
TYPE Original Research

PUBLISHED 11 April 2023

DOI 10.3389/fpubh.2023.1085991

OPEN ACCESS

EDITED BY

Theodore Gyle Lewis,

Naval Postgraduate School, United States

REVIEWED BY

Orvalho Augusto,

University of Washington, United States

Simon Grima,

University of Malta, Malta

*CORRESPONDENCE

Bruno Enagnon Lokonon

brunolokonon@gmail.com

†These authors have contributed equally to this

work and share last authorship

SPECIALTY SECTION

This article was submitted to

Infectious Diseases: Epidemiology and

Prevention,

a section of the journal

Frontiers in Public Health

RECEIVED 31 October 2022

ACCEPTED 27 March 2023

PUBLISHED 11 April 2023

CITATION

Lokonon BE, Montcho Y, Klingler P,

Tovissodé CF, Glèlè Kakaï R and Wolkewitz M

(2023) Lag-time e�ects of vaccination on

SARS-CoV-2 dynamics in German hospitals and

intensive-care units.

Front. Public Health 11:1085991.

doi: 10.3389/fpubh.2023.1085991

COPYRIGHT

© 2023 Lokonon, Montcho, Klingler, Tovissodé,

Glèlè Kakaï and Wolkewitz. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Lag-time e�ects of vaccination on
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Background: The E�cacy and e�ectiveness of vaccination against SARS-CoV-2

have clearly been shown by randomized trials and observational studies. Despite

these successes on the individual level, vaccination of the population is essential

to relieving hospitals and intensive care units. In this context, understanding the

e�ects of vaccination and its lag-time on the population-level dynamics becomes

necessary to adapt the vaccination campaigns and prepare for future pandemics.

Methods: This work applied a quasi-Poisson regressionwith a distributed lag linear

model on German data from a scientific data platform to quantify the e�ects of

vaccination and its lag times on the number of hospital and intensive care patients,

adjusting for the influences of non-pharmaceutical interventions and their time

trends. We separately evaluated the e�ects of the first, second and third doses

administered in Germany.

Results: The results revealed a decrease in the number of hospital and intensive

care patients for high vaccine coverage. The vaccination provides a significant

protective e�ect when at least approximately 40% of people are vaccinated,

whatever the dose considered. We also found a time-delayed e�ect of the

vaccination. Indeed, the e�ect on the number of hospital patients is immediate for

the first and second doses while for the third dose about 15 days are necessary to

have a strong protective e�ect. Concerning the e�ect on the number of intensive

care patients, a significant protective response was obtained after a lag time of

about 15–20 days for the three doses. However, complex time trends, e.g. due to

new variants, which are independent of vaccination make the detection of these

findings challenging.

Conclusion: Our results provide additional information about the protective

e�ects of vaccines against SARS-CoV-2; they are in line with previous findings

and complement the individual-level evidence of clinical trials. Findings from this

work could help public health authorities e�ciently direct their actions against

SARS-CoV-2 and be well-prepared for future pandemics.
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delayed e�ects, vaccination, non-pharmaceutical interventions (NPIs), linear lag models,
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1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) that emerged in China in late 2019 has caused major public
health concerns and continues to spread worldwide (1–3). There
have been a total of 614 million confirmed cases globally, with
over 6 million deaths reported, as of August 31, 2022, WHO (4).
In Germany, the first COVID-19 case was reported on January
27, 2020, in Bavaria and by March 1, 2020, more than 100
cases were reported (5). Non-Pharmaceutical Interventions (NPIs)
have quickly been promoted by the federal government including
schools, kindergartens, universities, borders for travelers closing
as well as national curfew and contact ban (6). The infection rate
decreased following these measures, however, in mid-July 2020,
the number of cases started to rise again due to relaxation (7).
NPIs have been sufficiently effective in curtailing and mitigating
the burden of the pandemic during at least its first waves (6, 7),
however, some of them such as containment and travel ban could
not bemaintained for long times. It was then believed that the use of
vaccines combined with some control measures may be necessary
to effectively curtail and eliminate COVID-19 (8).

