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Background: In recent years, the number of people with anxiety disorders has

increased worldwide. Methods for identifying anxiety through objective clues are

not yet mature, and the reliability and validity of existing modeling methods have

not been tested. The objective of this paper is to propose an automatic anxiety

assessment model with good reliability and validity.

Methods: This study collected 2D gait videos and Generalized Anxiety Disorder

(GAD-7) scale data from 150 participants. We extracted static and dynamic time-

domain features and frequency-domain features from the gait videos and used

various machine learning approaches to build anxiety assessment models. We

evaluated the reliability and validity of the models by comparing the influence of

factors such as the frequency-domain feature construction method, training data

size, time-frequency features, gender, and odd and even frame data on themodel.

Results: The results show that the number of wavelet decomposition layers has

a significant impact on the frequency-domain feature modeling, while the size of

the gait training data has little impact on the modeling e�ect. In this study, the

time-frequency features contributed to the modeling, with the dynamic features

contributingmore than the static features. Ourmodel predicts anxiety significantly

better in women than inmen (rMale = 0.666, rFemale = 0.763, p < 0.001). The best

correlation coe�cient between the model prediction scores and scale scores for

all participants is 0.725 (p < 0.001). The correlation coe�cient between themodel

prediction scores for odd and even frame data is 0.801∼0.883 (p < 0.001).

Conclusion: This study shows that anxiety assessment based on 2D gait

video modeling is reliable and e�ective. Moreover, we provide a basis for the

development of a real-time, convenient and non-invasive automatic anxiety

assessment method.
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anxiety assessment, mental health, gait video, machine learning, reliability and validity

1. Introduction

The increasing pressure of modern life has led to a decline in global mental health and

an increase in anxiety and depression (1). Anxiety disorders are the most common mental

health problemsworldwide andmay cause physiological reactions such as irritability, fatigue,

and increased heart rate. A long-term intense anxious state not only affects an individual’s

social, life, and work responsibilities but also has a serious impact on their physical health (2).

Therefore, to improve the mental health of different groups, the demand for mental health

services has increased worldwide (3, 4). Fortunately, in recent years, researchers have made

new progress in the treatment of mental diseases such as anxiety and depression (5, 6). At

the same time, we urgently need to develop a convenient and timely method for assessing

anxiety states.
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In psychology, the anxiety scale has been carefully designed,

revised and tested, and various scale-based assessment methods

have been developed (7). Self-reports rely on individuals reporting

their symptoms, behaviors, and attitudes (8). At present, self-

reports remain the most commonly used and most effective anxiety

assessment method (9). However, scale-based assessments have

some limitations and are not applicable in some scenarios (10).

For example, in scenarios that require multiple measurements,

participants completing the same questionnaire multiple times can

lead to practice effects (11). In scenarios such as job interviews,

scale results may be inaccurate due to social desirability (12).

In addition, the self-report method is not suitable for certain

populations, such as illiterate or dyslexic individuals. Therefore, we

hope to develop more objective indicators to assess anxiety.

Anxiety can affect an individual’s physiological responses.

Anxious individuals may experience shortness of breath and

accelerated heartbeat (2). In addition, fear is a typical symptom

of anxiety disorders, and patients may experience muscle tension

(13), sweating, trembling (14), and skin conductance and heart rate

changes (15). Anxiety-induced fear can also be reflected through

facial expressions (16). Giannakakis et al. showed that some specific

facial cues, such as eye and mouth movements, are suitable as

discriminative indicators of anxiety (17). Anxiety may also be

reflected in voice changes. In anxious states, individuals tend to

speak quickly at a loud volume (18), showing fewer voice changes

andmore pauses (19). Gait and anxiety are also related. Gait posture

and movement characteristics can indicate a variety of emotions

(20, 21). For example, individuals with anxiety tend to pace back

and forth (22). Feldman et al. found that compared with healthy

people, anxious patients have shorter stride distances and take

fewer steps per minute, displaying movement disorders to some

extent (23). Other researchers have noted similar characteristics,

such as slow gait (24, 25) and balance dysfunction (26, 27). In

addition, arm swings, vertical head movements, and lateral upper

body swings have also been associated with anxiety (28). Among

the various physiological and behavioral characteristics related to

anxiety, gait has several advantages, including large variations, non-

invasiveness and ease of observation. Thus, gait can serve as an

objective indicator for assessing anxiety.

