
TYPE Original Research

PUBLISHED 09 May 2023

DOI 10.3389/fpubh.2023.1099116

OPEN ACCESS

EDITED BY

Sheikh Taslim Ali,

The University of Hong Kong, Hong Kong

SAR, China

REVIEWED BY

Po Ying Chia,

Tan Tock Seng Hospital, Singapore

Xinmiao Fu,

Fujian Normal University, China

Md Pear Hossain,

The University of Hong Kong, Hong Kong

SAR, China

*CORRESPONDENCE

Hui Zhang

huizi_zhang@126.com

RECEIVED 15 November 2022

ACCEPTED 17 April 2023

PUBLISHED 09 May 2023

CITATION

Li H and Zhang H (2023) Cost-e�ectiveness

analysis of COVID-19 screening strategy under

China’s dynamic zero-case policy.

Front. Public Health 11:1099116.

doi: 10.3389/fpubh.2023.1099116

COPYRIGHT

© 2023 Li and Zhang. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Cost-e�ectiveness analysis of
COVID-19 screening strategy
under China’s dynamic zero-case
policy

Haonan Li1,2 and Hui Zhang1,2*

1School of Medical Business, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China,
2Guangdong Health Economics and Health Promotion Research Center, Guangzhou, Guangdong, China

This study aims to optimize the COVID-19 screening strategies under China’s

dynamic zero-case policy through cost-e�ectiveness analysis. A total of 9

screening strategies with di�erent screening frequencies and combinations of

detection methods were designed. A stochastic agent-based model was used

to simulate the progress of the COVID-19 outbreak in scenario I (close contacts

were promptly quarantined) and scenario II (close contacts were not promptly

quarantined). The primary outcomes included the number of infections, number

of close contacts, number of deaths, the duration of the epidemic, and duration

of movement restriction. Net monetary benefit (NMB) and the incremental

cost-benefit ratio were used to compare the cost-e�ectiveness of di�erent

screening strategies. The results indicated that under China’s COVID-19 dynamic

zero-case policy, high-frequency screening can help contain the spread of the

epidemic, reduce the size and burden of the epidemic, and is cost-e�ective. Mass

antigen testing is not cost-e�ective compared with mass nucleic acid testing in

the same screening frequency. It would be more cost-e�ective to use AT as a

supplemental screening tool when NAT capacity is insu�cient or when outbreaks

are spreading very rapidly.

KEYWORDS

COVID-19, cost-e�ectiveness, screening strategy, agent-based model, dynamic zero-

case policy, China

1. Introduction

Coronavirus disease 2019 (COVID-19), is an infectious disease that causes fever, cough,

shortness of breath, pneumonia, and lung infections. The pandemic poses a threat to the

security of all humanity and has a huge negative effect on the economy, stability, and culture

of countries around the world. A previous study estimated that the first wave of COVID-19

in China resulted in 2647 billion RMB losses (1). At present, China has effectively prevented

large-scale outbreaks through the implementation of the strategy of “external prevention

of importation and internal prevention of rebound” and the policy of “dynamic zero-case

policy”(2). However, global COVID-19 is still in a pandemic state, Omicron is still sweeping

across the world, and the sporadic cases and localized outbreaks in China are a reminder that

the risk of large-scale outbreaks remains.

Dynamic Zero-Case Policy is to contain domestic virus flare-ups through timely actions.

Once a localized outbreak has occurred, rapid and accurate epidemiological investigations

are carried out to identify the source of infection, which is then combined with regional

mass screening, contact tracing, quarantine, isolation, and movement restriction to break

the chain of transmission and contain the spread of the outbreak (Figure 1).
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Mass screening helps to detect asymptomatic infections

promptly and reduces community transmission (3). In addition,

it can help decision-makers make more scientific judgments

about ongoing community transmission and flexibly adjust

prevention and control measures accordingly. Due to the different

epidemiological situations and prevention and control policies,

there is currently no standardized screening strategy for COVID-

19 that fits all countries. Moreover, the cost-effectiveness of

different COVID-19 screening strategies under China’s dynamic

zero-case policy has not been fully explored and demonstrated.