In Germany, the vaccination program began on December 27,
2020, and as of August 31, 2022, 77.66% of all German population
have been fully vaccinated (9). The most used vaccines in Germany
are BioNTech (95% of efficacy), Moderna (94.1%), AstraZeneca
(67%), and Johnson & Johnson (67%) (10–12).

The effect of vaccines is manifold as they act on the individual
as well as the population level (13). On the individual level, vaccines
aim to reduce the risk of acquiring the infection and transmission
but also the clinical consequences once infected. The gold standard
study designs to assess vaccine efficacy are randomized placebo-
controlled trials. In addition, cohort and case-control studies
are used to measure the vaccine effectiveness during real-world
conditions (13). For the SARS-CoV-2 pandemic, several studies
have shown vaccines efficacy and effectiveness (14–17).

Contrary to cohort and case-control studies, ecological or trend
studies compare results on population level over time with varying
vaccine coverage (13). The classical approach in ecological studies
is to extrapolate from time trends before vaccine introduction,
thus creating counterfactual settings which are essential for causal
inference. However, the variants of SARS-CoV-2 and their different
impact on the pandemic dynamic have made extrapolation
extremely difficult.

Moreover, several mathematical models have been developed
to predict and assess the impact of vaccination on the transmission
dynamics of COVID-19. Gnanvi et al. (18) performed a systematic
and critical review on the reliability of predictions of the modeling
techniques on COVID-19 dynamics. Dashtbali and Mirzaie (19)
used a Susceptible, Exposed, Infected, Hospitalized, Recovered,
and Death compartmental model and found that, in the German
population, the number of infected cases at the epidemic peaks
decreases by increasing the vaccine coverage. Wollschläger et al.
(20) applied a multivariable logistic regression on data from the
German federal state of Rhineland-Palatinate and concluded that
vaccination coverage was associated both with a reduction in the
age-groups proportion of COVID-19 fatalities and of reported
SARS-CoV-2 infections. Braun et al. (21) developed an effect model

based on the Batman-SIZ algorithm for modeling the effect of
vaccination on the course of the pandemic in Germany. They
obtained that, the effect of vaccination in reducing the daily number
of new infections, the total number of infections and the occupancy
of intensive-care facilities in hospitals is proportional to the speed
with which the target population are vaccinated. Springer et al. (22)
used linear regression on the 4th corona wave in Germany and
showed that there is a negative correlation between the vaccination
rate and the infection incidence. Campos et al. (23) used a
membrane computing model for simulating the efficacy of vaccines
on the epidemiological dynamics of SARS-CoV-2. They obtained
that generalized vaccination of the entire population (all ages)
added little benefit to overall mortality rates. However, elderly-only
vaccination, even without general interventions directed to reduce
population transmission, is sufficient for dramatically reducing
mortality. Stiegelmeier et al. (24) proposed a p-fuzzy system in
order to model the COVID-19 epidemic evolution under the effect
of vaccination in Brazil. They concluded that the level of infestation
tends to decrease as the number of people vaccinated increases.
Sepulveda et al. (25) constructed a mathematical model based on a
nonlinear system of delayed differential equations to investigate the
qualitative behavior of the COVID-19 pandemic under an initial
vaccination program. They found that if the basic reproduction
number is less than one and the time delays are less than some
critical threshold, then the disease-free equilibrium is locally stable.
Thus, if public health authorities are able to reduce transmission
rates and increase vaccination rates, the burden of the COVID-19
pandemic can be reduced.