To acquire gait data, some researchers have used body-worn

sensors (29), human motion capture systems (30, 31), Kinects

(Xbox One Kinect Sensor) (32) and other devices. However,

these devices are expensive and complex to operate, which is not

conducive to improving the applicability of anxiety assessment

methods. In this study, we recorded 2D gait videos using a

common camera that is simple to operate, increasing the ease of

obtaining data.

In recent years, with the development of machine learning

technology, various researchers have used gait to assess anxiety.

Jing et al. found that a prediction model based on gait features

performed better than a prediction model based on speech features

(33). Miao et al. and Zhao et al. established anxiety assessment

models, and the correlation coefficients between the anxiety

prediction score and the scale score reached 0.4 (34) and 0.51

(35), respectively. Both studies considered the basic statistics of the

gait time series data and the amplitude in the frequency domain

after a Fourier transform as features. These features are relatively

simple, which may increase the make it difficult to express the

rich movement characteristics of gait. In addition, these features

lack biological or kinematic interpretations. Stark et al. considered

five main gait parameters to identify anxiety, namely, the turning

angle, neck variance, lumbar rotation, lumbar movement in the

sagittal plane, and arm movement (36). Although the above studies

established different anxiety assessment models, they did not

comprehensively evaluate themodel reliability and validity, and did

not adequately validate the performance of their models.

In this study, we used 2D gait videos to construct static and

dynamic time-domain features and frequency-domain features and

established anxiety prediction models through machine learning

algorithms. To validate the proposed models, we examined

the effects of different frequency-domain feature construction

methods, training data sizes and gender onmodel performance and

compared the contributions of different time-frequency features to

the modeling results. In addition, we tested the odd-even split-

half reliability of the proposed anxiety assessment model. The

goal of this study is to provide a convenient auxiliary anxiety

assessment method.

The contributions of this study are as follows:

• Build anxiety assessmentmodels using easily accessible 2D gait

videos, reducing cost and increasing convenience of anxiety

assessment. It was verified that a good anxiety assessment

model can be built without using longer gait videos.

• We constructed static and dynamic time-domain features

and frequency-domain features with biological kinematic

significance, and proved the rationality and necessity of

constructing features.

• This study carefully evaluated the performance (validity

and reliability) of the anxiety assessment model through

experiments. We validated differences in anxiety assessment

between men and women, and verified the robustness of our

model in a video odd-even split-half test.

The rest of this paper is organized as follows. First, we

introduce the research methods and experiments in Section

Methods, including the collection and preprocessing of gait data,

feature engineering and modeling, and experimental procedures.

Then, the results of several comparative experiments are reported

in Section Results. A general discussion of the results is given

in Section Discussion, explaining the findings of the study and

illustrating further work. Finally, concluding remarks is presented

in Section Conclusion.

2. Methods

In this study, we used a camera to capture participant gait

videos (walking back and forth) indoors. The specific gait video

collection method is similar to the method described in Wen

et al. (37).

After the gait videos were collected, the participants

immediately completed a 7-item Generalized Anxiety Disorder

(GAD-7) scale assessment. The GAD-7 assessment is a valid and

efficient tool for identifying GAD and assessing its severity in

clinical practice and research (9). It evaluates anxiety states in the

previous 2 weeks and divides anxiety into four levels according
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FIGURE 1

Gait video data segmentation process. (A) Full gait video. (B) Only

the front-view gait segments of the video are kept. (C) Keep 75

frames. (D) Split odd and even frame segments.

to the scale scores, namely, minimal anxiety (0–4), mild anxiety

(5–9), moderate anxiety (10–14), and severe anxiety (15–21). The

GAD-7 assessment shows good internal consistency (Cronbach α

= 0.92) and test-retest reliability (intraclass correlation= 0.83) (9).

Permission for the above protocol was obtained from the

Institutional Review Board of the Institute of Psychology, Chinese

Academy of Sciences (Approval number: H15010).

