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Purpose: To predict the need for cycloplegic assessment, as well as refractive 
state under cycloplegia, based on non-cycloplegic ocular parameters in school-
age children.

Design: Random cluster sampling.

Methods: The cross-sectional study was conducted from December 2018 to 
January 2019. Random cluster sampling was used to select 2,467 students aged 
6–18 years. All participants were from primary school, middle school and high 
school. Visual acuity, optical biometry, intraocular pressure, accommodation 
lag, gaze deviation in primary position, non-cycloplegic and cycloplegic 
autorefraction were conducted. A binary classification model and a three-way 
classification model were established to predict the necessity of cycloplegia and 
the refractive status, respectively. A regression model was also developed to 
predict the refractive error using machine learning algorithms.

Results: The accuracy of the model recognizing requirement of cycloplegia was 
68.5–77.0% and the AUC was 0.762–0.833. The model for prediction of SE had 
performances of R^2 0.889–0.927, MSE 0.250–0.380, MAE 0.372–0.436 and r 
0.943–0.963. As the prediction of refractive error status, the accuracy and F1 
score was 80.3–81.7% and 0.757–0.775, respectively. There was no statistical 
difference between the distribution of refractive status predicted by the machine 
learning models and the one obtained under cycloplegic conditions in school-
age students.

Conclusion: Based on big data acquisition and machine learning techniques, the 
difference before and after cycloplegia can be effectively predicted in school-age 
children. This study provides a theoretical basis and supporting evidence for the 
epidemiological study of myopia and the accurate analysis of vision screening 
data and optometry services.
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Introduction

Several studies have suggested that cycloplegic refraction should 
be  considered the gold standard for epidemiological studies on 
refraction in school-aged children (1–3). Non-cycloplegic refractions 
are prone to significant errors, largely due to an active accommodation 
response (4–8). However, cycloplegia is challenging to perform for 
vision screening and epidemiological studies, resulting in a biased 
classification of ametropia; in fact, accommodation response cause a 
more negative value in SE, overestimating the presence and severity 
of myopia, and underestimating that of hyperopia (9, 10). Due to these 
biases, the research on myopia risk factors is likely to be significantly 
misguided, and inter-study comparisons will be  affected (11–13). 
Therefore, an accurate prediction of SE after cycloplegia based on 
non-cycloplegic data could be  an effective way to improve the 
accuracy of data in large-scale screening and epidemiological studies 
and would also be  suitable for children for whom cycloplegia is 
contraindicated or refused.

Previous studies have examined the correlation between the 
difference in refraction before and after cycloplegia and patient 
characteristics. Significant correlations were found between age, 
non-cycloplegic spherical equivalent (SE), cylindrical power, 
intraocular pressure, whether wearing glasses and Lag of 
accommodation, axial length (14–16). A number of studies have tried 
to establish a prediction model based on the above-mentioned 
characteristics to predict the need for cycloplegia in children and 
adolescents. However, there are some problems in the research, such 
as the lack of independent validation set, insufficient number of 
features, simple mode, and the efficiency of prediction model is not 
ideal (13, 15, 16).

In the present study, detailed demographic and other relevant 
personal information, as well as vision screening data, of 2,467 
school-age children were collected to explore the key influencing SE 
changes before and after cycloplegia. Our study could provide a 
convenient and helpful cycloplegic SE prediction model for clinical 
and epidemiological research.

Materials and methods

Ophthalmic examination and data set 
establishment

Data from 4,934 eyes of 2,467 school-age students was collected 
by Tianjin Medical University Eye Hospital in China during December 
2018 to January 2019. None of the participants had a history of ocular 
disease or surgery. Written informed consent was obtained from 
parents or guardians, and verbal consent from all participants. This 
study was approved by the Institutional Ethics Committee of Tianjin 
Medical University Eye Hospital and followed the tenets of the 
Declaration of Helsinki for human research.

All subjects underwent general ocular examinations including 
visual acuity, non-cycloplegic autorefraction, optical biometry 
measurement, non-contact tonometry, lag of accommodation and 
gaze deviation in the primary position, which are basically routine 
examinations for school-age children and the digital results can 
be  obtained directly to facilitate data processing. Subjects were 
excluded if their intraocular pressure was >25 mmHg. Cycloplegia 

was induced by instilling three drops of 1% cyclopentolate at 5 min 
intervals in each eye. One more drop of 1% cyclopentolate was 
administered if pupillary light reflex was still present or the pupil size 
was less than 6.0 mm at 30 min after the last drop. Cycloplegic 
refraction of both eyes was measured using the same autorefractor.