Despite the contributions of these studies, they showed
some limitations. First, the classic mathematical models of
epidemiological prediction are quite useful, but deterministic,
demonstrating only the average behavior of the epidemic, which
makes it difficult to quantify uncertainty (26). Second, the effect
of vaccination on COVID-19 reported data may not be linear.
Third, vaccination may also show effects that are delayed in time,
requiring assessment of the temporal dimension of the exposure-
response relationship (27). In addition, the previous studies ignore
the seasonal patterns of COVID-19 and the long-term trends in the
data. Indeed, themain challenge of modeling the effects of exposure
like vaccination on COVID-19 reported data lies in the additional
temporal dimension needed to express this relation, as the effects
depend on both intensity and timing of past exposure (28).
Although several studies have assessed the effects of vaccination on
COVID-19 dynamics, very few have considered its delayed effects.

The aim of this paper is to use an ecological or trend study to
evaluate the way how vaccine coverage of the German population
is associated with the number of SARS-CoV-2 patients in general
hospitals as well as intensive care units. Instead of extrapolating
from time trends before vaccine introduction, we adjusted for the
remaining time trends by natural splines with a high degree of
freedom. We applied a flexible modeling framework by Gasparrini
et al. (29) that can simultaneously represent exposure-response
dependencies and delayed effects. This family of models is called
distributed lag linear models (DLMs). Specifically, we evaluated
the effects of vaccination on the number of prevalent hospital
patients (hospital cases) and intensive care unit patients (ICU cases)
through three separate analyzes by considering people vaccinated
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with one dose (i), people vaccinated with two doses (ii), and people
vaccinated with three doses (iii).We focused on these two outcomes
(hospital cases and ICU cases) since for the COVID-19 pandemic,
controlling hospital and ICU admissions was for German public
health authorities, an important factor in saving the lives of the
patients (30).

2. Methods

2.1. Model framework

2.1.1. General form
To describe the time series of outcomes Yt , the general form of

the model is Gasparrini et al. (29):

f
(

E(Yt

)

) = α +

J
∑

j=1

sj
(

xtj;βj

)

+

K
∑

k=1

γkutk, (1)

where f is a monotonic link function and Yt is a count time
series response variable, with t = 1, . . . , n, following a distribution
that belongs to the exponential family. sj defines a smoothed
relationship between xj and Yt through a coefficient βj. uk represent
confounding variables and γk the related coefficients.

In this work, the outcomes Yt are daily numbers of prevalent
hospital patients and intensive care unit patients. According to
Cameron and Trivedi test (31), these outcomes are overdispersed
(α = 2903.716, p < 0.0001 for hospital cases and α = 1201.386, p
< 0.0001 for ICU cases). We therefore considered a quasi-Poisson
model with E(Y) = µ; V(Y) = φµ, and a canonical log-link in
Equation (1). Our motivation to choose the quasi-Poisson model
(instead of other alternatives such as the Negative Binomial model)
falls in the straightforward interpretation of the results.

2.1.2. Basic functions and delayed e�ects
The definition of the basis functions relies on two steps. In the

first step, the relationship between xj and f (E(Yt)) is represented
by s(x), and is set in Equation (1) as a sum of linear terms (29).
This relationship is carried out by the choice of a basis, a space
of functions of which s is an element (32). The associated basis
functions are some known transformations of the original variable
x that generate a new set of variables, termed basis variables (29).
Several basis functions have been proposed, and common functions
assuming smooth curves, like polynomials or spline functions (33,
34). The basis function is expressed as follows:

s (xt;β) = z⊤t · β , (2)

where z⊤t is the tth row of the n × vx basis matrix Z. The basis
dimension vx equals the degrees of freedom (df ) spent to define the
relationship in this space. The unknown parameters are estimated
including Z in the design matrix of the model in Equation (1).

In the second step, the delayed effects are considered as an
additional dimension. The outcome at a given time t is then
explained in terms of past exposures xt−l, where l (the lag)
represents the elapsed period between exposure and response, here
between vaccination and response.

In this study, the maximum lag is fixed at L = 30 days, based on
previous estimates of the incubation period for COVID-19 (35, 36).