We obtained∼2-min gait videos for each participant, including

front and back gaits. Since the front-view gait skeleton evaluation is

more accurate than that the back-view evaluation (38), we analyzed

skeletons only from the front view to obtain more precise features.

Previous studies have shown that good models can be built using a

small number of gait frames (35). We kept three consecutive front-

view gait segments for each participant, and each segment included

75 frames. To assess the odd-even split-half reliability of the model,

we divided the first 74 frames in the gait data into two sets by

considering odd and even frames. The gait data segmentation

process is shown in Figure 1.

The preprocessing method is similar to the approach proposed

in Wen et al. (37). We used OpenPose (39) (a multiperson 2D

pose recognition system) to extract the 2D coordinates of 25

body key points from the gait videos and performed coordinate

translation (with the MidHip key point as the coordinate origin)

and smoothing on the coordinate sequence. Figure 2 shows the 25

human body key points in OpenPose.

The gait coordinate sequence obtained after preprocessing

includes only isolated coordinate points and thus does not reflect

changes between frames and variations between different key

points. We call the features obtained from such data static

time-domain features. To reflect the changing gait characteristics

(40), we calculate the interframe difference and construct the

distances between joints (see Supplementary Table A) and angles

between joints (see Supplementary Table B) to express dynamic

information. We term these features dynamic time-domain

features. The method for obtaining the static and dynamic time-

domain features is similar to Wen et al. (37). Figure 3 shows a

diagram of the interframe difference between fj−1, fj, and fj+1 in

FIGURE 2

Twenty-five human body key points in OpenPose.

FIGURE 3

Diagram of the interframe di�erence. fj−1, fj and fj+1 represent three

adjacent gait images in the gait video. The dotted line represents the

movement trajectory of the key point.

a gait video. The motion track of the key points between each frame

contains the interframe difference information.

In gait, somemovement patterns aremore easily reflected in the

frequency domain (41). Relevant studies have extracted frequency-

domain gait features through Fourier transforms (34, 35). However,

Fourier transforms (42) cannot be applied in multiresolution

analyses in the frequency domain. Thus, we use wavelet transforms

(43) to analyze the frequency variation characteristics of the joint

distances in the frequency domain.

We use the db1 wavelet base to decompose the distance between

joints into an approximation coefficient array A3 representing low-

frequency signals and detail coefficient arrays D1, D2, and D3
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FIGURE 4

Wavelet decomposition process. X represents the source signal. A1,

A2 and A3 are the approximation coe�cient arrays obtained by

decomposing each layer. D1, D2 and D3 are the detail coe�cient

arrays obtained by decomposing each layer.

representing high-frequency signals. Figure 4 shows the three-layer

wavelet decomposition process.

We used 10 feature extraction functions to extract the above

time-domain and frequency-domain features. These functions

include the maximum, minimum, mean, median, variance, root

mean square, skewness, kurtosis, absolute energy, and coefficient

of variation in the sequence data. The specific feature extraction

functions are shown in Supplementary Table C.

We used z-score standardization (44) to eliminate differences in

the values and dimensions of features. The z-score standardization

is defined as:

x
′

=
x− x

σx

Where x is the sample mean and σx is the sample standard

deviation. Then, we used principal component analysis (PCA) (45)

to remove redundant features and sequential forward selection

(SFS) (46) to automatically identify feature combinations that

resulted in optimal model performance. SFS is a greedy search

algorithm. At each stage, according to the evaluation rules, the

SFS algorithm continuously selects the optimal feature from the

remaining features to determine the optimal feature subset. The SFS

pseudocode is shown in Algorithm 1.

We selected 3 typical machine learning regression algorithms

for modeling, namely, Gaussian process regression (GPR), linear

regression (LR), and support vector regression (SVR), where the

SVR models included the “linear,” “poly,” “rbf,” and “sigmoid”

kernel functions. We trained and tested the models with 10 rounds

of 10-fold cross validation. The complete modeling process is

shown in Figure 5.

