

inferred from satellite imagery (32). Census data was collected from

Statistics Canada and includes population, population density,

number of dwellings, dwell density, and area (33). We collected

monthly NDVI data at 1km spatial resolution from the MODISstp

package (34). All covariates were aggregated to obtain monthly

averages across each PHU.

2.2. Model

The West Nile Virus case data contains many months in which

zero cases are reported in a given PHU. Due to the excess of zeros,

we use Bayesian zero-inflated Poisson (ZIP) model. The ZIP model

allows us to model zero observations from two distinct processes,

the one associated with the number of cases, and a model for the

excess zeros. The model has two parts, a Poisson count model and a

logit model for the zeros. We fit two different ZIP models, a spatial

and non-spatial model. We will describe the non-spatial version

and extrapolate to the spatial version.

FIGURE 3

Map of total human West Nile virus cases in Ontario from 2010 to

2019.

For public health unit i, (i = 1, ..., 27), and month t, t =

(1, ..., 120), define Yit to be the number of human West Nile Virus

cases where cases start in January 2010. We model the West Nile

cases as a Poisson generalized linear model,

Yit|Xit ∼ Poisson(Eite
xTitβ ) (2)

Where Eit is the expected number of disease counts in the

absence of covariate effects. This is the number of cases expected

in each PHU if each person is equally likely to get West Nile

virus. However, when there are no cases observed in PHU i and

time t we assume that these zeroes occur as structural zeroes with

probability ωit , and model the zero case counts as Poisson variables

with probability (1 − ωit). We assume the following Bayesian

zero-inflated Poisson model:

P(Yit = yit|ωit , λit) =

{

ωit + (1− ωit)exp(−λit) for yit = 0

(1− ωit)exp(−λit)λ
yit
it /yit! for yit > 0

(3)

We assume a logit link for each probability, ωit , and relate

these quantities to environmental variables, temporal and, in the

spatial version, spatial random effects. More specifically, we assume

a Poisson distribution of the cases as

log(λit) = Xitβ + φyi,t−1 (4)

Where Xit is a vector of covariates related to exposure risk, β is

the vector of regression coefficients.We include a temporal random

effect, φ, which is an autoregressive process. It is used to account

for the idea that the cases within PHU i during month t are closely

related to the cases the month before, i.e., PHU i at month t − 1.

We assume that the number of cases relate to mosquito infection

rate, bird abundance, NDVI, temperature, and precipitation. The

model for the zero cases also includes a random effect to account

for temporal autocorrelation as in the Poisson model. That is,

logit(ωit) = Zitγ + φyi,t−1 (5)
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FIGURE 4

Posterior credible intervals of the e�ect of each covariate for the spatiotemporal and temporal model. The skinny outer line indicates the 95%

credible interval, the thick line is the 50% credible interval, and the circlular point is the median. A filled circle indicates the covariate is significant at

the 95% level.

TABLE 1 Posterior results for the spatial and non-spatial model.

Spatial Non-Spatial

Parameter Mean SD 95% CI Mean SD 95% CI

Poisson Average Temperature (◦C) 0.009 0.008 (–0.006, 0.024) 0.019 0.007 (0.005, 0.034)

Total Precipitation (cm) 0.065 0.034 (0.011, 0.121) 0.035 0.035 (–0.033, 0.103)

Mosquito infection rate (MLE) 0.125 0.042 (0.043, 0.206) 0.130 0.038 (0.052, 0.204)

NDVI –0.231 0.058 (–0.341, –0.122) –0.022 0.006 (–0.034, –0.011)

American robin –0.058 0.029 (–0.119, –0.001) –0.065 0.029 (–0.125, –0.01)

House sparrow –0.049 0.045 (–0.137, 0.033) –0.181 0.045 (–0.269, –0.096)

American crow 0.043 0.026 (0.001, 0.097) –0.029 0.024 (–0.076, 0.016)

Intercept 0.011 0.004 (0.003, 0.019) 0.014 0.004 (0.006, 0.022)

Zero- Inflated Agriculture land cover –0.096 63.731 (–0.238, –0.006) –0.097 0.063 (–0.241, –0.005)

Average temperature (◦C) –0.032 23.100 (–0.077, 0.006) –0.031 0.024 (–0.081, 0.006)

Intercept –0.022 94.348 (–0.206, 0.16) –0.014 0.097 (–0.213, 0.17)

This shows the mean, standard deviation, and 95% Credible Interval (CI) of the effect size of each parameter from the posterior draws. Credible intervals in bold indicate the parameter is

significant at the 95% level.