2.1.3. The distributed lag linear models
For a maximum lag L, the additional lag dimension can be

expressed by the n× (L+ 1) matrixQ, such as:

qt. = [xt , . . . , xt−ℓ, . . . , xt−L]
⊤ , (3)

with qt . as the tth row of Q. The vector of lags ℓ =

[0, . . . , ℓ, . . . , L]⊤ corresponds to the scale of the additional
dimension. DLMs are specified by the definition of a cross-basis,
a bi-dimensional functional space describing at the same time, the
shape of the relationship along the predictor x and its distributed lag
effects (37). DLMs apply simultaneously the two transformations
described in Equations (2), (3). A DLM is expressed by Gasparrini
et al. (29):

s (xt; η) =

vx
∑

j=1

vℓ
∑

k=1

r⊤tj c·kηjk = w⊤
t η, (4)

where rtj is the vector of lagged exposures for the time t transformed
through the basis function j, C is an (L + 1) × vℓ matrix of basis
variables derived from the application of the specific basis functions
to the lag vector ℓ, the vector wt is obtained by applying the vx · vℓ

cross-basis functions to xt and η a vector of unknown parameters.

2.2. The data

The time series of the COVID-19 data were extracted
from the Robert-Koch-Institute website (https://www.rki.de/)
and www.corona-datenplattform.de, data platforms for scientific
research. The predictors were the daily cumulative proportions
of people vaccinated with one dose (V1), two doses (V2), three
doses (V3) and the non-pharmaceutical interventions (NPI) index
(Figure 1A). The outcomes were the number of prevalent hospital
patients (hospital cases) and intensive care unit patients (ICU cases)
(Figure 1B). Hospital cases were collected from March 1, 2020, to
June 30, 2022, while ICU cases were collected fromMarch 24, 2020,
to June 30, 2022.

2.3. Application of DLM to German data

We were interested in the effects of the daily cumulative
proportion of people vaccinated with one dose (V1), two doses (V2)
and three doses (V3), respectively. As V1, V2 and V3 are highly
correlated, we first regressed each series of proportions against the
two others and collected the residuals (38), which were considered
as a second variable in the DLM. We performed three preliminary
separate analyzes as follows:

For the effect of V1, we considered:

model1 : log(V1) ∼ log(V2)+ log(V3)+ ǫa. (5)
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FIGURE 1

Time series of German data considered. (A) The predictors represented by the daily cumulative proportions of people vaccinated with one dose (V1),

two doses (V2), three doses (V3) and the non-pharmaceutical interventions (NPI) index. (B) The outcomes: the daily numbers of prevalent hospital

patients (hospital cases) and intensive care unit patients (ICU cases).

For the effect of V2, we used:

model2 : log(V2) ∼ log(V1)+ log(V3)+ ǫb. (6)

For the effect of V3, we applied:

model3 : log(V3) ∼ log(V1)+ log(V2)+ ǫc. (7)

The DLMs considered to assess the effects of V1, V2, and V3 on
the hospital and ICU cases were defined, respectively, as follows:

log(E(Yt)) = α1 + ns(time, df )+ β1V1,t + γ1ǫa,t + λ1NPIt , (8)

log(E(Yt)) = α2 + ns(time, df )+ β2V2,t + γ2ǫb,t + λ2NPIt , (9)

log(E(Yt)) = α3 + ns(time, df )+ β3V3,t + γ3ǫc,t + λ3NPIt , (10)

where Yt represents the hospital or ICU cases, log, the natural log
function, α1, α2, α3 are the models intercepts, ǫa, ǫb, and ǫc are
the residuals extracted from Equations (5)–(7). The variable time

was set in the model to consider long-term trends and to account
for some of the pandemic patterns, such as variants and seasonal
variations, which are not explained by remaining predictors. In
Equations (8)–(10), V1,t , V2,t and V3,t are the cross-basis functions
of the three vaccination doses while ǫa,t , ǫb,t and ǫc,t represent
the cross-basis functions for the residuals and NPIt , the cross-
basis function of the non-pharmaceutical interventions index,
considered as confounding variable in the models. The unknown
coefficients in the three models are β1, β2, β3, γ1, γ2, γ3, λ1, λ2 and
λ3. Moreover, in the Equations (8), (9), and (10), the terms V1,t ,
V2,t , V3,t , ǫa,t , ǫb,t , ǫc,t and NPIt are lagged with lags ℓ ∈ [0, L],
where L = 30 days represent the maximum lag period. This value
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was allocated to the maximum lag period considering previous
estimates of the incubation period for COVID-19 (35, 36).