Visual acuity (uncorrected or with habitual correction, if any) was 
determined using a mounted and illuminated E chart at 5 m with 
ambient room lighting. Non-cycloplegic and cycloplegic refraction 
were measured with an autorefractor (KR.800, Topcon, Tokyo, Japan). 
Three repeated measurements were taken and averaged. The 
differences between the three readings had to be within 0.50D in both 
the spherical and cylinder components. Optical biometry parameters 
were measured using LENSTAR LS 900 system (HAAG-STREIT, 
Mason, Switzerland), including axial length, central corneal thickness 
(CCT), anterior chamber depth, lens thickness, and flat and steep 
keratometry. An average of the three measurements was considered 
in further analysis. If any two measurements of axial length differed 
by ≥0.02 mm, the readings were discarded and the eye remeasured. 
Intraocular pressure (IOP) was assessed using non-contact tonometer 
(CT.1 computerized tonometer, Topcon, Tokyo, Japan). Lag of 
accommodation (LOA) was measured by the open-field binocular 
autorefractor/keratometer (WR-5100 K; Grand Seiko Co., Ltd., 
Hiroshima, Japan). The subjects were instructed to view 20/100 
Snellen letter at a distance of 33 cm, wearing the trial frame, with one 
eye occluded. Three repeated examinations were conducted, and the 
average SE was recorded as the accommodative response when the 
difference between the maximum and minimum was <0.25 D. LOA 
was calculated by subtracting accommodative response from 
accommodative stimulus (3.00 D). Gaze deviation in the primary 
position was measured using a Spot Vision Screener. Basic information 
including age, gender, and whether wearing glasses was collected 
by questionnaire.

A total of 33 parameters were included in the model, including 
3 combined features (Figure 1). For the three combined features, 
one was the difference in SE between the sample-eye and the 
contralateral-eye (sample eye SE-contalateral eye SE), in order to 
avoid the effects of continuous adjustment fluctuations caused by 
binocular diopter disparity (17); the other two combined 
parameters were sample IOP/CCT and contralateral IOP/CCT, 
because the corneal thickness may affect the measurement of 
intraocular pressure (18).

Some values (4.6%) were missing in the non-cycloplegic ocular 
data due to technical problems, and we used a multivariate imputation 
method performed in an iterative round-robin fashion (19). More 
specifically, Bayesian ridge regression model was used to establish a 
mapping between each feature with missing values and other features 
to make predictions of missing data for each feature one by one, 
starting from the features with the least missing value (20). The final 
imputed data were obtained after iterating this imputation process for 
many rounds. In the present study, this imputation procedure was 
carried out using the Iterative Imputer algorithm implemented in the 
scikit-learn library and the iteration number was set to 100 (21).

We established prediction models at three outcome levels (online 
Supplementary Figure S1), each for a different clinical or 
epidemiological need in real practices. First, a binary classification 
model was trained to predict whether the subject had significant 
differences between cycloplegia and non-cycloplegia refractive 
measurement. Second, a three-way classification model was trained to 
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predict cycloplegic refractive status. Third, a regression model was 
trained to predict cycloplegic refractive error.

Predicting the need for cycloplegia

In order to predict whether a child needs cycloplegia to obtain 
accurate refraction data, we  performed a classification analysis to 
distinguish the eye samples with large differences in refractive error 
before and after cycloplegia (i.e., those who need cycloplegic) and 
those with small differences (i.e., those who do not need cycloplegic).

We tested three different thresholds to define large vs. small 
differences in refractive error (calculated as the value of cycloplegic SE 
minus non-cycloplegic SE), each corresponding to different needs of 
clinical and research tasks: 0.25, 0.50, and 0.75 D.

Binary classification models were trained and tested for each of 
the three thresholds using the following procedure: (1) 10% of all 
participations were randomly selected with both their eyes as the 
independent test dataset (i.e., 492 eyes) and the remaining 90% (i.e., 
4,442 eyes) as the training dataset, (2) For the training set, the raw 
values of each feature was normalized to Z scores (i.e., mean of 0 and 
standard deviation of 1) using the following equation: 
z x x si i i i= −( ) / , where xi  is the i-th feature vector, and xi and si  

are the mean and standard deviation of xi , respectively. For the test 
set, each feature’s mean and standard deviation values of the training 
dataset (i.e., the above xi and si ) were used to normalize the 
corresponding features of the test set, (3) During model training, 
10-fold cross-validation within the training set was used for 
optimizing hyperparameters with the Hyperopt package (22, 23). 