Therefore, this study aimed to assess the cost-effectiveness

of different screening strategies for COVID-19 in different

scenarios to optimize screening strategies and reduce losses from

localized outbreaks.

2. Methods

2.1. Comparator strategies

The most commonly used testing methods for COVID-19 are

nucleic acid testing (NAT) and antigen testing (AT) in China. Based

on the latest COVID-19 disease prevention and control guidelines

(2), nine competing strategies consisting of different screening

frequencies and testing methods were designed and compared in

this study (Table 1). Considering the enormous challenges posed

by the highly infectious Omicron variant for outbreak control, and

to better simulate the real situation and more comprehensively

assess different screening strategies, two scenarios were set for this

study: (1) Scenario I: the outbreak spreads slowly, epidemiological

investigations were carried out accurately, and close contacts can

be traced and isolated promptly; (2) Scenario II: the outbreak

develops rapidly, the transmission chain was difficult to sort

out, and a proportion of close contacts cannot be traced and

isolated promptly.

2.2. Population and time Horizon

Community-based grid governance can be effective in helping

to reduce or even stop outbreaks (4), hence the target population

for this study was all community residents in China. All imported

cases from abroad were excluded. The time horizon of the study

was a localized outbreak, starting with the introduction of one

infected case and ending with no un-isolated infected cases in

the community.

2.3. Model

2.3.1. Model summary
Mathematical models based on the SEIR framework have

proven to be excellent tools for simulating and predicting the

spread of infectious diseases and for evaluating prevention and

control measures (5–7). However, these models do not capture

individual differences, individual-to-individual, and individual-

to-group effects, and are not flexible enough to fully assess

different prevention and control measures. To address the above

shortcomings, a stochastic agent-based model (ABM) was used to

simulate the COVID-19 outbreak in this study. ABM is a method of

simulating the behavior and interactions of autonomous agents in

a particular environment across time steps (8). NetLogo software

(Wilensky, Northwestern University) was used for modeling

and running.

2.3.2. Model description
Agents are generated at random coordinates and move

randomly within a virtual community. Initially, all agents are

at the state of susceptible (S) except for a preset latent (L)

infection. Latent infections become infectious and detectable

after progressing to pre-symptomatic (P). Pre-symptomatic agent

progress to asymptomatic infection (Ia) or symptomatic infection

(Is) in a proportion. Symptomatic infections will be hospitalized

(H) as confirmed cases after routine testing. When the number

of confirmed cases is >0, regional mass screening and close

contact tracking procedures will be initiated. Close contacts will

be quarantined (Q) after being tracked. Asymptomatic infections

are still infecting other agents unless they are hospitalized after

diagnosing by mass screening or recovered (R) after self-healing.

When the number of confirmed cases is >50, a community

lockdown procedure will be initiated, all agents are not allowed

to move or contact other agents. Hospitalized agents will progress

to recovered or deceased (D). When there are no unquarantined

infected persons in the community means that the outbreak

is contained, all intervention procedures such as community

lockdown will be stopped and the simulation will be aborted

(Figure 2).

2.3.3. Model parameters
Model parameters were mainly derived from previous studies,

expert opinions, and fieldwork (Table 2). Population size was set

to 6,000, which is approximately equal to the population of a

small-scale community in China. Infectious capability of infections

was based on the probability of infection in close contacts in

previous studies (22) and adjusted for the basic regeneration

number measured in this model. The time required for nucleic

acid testing, including sampling, transfer, and laboratory testing,

was based on expert opinion (9). Maximum mobility of agents

and sizes of simulation space were adjusted for population density

reasonably. Baseline values for epidemiological parameters were

mainly taken from studies related to Omicron, as it is now

the main prevalent strain worldwide (13–16, 18). In scenario I,

maximum time needed for tracking close contacts was set to 72 h,

and quarantined probability of close contact was set to 100%. In

scenario II, these two values were set to 120 h and 75%.