The natural cubic spline ns, a flexible and effective technique
for adjustment for nonlinear confounding effects (39), was used
to adjust for the predictors with two degrees of freedom. This
number of degrees of freedom was selected after a sensitivity
analysis (40). The natural cubic spline ns was also used for the
variable time and the degrees of freedom (dfs) to find the best
modeling of the time trend was chosen by minimizing the Quasi-
Akaike information criterion (QAIC) (37) as we considered a
quasi-Poisson model framework.

The relative count change (RCC) with a 95% confidence
interval (CI), calculated as a relative increase/decrease in counts of
hospital and ICU patients, was used to assess the effects. RCC =

1 means that there is no connection between vaccination and the
disease while RCC < 1 and RCC > 1 are related to the reduction
and increase in counts of hospital and ICU patients, respectively
(41). Contour plots that depend on lag times and values of V1,
V2, and V3 were used to visualize the effects. All analyzes were
performed in R version 4.2.1 with the package dlnm (37).

3. Results

To assess the effects of V1, the best fitting was obtained for 15
and 16 degrees of freedom for ICU and hospital cases, respectively.
Concerning V2, 16 and 20 degrees of freedom for ICU and hospital
cases gave the best fitting. Regarding V3, 16 and 23 degrees
of freedom for ICU and hospital cases showed the best fitting.
Supplementary Figures S1, S2 showQAIC values andmodels fitting
(observed data and fitted models).

Figure 2 presents the contour plots of the combined effects of
lag times and vaccinations on the relative count change (RCC)
of hospital and ICU cases. Overall, low vaccine coverage for the
first, second and third doses (0–10%) and short (0–4 days) lag
times show no connection between vaccination and the number of
patients in hospital and ICU (RCC≈1). However, higher vaccine
coverages and longer lag times were associated with a bigger
decrease in the number of patients in hospitals and ICUs (RCC
< 1). The number of COVID-19 patients in hospitals or ICUs
significantly decreases as the vaccine coverage increases. Moreover,
there were delayed effects of vaccination according to the doses.
Strong protective effects were obtained for a lag time of about
15–20 days after vaccination, when at least about 40% of people
are vaccinated.

3.1. The e�ects of V1 on hospital and ICU
cases

Figures 2A, B show the contour plots of the effects of V1 and
lag times on the relative count change (RCC) of hospital and ICU
cases. There was no significant effect on hospital and ICU cases
(RCC≈1) for low vaccine coverage (0–10%) and short (0–4 days)
lag times. Protective effects (decrease in the counts of patients in
hospitals and ICUs) were observed around V1 = 20% with a lag
of 5 days, where RCC = 0.80 (95% CI 0.74–0.85) for hospital
cases and RCC = 0.92 (95% CI 0.88–0.97) for ICU cases. The

number of patients in hospital and ICU (RCC < 1) decreases then
sharply as the lag days and vaccine coverage increase. The number
of COVID-19 patients in hospitals or ICU significantly decreases
(strongest positive effects) for the highest vaccine coverage (77%)
and longest lag times (30 days) with RCC = 0.07 (95% CI 0.06–
0.09) for hospital cases and RCC= 0.24 (95%CI 0.21–0.27) for ICU
cases. Moreover, comparatively, the effects of V1 on hospital cases
are more immediate and intense than on ICU cases.