Hyperopt is a Bayesian optimization method using a continuously 
updated probabilistic model based on hyperparameters and validation 
losses, which allows the search process to focus more on the 
hyperparameters that are likely to be optimal by reasoning from past 
validation losses, (4) Once the optimal hyperparameters were 
determined, the final model was trained using the full training set and 
evaluated using the test set, and (5) The performance of the final 
model was assessed using the receiver operating characteristic curve 
(ROC), classification accuracy, area under the ROC curve (AUC), 
sensitivity, and specificity.

Using the above machine learning procedure, we  tested four 
machine learning algorithms: support vector machine (SVM) (24, 25), 
Random forest (RF) (26), Deep Neural Network (DNN) (27, 28), and 
Easy Ensemble Classifier (EEC) (29). Note that, at each threshold for 
defining the class labels of the eye samples (i.e., samples with large vs. 
small refractive error differences) in the present study, the number of 
samples of the two classes were unbalanced, which would lead to 
biased classification results. Therefore, we  also adopted some 
balancing strategies for each machine learning algorithm to tackle this 
problem during model training, as follows:

 1. SVM aims to find a decision hyperplane with a maximal 
margin separating the samples of two classes. To deal with the 
problem of unbalanced samples, we  corrected the 
decision hyperplane by adjusting the parameter Ci  for 
Class i with a weight: C class weight Ci i= × , where 

class weight n ni
i
i i =









 ×( )∑ / 2  and ni  is the sample size of 

Class i in the training dataset.

FIGURE 1

All the features contained in a sample.
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 2. RF builds many decision tree models as the base learner, 
randomly samples a subset of features and a subset of training 
samples to train each decision tree, and then ensembles the 
results of all decision trees to form the final classification result 
based on the strategy of Bagging (30, 31).To deal with the 
problem of unbalanced samples, impurity calculations and 
prediction voting were adjusted using the same class weight as 
used in SVM.

 3. DNN uses multiple fully connected layers and a non-linear 
activation function after each hidden layer to learn the 
feature representation of the nature of the original data, 
thereby facilitating the classification. To deal with the 
problem of unbalanced samples, different weights were 
assigned to the losses calculated for different classes during 
the training process so that the feedback given by the two 
classes were comparable when the error was 
back-propagated.

 4. EEC is a classifier ensemble algorithm, specifically designed for 
learning with unbalanced samples. It draws a subset of samples 
from the majority class by bootstrapping to form balanced 
subsets of samples between the two classes for training an 
AdaBoost classification model (32). By repeating this procedure 
many times, multiple AdaBoost models were trained, and the 
classification results of all models were aggregated to form the 
final classification result.

Predicting the cycloplegic refractive state

To predict the cycloplegic refractive status using non-cycloplegic 
ocular parameters, each eye sample was categorized into three 
groups according to the cycloplegic SE – myopia (SE ≤ -0.50D), 
emmetropia (-0.50D < SE < 0.50D) and hyperopia (SE ≥ 0.50D). The 
same machine learning algorithms and classification procedures as 
described above were used here, except that a multi-class 
classification rather than a binary classification problem was to 
be solved. The confusion matrix, accuracy (ACC), precision, recall 
and F1 score were used to assess the classification performance. As 
a control condition, all eye samples were also categorized into the 
three refractive states mentioned above based on the non-cycloplegic 
SE. By comparing the refractive state predicted by the machine 
learning models with those defined directly using non-cycloplegic 
SE, we could assess how much the machine-learning-derived results 
could improve the accuracy of the non-cycloplegic-SE-defined 
refractive status.