Where Zit is a vector of covariates related to the structural zeros, γ

is the vector of regression coefficients.

The spatial version of the zero-inflated Poisson model borrows

information from neighboring sites. For example, for one public

health unit, i, if the neighboring public health units have cases, it is

more likely that the public health unit, i, will also have WNV cases.

The spatial model is modified slightly from Equation (4), as a spatial

random effect, ui is incorporated for each PHU i. That is,

log(λit) = Xitβ + ui + φyi,t−1 (6)

logit(ωit) = Zitγ + φyi,t−1 (7)

Similarly to Equation (4), Xit and Zit are vectors of covariates
associated with the non-zero and zero process respectively. The β

and γ are vectors of coefficients associated with these covariates

and ui are the spatially correlated random effects for the Poisson

process.

We utilize a Bayesian paradigm and put multivariate normal

priors on the regression coefficients. We put an intrinsic

conditional autoregressive prior on ui (see Supplementary material

for details). Posterior estimates are found using a random walk

Metropolis-Hastings Markov Chain Monte Carlo (MCMC) in

NIMBLE (35–37). The MCMC simulation was run for three

independent chains for 500,000 iterations with a burn-in period of

100,000 iterations and a thinning level of 100. Posterior trace plots

were inspected to ensure convergence of each chain.

For model selection, we utilized the Watanabe-Akaike

information criteria (WAIC) as a measure of out-of-sample
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FIGURE 5

Number of cases predicted in spatial and non-spatial model compared to true observed cases in 2018 and 2019.

predictive accuracy which adds a correction for the effective

number of parameters to adjust for overfitting (38, 39). A lower

WAIC values indicates a better model fit. NIMBLE calculates

the WAIC from the posterior samples produced by the MCMC

algorithm. All temporal variables were lagged by 0, 1, and 2 months

and the WAIC values of each model were compared to select the

most appropriate lags.

In order to test the predictability of our model, we held out data

from 2018 to 2019 for posterior prediction. We drew 1,000 samples

from the posterior distributions of each parameter to obtain 1,000

predictions of the number of cases in each month and PHU (Y
pred
it ).

To evaluate our predictions, we calculate the mean squared error

between the predicted number of cases and the true number of cases

as in Equation 8.

MSE =
1

n

∑

i,t

(Y
pred
it − Yit)

2 (8)

We also compare visually themedian number of predicted cases

in each year to the observed data.

3. Results

The temporal and spatiotemporal models were compared

to see if the spatial dependence from the neighboring sites

adds more value for predicting WNV cases. As part of the

modeling, we explored different lagged windows, i.e., 1 or 2

month temperature or precipitation lag. This was based on the

knowledge that it takes a month or two for a WNV cases to be

reported (40).

In our final model, we used mosquito infection rate MLE,

NDVI (1 month lag), average temperature (1 month lag), total

precipitation (1 month lag), and crow, robin, and sparrow

abundance for the Poisson covariates. For the structural zero

covariates, we used percent of agriculture and average temperature

lagged by 1 month. Posterior effect estimates for the spatial and

non-spatial model are shown in Figure 4. A filled circle indicates

the predictor is significant at the 95% level. The thicker line

shows the 50% credible interval and the thin line shows the 95%

credible interval. Point estimates and credible interval values are

also included in Table 1.

In the temporal model, we foundMLE and average temperature

had a significant positive effect on human WNV cases at the

95% level with mosquito MLE having the largest effect. NDVI,

sparrow and robin abundance had negative effects. Agriculture land

cover showed a significant negative effect on the log-odds for the

structural zeroes. That is, an increase in the percent of land cover

that is agricultural leads to a reduction in the log-odds for structural

zeros.

For the spatiotemporal model, total precipitation and crow

abundance also have a significant positive effect at the 95% level.

All other estimates are similar though the magnitudes differ slightly

from the temporal model. TheWAIC values for the non-spatial and

spatial models are 1,404 and 1,328, respectively, which indicates the

spatial model performs slightly better than the non-spatial version.
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FIGURE 6

Predicted cases in July, August, and September for 2018 and 2019. The left column shows the median predicted number of cases in the non-spatial

model, the center column is the true observed cases, and the right column shows the median predicated cases in the spatial model.