Considering the huge impact of COVID-19 on productivity,

societal perspective was adopted in this study. Both direct and

indirect costs are included in the cost measurement. Indirect

costs are calculated using the human capital approach (23). Cost

parameters came from two studies of the disease burden of the first

wave of COVID-19 in China (1, 7), andwere calibrated according to

the latest data and prevention and control policies (2). For example,

the “14 + 14” quarantine policy was replaced by “7 + 3”. The

centralized quarantine period for close contacts was shortened to
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FIGURE 1

Schematic of dynamic zero-case policy.

TABLE 1 COVID-19 community screening strategies.

Screening
strategies

Frequency of NAT Additional AT

S1 Once a day –

S2 Once every 2 days –

S3 Once every 3 days –

S4 Once every 4 days –

S5 Once every 5 days –

S6 Once every 6 days –

S7 Once every 7 days –

S8 Once a day Once a day (12 h from

the NAT)

S9 Once every 2 days Once every 2 days

(24 h from the NAT)

7 days, followed by 3 days of health monitoring, during which they

could go to work with proper personal protective measures. Thus,

working time lost of close contacts was calibrated to 7 days. The

average medical costs and average work time lost per case were

weighted by booster vaccination coverage and the proportion of

clinical types. Due to the short time horizon of the study, costs were

not discounted. All costs are converted to U.S. dollars (USD) at the

exchange rate (1 USD= 7 RMB).

2.3.4. Key assumptions
Limited by the accessibility of some data and for the sake of

model streamlining, the key assumptions of this study are mainly

as follows:

(1) All infectious individuals have the same infectious capacity,

and the infectious capacity does not change over time.

(2) Patients assumed to be non-infectious and not at risk of a

second infection.

(3) Infections cannot infect other individuals during isolation.

(4) Individuals receive a NAT on days 1, 2, 3, 5, and 7

during quarantine according to China’s COVID-19 disease

prevention and control guidance.

(5) The time required for NAT or AT is ignored.

(6) Confirmed cases will be promptly isolated and treated.

(7) Deaths not due to COVID-19 infection (Background

mortality) were not simulated.

2.4. Cost-e�ectiveness analysis

The outcome indicators of the outbreak simulation in this

study were mainly the cumulative number of infections, close

contacts, quarantined persons, deaths, duration of the outbreak,

and length of community lockdown. The economic evaluation

indicators for competing strategies were screening cost, total cost,

and net monetary benefit (NMB). Based on the outcome indicators,

the total cost calculation formula in the formula are as follows:

Total cost = Costi ∗ AI + Costcc ∗ ACC + Costd ∗ AD

+ Costat ∗ TAT + Costpnat ∗ TPNAT

+ Costsnat ∗ TSNAT + Costcl ∗ LCL

Costi is the weighted average cost per case and contains both

direct and indirect costs. Direct costs were based on costs of

cases of different disease severities obtained from previous studies,

weighted first by booster vaccination coverage and then by the

proportion of cases of different disease severities with or without

booster vaccination. After weighting in the same way to obtain

the weighted average working time lost per case, the indirect costs

were obtained by multiplying by the national daily average salary.
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FIGURE 2

Di�erent states of agents in COVID-19 transmission model. Susceptible S, Latent L, Pre-symptomatic P, Quarantined Q, Asymptomatic Ia,

Symptomatic Is, Hospitalized H, Recovered R, Deceased D.

AI is accumulative infections. Costcc is the total cost of each close

contact including direct and indirect costs. Direct costs include staff

allowances, accommodation for quarantine, meals, and NAT, were

obtained from fieldwork. Indirect costs were derived bymultiplying

the number of days of quarantine by the national daily average

salary. ACC is accumulative close contacts. Costd is the total cost

per death, obtained by multiplying lifetime working years lost for

COVID-19 fatalities obtained from previous studies by per capital

GDP, and only the labor loss due to death is considered here.AD is

accumulative deaths. Costat is the cost per sample for AT. TAT is the

total number of antigen tests. Costpnat is the cost per pooled sample

NAT. TPNAT is the total number of pooled sample NATs. Costsnat
is the cost per single sample NAT. TSNAT is the total number of

single sample NATs. Costcl is the cost of community lockdown per

day. Due to the short time horizon of this study, only the labor loss

due to the community lockdown is considered here. Its calculation

formula is as follows:

Costcl = n∗NDAS

Where n is the total number of agents who have not been

quarantined, hospitalized, or died at the end of the simulation.