Predicting the cycloplegic refractive error

As the cycloplegic refractive error has continuous values, 
predicting the actual values of cycloplegic refractive error 
corresponds to solving a regression problem, rather than a 
classification problem. Here，we tested four machine-learning 
algorithms for regression: Support Vector Regression (SVR), Random 
Forest Regression (RFR), AdaBoost Regression (ABR), and DNN. The 
training and test datasets were created in the same way as described 
in the above classification task, and the hyperparameters were 

optimized using the same 10-fold cross-validation procedure during 
training. The performance of the prediction model was assessed using 
r2, r, mean absolute error (MAE), mean squared error (MSE), as well 
as the proportion of the samples with small prediction errors (< 0.50 
D). The predicted SE and the true cycloplegic SE were also statistically 
compared using matched T-test to test whether there was a significant 
difference between them. To test whether the predicted SEs were 
significantly closer, than the non-cycloplegic SE, to the true 
cycloplegic SEs, the r2, r, MAE, MSE, as well as the proportion of the 
samples with small prediction errors were calculated to assess the 
fitting degree between the cycloplegic SE and the non-cycloplegic 
SE. The T-test was also used to test whether there was a significant 
difference between them.

Results

Basic refractive results

A total of 4,934 eye samples of 2,467 children were included in 
this study and the mean age was 8.92 ± 2.21 years (ranging from 6 
to18 years) and 1,292 participants (52.4%) were males. Before 
cycloplegia, the mean value of SE was −1.13 ± 1.58D and the 
prevalence was 60.3, 30.8 and 8.9% for myopia, emmetropia and 
hyperopia, respectively. After cycloplegia, the mean value of SE was 
−0.51 ± 1.81D, with a mean difference of 0.63 ± 0.69D compared 
with the non-cycloplegic SE, and the prevalence changed to 43.2, 
21.7, and 35.1% for myopia, emmetropia and hyperopia, 
respectively.

Prediction of the need for cycloplegia

When the threshold for defining large and small refractive SE 
changes was set to 0.25 D, the positive (i.e., the samples with large SE 
changes) in the training set and test set accounted for 66.1 and 67.3%, 
respectively. With the threshold was set to of 0.50D, the proportions 
of the positive samples in the training and test sets were 47.0 and 
44.5%, respectively. When the threshold was set to 0.75D, the 
proportions of the positive samples in the training and test sets were 
30.6 and 31.1%, respectively.

The performances of the “large vs. small SE changes” classification 
obtained using the four machine learning algorithms for each class 
defining threshold were summarized in online Supplementary Table S1 
and Figure  2. For contrast, the results obtained without sample 
balancing strategies are shown in online Supplementary Table S2 and 
online Supplementary Figure S2. The results confirmed that the 
machine learning algorithms performed much better when the sample 
balancing strategies were adopted: At the class defining threshold of 
0.25D, very low specificities (49.7–54.0%) were obtained when the 
sample balancing strategies were not adopted as there were more 
positive samples than negative samples, and they were much improved 
(65.2–77.7%) when the sample balancing strategies were adopted; at 
the threshold of 0.75 D, very low sensitivities (47.1–60.1%) were 
obtained when the sample balancing strategies were not adopted as 
there were fewer positive samples than negative samples, and they 
were much improved (68.0–73.9%) when the sample balancing 
strategies were adopted.
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Regarding the results obtained with sample balancing strategies 
adopted, we found that, for each threshold, samples with large vs. 
small SE changes could be successfully distinguished based on the 
non-cycloplegic data using all four machine learning models. The 
performances of different algorithms were generally similar, with the 
EEC model performed slightly better. When comparing the results 
across different thresholds, we  found that the AUC increased 
gradually with the increase of threshold: AUC were about 0.762–
0.807 when threshold value was 0.25D, 0.789–0.822 when threshold 
value was 0.50D, and 0.793–0.833 when threshold value was 0.75D.

Prediction of cycloplegic refractive state

The proportion of the three refractive states defined using 
cycloplegic SE were 42.58, 21.98 and 35.44% for myopia, emmetropia, 
and hyperopia, respectively, in the training set, and 48.37, 23.57 and 
28.06%, respectively, in the test sets. The performances of the 
three-way classifications obtained using four machine learning 
algorithms with sample balancing strategies, together with the 
performances obtained directly using non-cycloplegic SE (the control 
condition) were summarized in online Supplementary Table S3 and 
Figure 3. The performances of machine learning algorithms without 
sample balancing strategies are shown in online Supplementary Table S4 

and online Supplementary Figure S3 for contrast. The results showed 
that the classification performances of the four machine learning 
algorithms were similar (ACC ranging from 80.3 to 81.7%, precision 
ranging from 75.5 to 77.4%, recall rates ranging from 76.1 to 78.4%, 
F1 scores ranging from 0.757 to 0.775) and were much higher than 
those obtained directly from non-cycloplegic SE (ACC 66.8%, 
precision 69.4%, recall rates 59.0%, F1 scores 0.573).