In computer science, the root mean square error (RMSE) is

often used to evaluate regression model performance (47) and is

defined as:

RMSE =

√

√

√

√

1

N

N
∑

n=1

(

Modeln − Scalen
)2

Where Modeln and Scalen represent the anxiety

model prediction score and anxiety scale score of the nth

participant, respectively.

Algorithm:Sequential Forward Selection.

Input:

X: The whole feature set

J: The model evaluation rules (Using RMSE)

Output:

S: The best subset of features

Method:

(1) Create an empty subset Z = {∅}

(2) repeat

(3) Select best remaining feature:

x = argminx′ ǫZk
[J(Z + x)]

(4) Update Z = Z + x

(5) S = Z

(6) until not decreased in J OR Z = X

Algorithm 1. Pseudocode for the Sequential Forward Selection algorithm.

To comprehensively evaluate the performance of the proposed

anxiety assessment models, we considered reliability and validity

assessment methods used in psychology. We used the Pearson

correlation between the anxiety assessmentmodel prediction scores

and the anxiety scale scores as the model criterion validity. In

addition, we fed different data segments into the model to obtain

prediction scores and used the Pearson correlation between these

different model prediction scores to evaluate model reliability.

To explore the influence of the number of wavelet

decomposition layers during the construction of the frequency-

domain features on the prediction results, we set the wavelet

decomposition level parameter from 1 to 4 (the level parameter

controls the number of wavelet decomposition layers). Figure 6

shows the effect of decomposing the original time series signal

according to different numbers of wavelet layers. The signals in

each column can be restored to the original signal X after they are

superimposed on each other.

To explore the influence of the gait video training data size on

the model, we used gait segments with different numbers of frames

to build various models and compared the model performance.

In gait data segmentation, each participant has three segments of

gait data, as shown in Figure 1. First, we used segment1, segment2
and segment3 to establish three single-segment models. Then, two

of the three segments were combined to establish three double-

segment fusion models. Finally, the three segments were combined

to establish a three-segment fusion model. The gait segments were

combined as follows:

segment12 = segment1 + segment2

segment13 = segment1 + segment3

segment23 = segment2 + segment3

segment123 = segment1 + segment2 + segment3

The Pearson correlation coefficients between the model

prediction scores and the anxiety scale scores were calculated to

evaluate the influence of the number of gait segment frames on the

performance of the models.

In machine learning, some neural network components can

be removed to understand their impact on the network (48). In

this study, we explored the impact of different features on model
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FIGURE 5

Modeling process. PCA, principal component analysis; SFS, sequential forward selection; GPR, Gaussian process regression; LR, linear regression.

SVRlinear , SVRpoly , SVRrbf , and SVRsigmoid represent support vector regression using linear, poly, rbf, and sigmoid kernel functions, respectively.

performance through feature ablation studies to determine whether

the constructed features are effective. We used the static time-

domain features, dynamic time-domain features, all time-domain

features (including dynamic and static features), frequency-domain

features, and all features (including all time-domain and frequency-

domain features) to build 5 anxiety assessment models. The

Pearson correlation coefficients between the model prediction

scores and the scale scores were used to evaluate the contribution

of different features to the model.

We also explored whether gender has an effect on anxiety

prediction models. To accomplish this, we input the male and

female gait data into the anxiety assessment model. Then, we

calculated the Pearson correlation coefficients between the anxiety

prediction scores of males and females and the corresponding

scale scores to evaluate whether gender impacts the anxiety

prediction model.

In psychology, odd-even split-half reliability is often used to

characterize the degree of internal consistency of scales (49). We

input the odd and even frame gait data into the anxiety assessment

model to obtain the corresponding model prediction scores and

used the Pearson correlation coefficient between the two prediction

scores to evaluate the robustness and reliability of the model.

3. Results

We recruited 152 participants. According to the experimental

processing requirements, 150 valid data remained after screening,

including 79 males (52.67%) and 71 females (47.33%). The

proportion of males and females was essentially balanced. The ages

of the participants ranged from 21 to 28 years (mean= 22.99, SD=

1.07). The mean and standard deviation of the participant GAD-7

scores were 4.31 and 4.45, respectively. As shown in Table 1, the

participants mainly showed minimal and mild anxiety, with 132

participants at this anxiety level (88%). There were 5 participants

with severe anxiety, and all were women.