NDAS is national daily average salary per person. LCL is the length

of community lockdown. The detailed cost parameters are shown

in Table 2.

To reflect the uncertainty of the outbreak and to reduce

randomness, 1,000 simulations were performed for each competing

strategy in each scenario. The mean and standard deviation of

outcome indicators were reported. A one-way sensitivity analysis

was performed to test the robustness of the results and to analyze

the impact of variations in parameter values.

3. Results

3.1. Simulation results

In Scenario I, the duration of the outbreak, accumulative

infections, accumulative close contacts, and the length of the

community lockdown trended flatly upward as the frequency

of community screening decreased (Figure 3). This upward

trend is more evident in scenario II, where the accumulative

infections increased from 18.32 to 97.20, accumulative close

contacts increased from 378.79 to 1558.75, the duration of the

outbreak increased from 156.36 to 336.54 h, and the length of

community lockdown increased from 3.37 to 121.38 h. Due to

the low infection fatality rate and the small population size

simulated, there were no deaths under all screening strategies

(Table 3).

3.2. Cost-e�ectiveness results

In both scenarios, as the frequency of community screening

increased, the cost of screening increased, but the total cost

decreased, and this downward trend was more evident in scenario

II (Figure 4). In both scenarios, S8 had the highest community

screening cost but the lowest total cost, and S7 had the lowest

community screening cost but the highest total cost. Compared

to S7, S8 avoided a total economic loss of $312,204 in Scenario I

and $1,466,543 in Scenario II. Although the screening frequency

was the same for S1 and S9, S9 had a higher screening cost and a

higher total cost in both scenarios. In addition, the total cost of S9

is lower compared to S2, which has a lower frequency of screening

(Table 3).
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TABLE 2 Value and source of model parameters.

Parameter Base-
value

Source

Global Parameter

Sizes of simulation space (patches) 60∗60 Assumption

Population size 6,000 Assumption

Time unit (hour/tick) 1 Assumption

Random seed number 1–1,000 –

Time required to obtain routine NAT results

after sampling (hours)

4 Expert opinion

(9)

Time required to obtain mass NAT results

after sampling (hours)

8 Expert opinion

(9)

Time required to obtain AT results after

sampling (hours)

0.25 Expert opinion

(9)

Sensitivity of NAT (%) 100 Assumption

Sensitivity of AT (%) 70 (10–12)

Agent properties

Maximummobility (patches/ticks) 0.5 Assumption

Infectious capability (%) 10 Assumption

Epidemiological parameter

Asymptomatic infection rate (%) 35 (13)

Incubation period (days) 3 (14)

Infectious period for symptomatic infections

(days)

7 (15)

Infectious period for asymptomatic

infections (days)

4 (15)

Basic reproductive number 6.33 (16)

Infection fatality rate (%) 0.09 (17)

Cost parameter

Proportion of mild/moderate, severe, and

critical case of non-booster-vaccinated

individuals (%)

81.5;13.8;4.7 (1, 7)

Proportion of mild/moderate, severe, and

critical case of booster-vaccinated individuals

(%)

96.7;3.3;0.0 (18)

Booster vaccination coverage (%) 71.7 Previous

studies

Average medical cost for a confirmed case of

non-severe, severe, critical (US$)

800; 7,513;

21,620

(1, 7)

Weighted average medical cost per case

(US$)

1,501.28 Calculated

Single sample nucleic acid test cost (US$) 2.29 (19)

Pooled sample nucleic acid tests cost (US$) 0.43 (19)

Antigen test cost (US$) 0.86 (20)

Per capital GDP (US$) 11,568 (21)

National daily average salary (US$) 31.69 Calculated

Daily quarantine costs for close contacts

(US$)

57.14 Fieldwork

(Continued)

TABLE 2 (Continued)

Parameter Base-
value

Source

Other parameters

Working time lost of close contacts (days) 7 (2)

Working time lost of mild/moderate, severe,

and critical case (days)

29.71; 33.92;

35.35

Calibrated

(1, 7)

Weighted average working time lost per case

(days)