3.2. The e�ects of V2 on hospital and ICU
cases

Figures 2C, D show the relative count change (RCC) of hospital
and ICU cases as a function of V2 and lag times. Examining
the contour plots, no significant effect of V2 was observed on
hospital and ICU cases (RCC≈1) for low vaccine coverage (0–10%).
Considering the hospital cases, moderate and immediate positive
effects (decrease in counts of hospital patients) were obtained
for moderate vaccine coverage V2 (20–50%) while strong and
immediate positive effects were observed for high vaccine coverage
V2 (50–73%). For ICU cases, there were adverse effects (increase
in counts of ICU patients) for the highest vaccine coverage (70%)
and short (0–3 days) lag times with RCC=1.04 (95% CI 0.79–
1.35). From a lag of 5 days, the highest vaccine coverages V2

were associated with the lowest RCC values, showing strong and
positive effects on ICU cases, which last up to 30 days. The effects
of V2 on hospital cases are more immediate and intense than on
ICU cases.

3.3. The e�ects of V3 on hospital and ICU
cases

Figures 2E, F show the relative count change (RCC) of
hospital and ICU cases as a function of V3 and lag times.
No significant effect of V3 was noticed on hospital and ICU
cases (RCC≈1) for low vaccine coverage (0–10%). Regarding the
hospital cases, moderate and immediate positive effects (decrease
in counts of hospital patients) were obtained for moderate vaccine
coverage V3 (20–35%) while strong and immediate positive
effects were observed for high vaccine coverage V3 (40–61.50%).
For ICU cases, there were adverse effects (increase in counts
of ICU patients) for the highest vaccine coverage (60%) and
short (0–7 days) lag times with RCC = 1.03 (95% CI 1.00–
1.07). From a lag of 10 days, the highest vaccine coverages
V3 were associated with the lowest RCC values and strong
and positive effects on ICU cases were observed until a lag of
30 days.

Comparison between vaccine coverages shows that V1

has a more immediate and intense effect than V2 and that
V2 also has a more immediate and intense effect than V3.
These observations were made for both hospital and ICU
cases. Supplementary Figures S3, S4 present RCC point
estimates and their confidence intervals for vaccination
coverages V1, V2, and V3 in the cases of hospital and ICU
patients, respectively.

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1085991
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Lokonon et al. 10.3389/fpubh.2023.1085991

FIGURE 2

Contour plots of the combined e�ects of lag times and vaccinations on the relative count change (RCC) of hospital and ICU cases. (A) Contour plot

of RCC of hospital cases as a function of V1 and lag times. (B) Contour plot of RCC of ICU cases as a function of V1 and lag times. (C) Contour plot of

RCC of hospital cases as a function of V2 and lag times. (D) Contour plot of RCC of ICU cases as a function of V2 and lag times. (E) Contour plot of

RCC of hospital cases as a function of V3 and lag times. (F) Contour plot of RCC of ICU cases as a function of V3 and lag times. DLM1, DLM2, and

DLM3 represent the distributed lag models for the first, second and third doses.

4. Discussion

In this study, we used an ecological or trend study to assess the
effects of vaccination and its lag-time on the number of COVID-
19 hospitals and ICU patients in Germany. From our results,
there was no significant link between the vaccination coverages
V1, V2, and V3 and the number of patients in hospital and
ICU for low vaccine coverages (0–10%) and short lag times as
the relative count change (RCC) was about 1. This means that
regardless of the dose of vaccination received, at least 10% of the
population must be vaccinated to expect a beginning protective

effect against hospital and ICU admissions. The protective effect
is low from 10% and then increases as the vaccination rate
increases. As expected, this result supports the point that a high
vaccination rate is correlated with a lower number of patients
in hospital and ICU (20). We also found that, in the context of
Germany, the vaccination takes its strong protective effect when
at least approximately 40% of people are vaccinated. This result is
consistent with those in Springer et al. (22), which show a negative
correlation between incidence and vaccination rate in Germany
during the 4th wave where the vaccination rate is above 40%.
Our findings are also in line with previous studies showing that
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COVID-19 vaccines are effective against severe forms of the disease
(20, 42).