Table 2 show that in terms of the different algorithms, the GPR

and LR models had the best effect, regardless of the number of

wavelet decomposition layers. In terms of the number of wavelet

decomposition layers, except for the SVRpoly model (the SVRpoly
model had the best effect when level = 2), the performance of

the other models continuously improved as the number of layers

increased from level = 1 to level = 3 (the mean values of

rL1 , rL2 and rL3 were 0.401, 0.504, and 0.565, respectively). When

level = 4, the model performance declined (the mean value of rL4
was 0.464). In summary, the GPR and LR models showed optimal

performance when level = 3 (rL3_GPR = 0.677, rL3_LR = 0.677,

p < 0.001, and their RMSE values were less than those of the

other algorithms). We determined the optimal number of wavelet

decomposition layers by iteratively searching parameters.

As shown in Table 3, among the 7 data combinations, the

GPR and LR models had the best results. In the GPR and LR

models, the modeling effects of the segment1, segment12,segment13
and segment123 gait segments (which all contained segment1 and

had mean rs1 , rs12 , rs13 and rs123 values of 0.559, 0.495, 0.495, and

0.516, respectively) were better than those of the other segments

(the mean values of rs2 , rs3 and rs23 were 0.425, 0.435, and

0.447, respectively). Similar trends were found for the SVRrbf and

SVRsigmoid models. In conclusion, the GPR and LR models had the

best performance when modeled on segment1 (rs1_GPR = 0.731,

rs1_LR = 0.702, p < 0.001). We found that there are some

differences in the modeling effect of gait segments in different

periods. Moreover, the increase in the number of gait segments did

not significantly improve the model effect.

As shown in Table 4, the modeling effects of the GPR and LR

models on different features were significantly better than those of
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FIGURE 6

The e�ect of wavelet decomposition. The level parameter represents the number of wavelet decomposition layers. X represents the original time

series data. Di (i ∈ {1, 2, 3, 4}) represent detail coe�cient arrays. Aj (j ∈ {1, 2, 3, 4}) represent approximation coe�cient arrays.

TABLE 1 Population distribution of GAD-7 scale scores.

GAD-7 scale score range Total

0∼4 5∼9 10∼14 15∼21

Male 55 18 6 0 79

Female 41 18 7 5 71

Total 96 36 13 5 150

GAD-7, the 7-item Generalized Anxiety Disorder scale; 0∼4, minimal anxiety; 5∼9, mild

anxiety; 10∼14, moderate anxiety; 15∼21, severe anxiety.

the other models. TheGPRmodel achieved the best modeling effect

on all features, including the time-domain and frequency-domain

features (r5_GPR = 0.725, p < 0.001). The mean values of r1, r2,

r3, r4, and r5 were 0.399, 0.446, 0.536, 0.565, and 0.560, respectively,

showing a slow increasing trend. These trends were particularly

noticeable in the GPR and LR models, with r5_GPR > r4_GPR
and r5_LR > r4_LR (p < 0.001). We found that the anxiety

assessment models are sensitive to different gait features. And gait

features with kinematic characteristics can significantly improve

the performance of the model.

As shown in Table 5, the GPR model performed significantly

better than the other models (rAll_GPR = 0.725, rMale_GPR =

0.666, rFemale_GPR = 0.763, p < 0.001, and its RMSE value was

lower than those of the other algorithms). The anxiety prediction

effect was better for women than for men (the mean values of

rMale and rFemale were 0.547 and 0.566, respectively). Except for

the SVRlinear and SVRpoly models, all other models reflected this

characteristic.We found that the prediction performance of anxiety

assessment model for different groups is different.

As shown in Table 6, except for SVRpoly, all models showed

good reliability, and their odd-even split-half reliability was >

0.8. This proved the stability of the model to a certain extent. In

conclusion, the GPRmodel obtained the best criterion validity and

split-half reliability performance.

Gait-based anxiety assessment methods have not been fully

established. Here we migrated our method to a similar dataset (34).