30.05 Calculated

Lifetime working years lost for COVID-19

fatalities (years)

10.23 (1, 7)

3.3. Sensitivity analysis

Detailed results of the sensitivity analyses are provided in

Supplementary Tables 4, 5. Sensitivity analysis indicated that the

base-case analysis was robust. The dominant strategy remained S8

when parameters were varied within the range. In both scenarios,

the top 3 parameters that have the greatest impact on the total

cost of S8 were basic reproductive number, national daily average

salary and asymptomatic infection rate (Figure 5). Considering that

S1 is the commonly used strategy in China during that period,

we also provide the results of its one-way sensitivity analysis in

Supplementary Tables 6, 7.

4. Discussion

This study evaluated different COVID-19 screening strategies

under the current “dynamic zero-case policy” in China. The results

showed that all indicators of outbreak size tended to decrease

as the frequency of screening increased. This indicated that high

frequency of screening could help contain the spread of the

outbreak and reduce the size and burden of the outbreak, and

this effect was more obvious in the case of a rapidly developing

outbreak (Scenario II), which is consistent with the findings of

previous studies (24–26). Themost cost-effective screening strategy

was daily NAT and an additional AT (S8). This suggested that such

a high-frequency screening strategy is still cost-effective given the

high transmissibility of the Omicron variant and the low cost of

screening in China.

Meanwhile, the comparison of S1 with S9 revealed that mass

AT is not cost-effective compared with mass NAT for the same

screening frequency. This is probably because although AT has

the advantage of convenience and speed, its sensitivity is lower

compared to NAT, which may lead to missed and false detections,

resulting in sequential transmission of outbreaks and increasing

the total cost. Therefore, with the current low sensitivity of AT, it

cannot completely replace NAT in community screening. However,

additional AT in S9 would result in lower total costs compared to

S2, which has a lower frequency of screening. The above suggested

that using AT as a complementary screening tool would be more

cost-effective in situations where NAT capacity is insufficient or the

outbreak is spreading very rapidly.
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FIGURE 3

Simulation results of COVID-19 transmission under di�erent strategies in two scenarios.

TABLE 3 COVID-19 transmission and cost e�ectiveness of di�erent strategies.

Strategy Duration
of the

outbreak

Accumulative
infections

Accumulative
deaths

Accumulative
close

contacts

Length of
community
lockdown

Community
screening
cost (1,000

USD)

Total
cost
(1,000
USD)

Net
monetary
benefit

(1,000 USD)

Scenario I

S1 153.48 17.95 0.00 374.11 2.89 9.83 275.79 297.45

S2 180.79 22.81 0.00 475.62 6.07 6.95 370.86 202.38

S3 194.25 25.52 0.00 527.19 9.27 5.48 431.04 142.20

S4 201.98 27.41 0.00 561.93 12.41 4.63 478.85 94.39

S5 208.15 28.75 0.00 587.50 14.25 4.09 510.33 62.91

S6 209.79 29.56 0.00 600.22 16.12 3.72 532.61 40.63

S7 218.78 31.10 0.00 628.46 18.87 3.51 573.24 -

S8 143.25 16.47 0.00 343.37 2.26 23.97 261.04 312.20

S9 160.99 19.17 0.00 399.27 3.48 15.43 304.15 269.09

Scenario II

S1 184.17 22.36 0.00 460.11 6.26 13.13 283.38 1,409.32

S2 243.43 38.58 0.00 749.14 26.82 10.43 601.29 1,091.41

S3 277.87 55.87 0.00 1,007.94 52.48 8.67 930.70 762.01

S4 284.36 65.69 0.00 1,144.00 66.54 6.53 1,103.25 589.46

S5 290.63 74.30 0.00 1,256.22 73.96 5.90 1216.22 476.49

S6 313.77 85.58 0.00 1,408.91 96.28 5.64 1,452.28 240.43

S7 336.54 97.20 0.00 1,558.75 121.38 5.50 1,692.71 -

S8 156.36 18.32 0.00 378.79 3.37 28.66 226.16 1,466.54

S9 206.94 26.26 0.00 535.08 10.84 22.62 372.95 1,319.75
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FIGURE 4

Total cost and community screening cost under di�erent strategies in two scenarios.