Their corresponding confusion matrices with and without the 
sample balancing strategies are shown in online 
Supplementary Figures S4, S5, respectively. All confusion matrices 
obtained from the four machine learning models showed a clear 
diagonal structure (i.e., higher values on the diagonal), indicating 
successful classifications for each of the three classes, except the 
confusion matrix obtained directly from non-cycloplegic SE which 
showed a clear prediction bias toward myopia. Sensitivity and 
specificities for identifying myopia, emmetropia and hyperopia alone 
was shown in online Supplementary Table S5.

The proportions of the three refractive states defined using 
cycloplegic SE, non-cycloplegic SE, and obtained from the four 
machine learning algorithms predictions are shown in online 
Supplementary Figure S6 (the corresponding results obtained without 
the sample balancing strategies are shown in online 
Supplementary Figure S7). It clearly shows that non-cycloplegic SE 
strongly overestimated myopia and underestimated hyperopia, 

A B C

D E F

FIGURE 2

Performance of four machine learning models for binary classification of each class defining threshold. (A,D), Threshold 0.25D, diagnostic values and 
ROC analysis of the four different predictive model; (B,E), Threshold 0.5D, diagnostic values and ROC analysis of the four different predictive model; 
(C,F), Threshold 0.75D, diagnostic values and ROC analysis of the four different predictive model. SVC_W, SVC algorithm with balancing strategies; 
RF_W, RF algorithm with balancing strategies; DNN_W, DNN algorithm with balancing strategies. (SVM_W, Support Vector Machine with balance 
method; RF_W, Random Forest with balance method; DNN_W, Deep Neural Network with balance method; EEC, Easy Ensemble Classifier; ROC 
curve, receiver operating characteristic curve; ACC, accuracy; AUC, area under the ROC curve).
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whereas the proportions predicted by the machine learning models 
were much closer to the cycloplegic proportions.

Prediction of cycloplegic refractive error

The results of the machine learning algorithms in predicting the 
cycloplegic refractive error are summarized in online 
Supplementary Table S6. The prediction performances of the four 
machine learning models were similar (r2 ranging from 0.899 to 
0.927, MSE ranging from 0.250 to 0.380, MAE ranging from 0.372 to 
0.436, r ranging from 0.943 to 0.963) and much better than the 
non-cycloplegic SE estimates (r2 = 0.723, MSE = 0.942, MAE = 0.702, 
r = 0.922). Among the four models, AdaBoost regression model 
exhibited the best overall prediction performance, with r2 = 0.927, 
MSE = 0.250, MAE = 0.372, r = 0.963.

The scatter plot for the relationship between predicted refractive 
error by Adaboost regression model and actual cycloplegic SE values 
is shown in Figure 4A, and the scatter plot for the relationship between 
non-cycloplegic SE and actual cycloplegic SE is shown in Figure 4B.

To assess the clinical value of the machine-learning-model 
predictions of the refractive error, we defined clinically significantly 
inaccurate prediction as a bias greater than or equal to 0.50D compared 
with cycloplegic refractive error. We found that the percentage of the 
clinically inaccurate samples predicted by Adaboost regression model 
(24.8%) was much smaller than that by non-cycloplegic SE estimates 
(54.3%) (Figures 4C,D). matched samples t-test showed that there was 
no significant difference between the mean predicted SE by machine 
learning models and the mean cycloplegic SE (p = 0.169 for SVR, 
p = 0.153 for RFR, p = 0.533 for ABR, for DNN p = 0.227), whereas the 
difference between the mean non-cycloplegic SE and the mean 
cycloplegic SE was highly significant (p < 0.001).

Weight analysis

To further interpret machine learning models, we explored the 
importance of each feature in different prediction tasks, as shown in 
Figure 5. As the tree-based models (i.e., EEC and ABR) performed the 
best overall in all three prediction tasks, we  used the tree-based 
models to measure the importance of a feature using the importance 
score that is calculated as the impurity decrease when using a feature 
in split of a tree node.

It was found that in the task of predicting the need for cycloplegia, 
different features had relatively similar weights under each threshold 
for defining large vs. small differences in SE before and after 
cycloplegia, but the ranking order of features varied across 
different thresholds.