In terms of posterior predictions, the spatiotemporal model

also performs slightly better with an MSE of 1.17 compared to the

temporal modelMSE of 2.02.Median predictions for the spatial and

non-spatial model are shown in Figure 5. We see the spatial model

more accurately captures the peak infections in the summer of 2018

when cases are highest. Maps of the median posterior predictions

by PHU for the summer months (July, August, and September)

are shown in Figure 6. The non-spatial model in 2018 highly over

predicts the number of cases in the greater Toronto region while the

spatial model predictions are close to the observed data. Very few

cases were observed in 2019 and both model predictions are similar

to the observed data. We calculated the difference between the

number of cases observed in each month with the median number

of cases predicted. Spatial maps of the differences for summer

months in 2018 and 2019 are shown in Supplementary Figure S1.

The number of cases predicted in all other seasons are very low and

only contain small deviations from the observed data.

4. Discussion

Human case data of WNV is complicated to study and has

many limitations. Case data is only reported at the monthly

timescale while many of our covariates are measured at hourly,

daily, or weekly increments. Aggregating these covariates to the

monthly scale may lead to a loss of information and may mask the

underlying relationship between these covariates and human cases.

Additionally, cases are greatly under reported due to a high number

of asymptomatic cases and limited surveillance testing. We develop

a zero-inflated Poisson model with lagged temporal covariates to

help elucidate the relationship between human cases of WNV and

environmental variables.

We find the mosquito infection rate correlates strongly with

human WNV cases. Average temperature and total precipitation

lagged by 1month also have slight positive correlations with human

cases. Higher temperatures result in an increasing abundance of

mosquitoes, a shorter extrinsic incubation period, and increased

biting rates, thus, leading to a higher probability of transmission of

WNV (41). Our results show a seemingly counter-intuitive negative

correlation between NDVI and cases since an increase in NDVI

should lead to an increase in mosquitoes (42, 43). However, this

relationship was previously observed in several other studies of

WNV (20, 44). This may be related to the tendency of Culex

mosquitoes to thrive better in artifical pools of water where fewer

predators are present (45). Low NDVI can also be indicative of

a drought which may cause mosquitoes and birds to congregate

near the remaining bodies of water thus increasing transmission

(21). We decided to only include the percent of agriculture among
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the land cover variables due to the high correlation between the

different land cover variables. Miramontes et al. (46) found an

association between agricultural activity and human incidence of

West Nile virus.

The relationship between birds and WNV is complex due to

the shifting seasonal biting preferences of mosquitoes.While robins

are known to be good carriers of WNV, we find an increase in

the abundance of robins is associated with a decrease in human

cases. This could be due to the feeding preference of mosquitoes

being skewed toward birds at the times where the abundance of this

species is higher. While using relative abundance helps standardize

the eBird observations, it is still impacted by factors such as bias in

the reporting rate of rare and common species (47).

Our model is able to accurately capture the trends and peak

timing of WNV outbreaks. While the posterior estimates for

the non-spatial and spatial models are similar, the WAIC values

indicate a modest improvement when using the spatial model.

Our posterior prediction for 2018 shows the spatial model more

accurately predicts the peak number of cases in the summer

(Figure 5). The number of cases in 2019 is much lower and

the difference between the two model predictions is negligible.

The improvements with the spatiotemporal model are modest

but, especially when cases are high, it does appear there is a

spatial structure to the human cases and including spatial random

effects leads to better predictions. Our model’s ability to accurately

predict the magnitude and timing of yearly WNV outbreaks could

be valuable to public health officials to implement prevention

strategies and public health announcements to mitigate these

outbreaks.

One limitation of this study is the narrow geographic scope.

Currently our results are specific to the province of Ontario and

cannot be generalized to other locations. Future work applying this

model to locations across North America is necessary to determine

the reliability of our results in other locations. Expanding this

analysis is complicated due to varying levels of data availability in

different public health agencies. In the United States, for instance,

county level data for human cases is reported on a yearly temporal

scale and monthly case data is only available at the state level.

Investigating seasonal trends will be more challenging at these

larger spatial and temporal scales.

The correlations observed between these environmental factors

with human cases indicates climate change could lead to an increase

of WNV cases across Ontario. Currently PHUs in upper Ontario

have reported very few cases of WNV but increasing temperatures

and an increase in drought conditions may lead to more cases in

this region in the coming years. Also, an increase in temperature

could lead to changes in bird migration patterns and locations.

Some species of birds have reportedly been migrating earlier in

the spring as a result of warmer spring mean temperatures (48).

This could impact the peak timing and length of the WNV disease

season. The accurate predictive power of our model could allow

us to simulate WNV outbreaks under different climate change

scenarios. Knowledge of the intricate relationships between these

variables and human cases is vital for planning and prevention of

future outbreaks of WNV.
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