Furthermore, our results showed a delayed effect of the
vaccination according to the doses and outcomes. Indeed, for the
hospital cases, the effect is immediate for the first and second doses
while for the third dose, a strong protective effect is obtained about
15 days after vaccination. Concerning ICUs cases, there was a lag
time of about 15–20 days to obtain a strong protective effect after
the first, second and third doses, respectively. These lag times are
short compared to that obtained by Li et al. (27) who argued that
the lag time for a response to vaccination was at least 40 days.
However, contrary to our study, they used the daily reported cases
and effective reproduction number as outcomes.

One strength of this study is that our outcomes (hospital and
ICU cases) are very specific with low random noise in contrast to
other outcomes (general SARS-CoV-2 cases, death cases associated
with SARS-CoV-2). German hospitals and intensive care units are
legally obligated to report these SARS-CoV-2 data diagnosed with
PCR. In Germany, there were about 16.69% and 33.36% deaths
among patients admitted to hospital and ICU, respectively (43).
These death rates are very high compared to those in the whole
population, which is 4.35% (44). It was then important to quantify
the effects of vaccination to analyze its contribution to the control
of hospital and ICU admissions since public health authorities were
most concerned about the scenario where the demand exceeds the
capacity of healthcare services (30). To our knowledge, this study
is the first that analyzes the effects of vaccination and its lag times
on the number of COVID-19 patients in hospitals and ICUs in
Germany taking into account long time trends. The findings of
this work are relevant and can be applied in other settings and
localities. We also included NPIs in our models as a confounding
variable since they were maintained at a certain level in the German
population while vaccines are distributed. The use of COVID-19
vaccines in combination with the implementation of NPIs is seen
as the best alternative to rapidly control the pandemic (45). There
is also evidence that an epidemic is likely to rebound immediately
after the implementation of a vaccination program if NPIs are
completely abandoned (27).

One limitation of our study is that our results are highly
dependent on the way we adjusted for the time trends. Moreover,
we do not extrapolate hospital cases from time trends before
vaccine introduction since emerging variants highly differ from
previous variants in terms of transmission, medical condition and
burden of disease.

Several observational study designs are discussed in the
literature to evaluate the impacts of interventions during an
epidemic (13, 46). Digitale et al. (46) reformulated observational
studies as pragmatic designs. For these authors, instead of asking
retrospective questions about interventions that occurred in the
past, the goal should be to prospectively collect data about planned
interventions in the future. However, pragmatic designs require
more initial planning, community engagement and regulations
for human research protection (47). In this study, our design
and analysis differ from pragmatic designs. Moreover, we are not
interested in estimating vaccine efficacy through randomized trials
of individuals or the evaluation of vaccine effectiveness through
observational cohort and case-control studies (13). Instead, we

aimed to assess the effects of changing vaccine coverage on the
number of patients in hospitals and ICUs at a population level. We
evaluated the way how vaccination is associated with a decrease
in the number of patients in hospitals and ICUs. According to
Lipsitch et al. (13), an important consideration of time-trend
vaccine effectiveness studies is that the disease outcome under study
must be sufficiently specific so that the vaccine’s impact on it is likely
to be measurable. This was the case for the outcomes considered
in this study. Health authorities should therefore consider these
results when designing vaccination programs for future pandemics.
Knowing the lag times of the vaccination would allow the public
health authorities to design appropriate interventions to effectively
interrupt the disease transmission (48) if new variants emerged.

5. Conclusion

This work highlights the effects of vaccination on the admission
of COVID-19 patients in hospitals and ICUs in Germany. Our
results showed a decrease in the number of patients in hospitals
and ICUs for an increase in vaccine coverage. This is in line
with the protective effects of vaccines against the severe forms of
COVID-19 as proved through clinical trials. Moreover, we found
that the response to vaccination could be delayed for about 20 days.
These findings could be used for designing vaccination programs
for future pandemics. Further studies should assess the effects of
vaccination considering regional, demographic and social aspects.
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