In the refractive status and refractive error prediction tasks, the 
SE, Spherical power and AL were among the top three features with 
the greatest importance, which is consistent with the fact that 
non-cycloplegic SE is often used to predict refractive status and 
refractive error in clinical work. Especially in the cycloplegic refractive 
error prediction model, these three features (SE, Spherical power and 
AL) were able to reduce the impurity by about 90%.

Discussion

To resolve the conflict between the necessity of cycloplegic 
refractive examination and the difficulty of performing cycloplegia in 
children and adolescents in practice, we applied a variety of commonly 
used machine learning algorithms to predict cycloplegic data based 
on non-cycloplegic data from a large dataset of Chinese school-age 
children. The predictions of the cycloplegic data were made at three 
different levels to meet the needs in different scenarios: prediction of 
the need for cycloplegia, prediction of the refractive status, and 
prediction of the refractive error. Our results showed successful 
predictions at all three levels, demonstrating the promising potential 
and practical value of predicting cycloplegic data using machine 
learning techniques based on non-cycloplegic data in clinical 
applications and epidemiological studies.

Identify patients with the need for 
cycloplegia

Several studies have shown that in children and adolescents, the 
fluctuation in refractive diopter is affected by many factors under 
non-cycloplegia condition (1, 2, 7, 11, 14–16), and the degree of such 
fluctuation varies greatly across individuals (33, 34). Clinically, 
recognizing when it is appropriate to forgo cycloplegia and when it is 
necessary to conduct cycloplegia for accurate refractive measurement 
is very useful for avoiding unnecessary cycloplegia. Simply 
thresholding in age and the state of ametropia cannot accurately 
identify the target patients with the need for cycloplegia (35, 36).

We obtained 30 parameters through clinical optometry routine 
examination under non-cycloplegia combined with machine learning 
analyses to predict the need for cycloplegia for the first level prediction. 
Identifying “significant SE change” is an important basis for 
cycloplegia in clinical decision. In this study, three thresholds were set 
for predicting SE changes before and after cycloplegia, which were 

FIGURE 3

Performances of four machine learning algorithms and directly using 
non-cycloplegic SE for three- class classification. (SVC_W, Support 
Vector Machine with balance method; RF_W, Random Forest with 
balance method; DNN_W, Deep Neural Network with balance 
method; EEC, Easy Ensemble Classifier; ACC, accuracy; F1-score: 
balanced F Score).
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>0.25D, >0.50D and >0.75D. For predicting the target persons of SE 
change >0.50D, the performance of EEC model can reach an AUC of 
0.822, with a specificity of 76.2% and a sensitivity of 74.4%. If the 
threshold of >0.75D was used to define the target persons, our EEC 
model can reach an AUC of 0.833, with a specificity of 78.5% and a 
sensitivity of 73.9%. We also tested the efficiency of the model at the 
threshold of >0.25D, which might not be of great clinical significance 
for a difference in SE between before and after cycloplegia, the EEC 
model still can reach an AUC of 0.807, with a specificity of 77.6% and 
a sensitivity of 69.5%. In the actual application of model prediction, 
we will adjust the model to keep the model high sensitivity, which 
ensures that patients who need cycloplegia are not missed. According 
to ROC curve, in the EEC model 0.50D threshold, when the sensitivity 
is set to 0.90, the specificity is 0.57, which means that more than half 
of the patients who do not need cycloplegic can be excluded from 
unnecessary cycloplegic operations when the patients who need 
cycloplegic are basically identified.

In addition, the weight analyses showed relatively similar 
importance scores for different features under each threshold for 
defining large vs. small differences in SE before and after cycloplegia, 
and with different ranking orders across different thresholds, 
suggesting that most features contributed to this binary prediction task.

Our results showed that the developed machine learning models 
could successfully identify the target patients and thus help avoid 
unnecessary cycloplegias, which may be valuable in clinical practice 
to reduce cycloplegia workload, or helpful to the optometrists in 
optical shops.