FIGURE 5

One-way sensitivity analysis results. (A) Impact of parameters on the total cost of S8 in scenario I. (B) Impact of parameters on the total cost of S8 in

scenario II.
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It is worth noting that when an outbreak occurs, screening

alone cannot block the spread of the outbreak. In this study,

it was found during model simulation that if preventive and

control measures such as close contact tracing and quarantine and

restriction of population movement were removed, it would lead to

all individual infections. Thus, the significance of mass screening is

the timely detection of cases, and its cost-effectiveness is predicated

on the combination of other prevention and control measures. This

is also in line with previous studies (27–29).

Sensitivity analysis showed that among the cost parameters,

the results were more sensitive to the national daily average

salary. With the current low rate of severe illness and mortality,

the economic burden of COVID-19 is mainly attributed to the

loss of productivity. As found in other studies, productivity loss

accounted for 99.8% of the total cost in the first wave of COVID-

19 outbreak in China. Therefore, further research is needed on how

to continuously optimize prevention and control measures, reduce

the impact of the epidemic on productivity, and integrate epidemic

prevention and control with economic development.

There are several limitations of this study. First, due to the

short time horizon of this study, the health and cost impacts of

long-COVID were not taken into account. Second, the simulated

population size is relatively small, so the extrapolation of the model

may be affected. Third, due to the lack of data, age, gender, and

behavioral differences may lead to bias between the model and the

real world. Fourth, a human capital approach was adopted in the

measurement of indirect costs. And since some workers can choose

to work from home, the indirect costs may be overestimated.

Finally, the transmission capacity of infected individuals may vary

with viral load, which was not taken into consideration in this study

due to model streamlining.

Since the outbreak of COVID-19, China has been adjusting

and optimizing its prevention and control strategy accordingly to

the evolving situation. In January 2023, China’s management of

COVID was downgraded to the less strict class B from the current

top-level class A, as the disease has become less virulent. From then

on, China has entered a new phase in coordinating economic and

social development and epidemic prevention and control.

Through a brief review we found that during the period when

China adopted a “dynamic zero-case” strategy, although some

cities strictly implemented the “dynamic zero-case” policy, there

were cases where the size of the outbreak was larger than the

simulated results of this study. The reasons for this phenomenon

may be as follows: First, considering that epidemic control in

China is community-based and the fact that too many samples

may lead to excessively long model runs, this study is based

on a simulation of 6,000 individuals in a single community in

China, not on an entire city or an entire province. In the real

world, provinces consist of many cities, and cities consist of

many communities and individuals, and the increased sample

size may result in a larger real-world epidemic size than in this

study. The population density and geographic characteristics of

different cities in the real world may also affect the spread of

the epidemic. Second, in reality, although there have been large

epidemics, there have also been many successful cases of “dynamic

zero”. For example, the city of Shenzhen, with a population of

17.6 million and a highly mobile population, has implemented

the “dynamic zero” policy well on more than one occasion,

controlling the epidemic in a short period and keeping the

prevalence rate at a low level. Third, some of the interventions

in this model, such as close contact tracing and isolation, mass

screening, and movement restrictions, are implemented according

to set model parameter values. In contrast, in the real world, the

effectiveness of interventions may be influenced by more factors

such as affordability, civil compliance, country conditions, and

government capacity, which may lead to higher data on the size

of outbreaks in the real world than in this study. In light of the

above, further research can be done in future studies to address

the effects of affordability, civil compliance, national conditions,

and government capacity on transmission in order to strengthen

China’s capacity for the prevention and control of infectious

diseases, including COVID-19.

5. Conclusion

Under China’s COVID-19 dynamic zero-case policy, high-

frequency screening, such as daily NAT and an additional

daily AT, can help contain the spread of the epidemic,

reduce the size and burden of the epidemic, and is cost-

effective. Mass AT is not cost-effective compared with mass

NAT in the same screening frequency. It would be more cost-

effective to use AT as a supplemental screening tool when

NAT capacity is insufficient or when outbreaks are spreading

very rapidly.
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