Improve the accuracy of refractive state 
assessment and refractive error 
measurement

It is known that assessing the refractive state using non-cycloplegic 
refractive data directly will lead to a myopic shift in the mean 
refractive error in school-age children (9, 10). Consistent with 
previous studies, such bias was also clearly observed in our study: 
1301 (75.1%) eyes of hyperopia were wrongly assessed as emmetropic 
or even myopia and 535 (49.9%) eyes of emmetropic were wrongly 
assessed as myopia, thus an overestimation of myopia and emmetropia, 
and underestimation of hyperopia. Similarly, the mean refractive error 
changed from −0.51 ± 1.81 D to −1.13 ± 1.58 D under the 
non-cycloplegia condition with a mean difference of 0.63 ± 0.69 D 
toward myopia.

A B

C D

FIGURE 4

The scatter plot and distribution of prediction error of Adaboost regression model and directly using non-cycloplegic SE for the prediction of 
cycloplegic SE. (A), the scatter plot with cycloplegic SE as the x-coordinate and predicted values from Adaboost regression model as the y-coordinate; 
(B), the scatter plot with cycloplegic SE as the x-coordinates and predicted values directly using non-cycloplegic SE as the y-coordinates; (C), the 
distribution of prediction errors by Adaboost regression model; (D), the distribution of prediction errors by directly using non-cycloplegic SE. The red 
dots in (A) and (B) indicate the samples with prediction errors greater than 0.50D, and the vertical dashed lines in (C) and (D) indicate the boundary of 
the prediction error at 0.05D.
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Sankaridurg et  al. established a linear regression model for 
children and adolescents aged 4–15 years, and predicted cycloplegic 
SE by age, uncorrected vision acuity, and non-cycloplegic SE. The 
prediction model R2 was 0.91, and 77% of participants were correctly 
predicted in refractive state, but the independent validation set was 
not used to test the effectiveness of the model (13).

In our study, the machine learning models predicted the 
distribution of refractive status with an accuracy of 81.7%, and for the 
Adaboost model of cycloplegic refractive error prediction, 75.2% of 
the predicted SE had a prediction error less than 0.50D. Such 
predictive power was much higher than direct non-cycloplegic SE 
estimates. At the same time, a t-test showed no significant difference 
in the means between the predicted SE of the model and the real 
SE. In addition, three easy-to-obtain parameters SE, Spherical Power 
and Axial Length were found to play an important role in the 
prediction. These results are reasonable, because these features 
indicate the pre-cycloplegia refractive result of the patient directly 
and the outcomes of pre-cycloplegic refraction are highly correlated 
with post-cycloplegic outcomes (2, 7). We speculate that the model 
also starts with the pre-cycloplegia refractive results, and adjust the 

results by some features related to ciliary muscle tension to obtain the 
final estimation.

The results of our present study suggest that, in school-based 
vision screening and epidemiological studies where cycloplegia may 
be considered impractical, predicting cycloplegic refractive error and 
refractive status by machine learning models based on noncycloplegic 
data at individual level may be  an effective way. Especially, such 
improvement of the refractive state assessment and refractive error 
measurement provides an accurate estimation of the distributions of 
refractive status and refractive diopter at the population level, and thus 
has great value for epidemiological studies.

Limitations

There were several limitations in the present study. First, although 
missing data was a common problem in studies with large dataset and 
data imputation was adopted to remedy this problem in the present 
study, the missing data in our dataset may still have an impact on the 
performance of our machine learning models. Second, some ocular 

A

B

C

D

E

FIGURE 5

The features’ importance in each prediction task. We take the reduction in impurity as the importance of that feature. (A–C), the features importance of 
EEC model in predicting the need for cycloplegia with threshold is 0.25D, 0.5D and 0.75D, respectively. (D), the features importance of EEC model in 
predicting the cycloplegic refractive states. (E), the features importance of ABR model in predicting the values of cycloplegic SE.
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parameter used to build the machine learning models might not 
be easily available in practice, which would limit the applicability of the 
developed models in the present study. For example, the accommodation 
lag data in this study were obtained by open field autorefraction. In 
future studies, this measure may be replaced by dynamic retinoscopy 
that is a more convenient and widely available technique. Finally, 
although the sample size and features set in the present study was large 
compared to most previous studies (In this study, in order to expand the 
sample size, both eyes of a person are included in the data set, and there 
is a correlation between the eyes, which may have a certain impact on 
the robustness of the model), more data may be needed for developing 
machine learning models with higher prediction accuracies.

Conclusion

The machine learning algorithm can be  used to estimate the 
demand for cycloplegia, the cycloplegia refractive error and the 
refractive status using the non-cycloplegia parameters. It is of 
application value in clinical work and epidemiological research.
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