The results showed that the GPR model had the best effect. The

Pearson correlation coefficient between the predicted scores of the
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TABLE 2 Criterion validity of frequency-domain feature modeling using di�erent numbers of wavelet decomposition layers.

RMSEL1 rL1 RMSEL2 rL2 RMSEL3 rL3 RMSEL4 rL4

GPR 4.027 0.475 3.568 0.594 3.273 0.677 3.830 0.564

LR 4.092 0.471 3.593 0.594 3.291 0.677 3.859 0.565

SVRlinear 4.024 0.408 3.967 0.430 3.619 0.562 3.946 0.441

SVRpoly 4.223 0.269 3.772 0.520 3.915 0.437 4.085 0.409

SVRrbf 4.105 0.405 4.008 0.434 3.967 0.496 4.071 0.390

SVRsigmoid 4.045 0.375 3.952 0.451 3.773 0.542 3.988 0.416

The subscripts L1 , L2 , L3 and L4 indicate that the numbers of wavelet decomposition layers are 1, 2, 3, and 4 (the level parameter ranges from 1 to 4), respectively, when constructing the

frequency-domain features. RMSE and r represent the root mean square error and criterion validity of the model established using the frequency-domain features, respectively. All correlation

coefficients are highly significant (p < 0.001).

TABLE 3 Criterion validity of modeling with di�erent training data sizes.

rs1 rs2 rs3 rs12 rs13 rs23 rs123

GPR 0.731 0.543 0.578 0.633 0.592 0.545 0.634

LR 0.702 0.547 0.578 0.630 0.583 0.545 0.637

SVRlinear 0.542 0.276 0.320 0.362 0.540 0.426 0.494

SVRpoly 0.403 0.386 0.372 0.392 0.314 0.425 0.354

SVRrbf 0.460 0.454 0.403 0.526 0.487 0.425 0.490

SVRsigmoid 0.518 0.346 0.359 0.424 0.454 0.314 0.488

rs1 , rs2 and rs3 represent the criterion validity of the models established using gait segments

segment1 , segment2 and segment3 , respectively. rs12 , rs13 and rs23 represent the criterion validity

of the models established after combining any two of the three gait segments. rs123 represents

the criterion validity of the model established after combining all three gait segments. All

correlation coefficients are highly significant (p < 0.001).

TABLE 4 Ablation studies with di�erent modeling features.

r1 r2 r3 r4 r5

GPR 0.462 0.602 0.681 0.677 0.725

LR 0.461 0.595 0.680 0.677 0.704

SVRlinear 0.349 0.274 0.498 0.562 0.540

SVRpoly 0.410 0.368 0.467 0.437 0.404

SVRrbf 0.378 0.428 0.459 0.496 0.457

SVRsigmoid 0.336 0.407 0.432 0.542 0.528

r1 , r2 , r3 , r4 and r5 represent the criterion validity of the models developing using static

time-domain features, dynamic time-domain features, all time-domain features (including

dynamic and static features), frequency-domain features, and all features (including all time-

domain and frequency-domain features), respectively. All correlation coefficients are highly

significant (p < 0.001).

anxiety assessment model and the scale scores reached 0.6, which

was higher than the 0.4 reported by Miao et al. (34). In addition, we

also tested the odd-even split-half reliability of the model on this

dataset to 0.8. This shows that our anxiety assessment model has

good robustness.

4. Discussion

We demonstrated that automated anxiety assessment using 2D

gait videos is feasible. Based on 2D gait videos, we constructed

TABLE 5 Criterion validity of the anxiety assessment model for males and

females.

RMSE rAll rMale rFemale

GPR 3.185 0.725 0.666 0.763

LR 3.430 0.704 0.639 0.722

SVRlinear 3.698 0.540 0.632 0.446

SVRpoly 4.018 0.404 0.404 0.361

SVRrbf 3.948 0.457 0.469 0.512

SVRsigmoid 3.823 0.528 0.474 0.590

RMSE, root mean square error. rAll , rMale and rFemale represent the criterion validity of

the model for all participants, male participants, and female participants, respectively. All

correlation coefficients are highly significant (p < 0.001).

TABLE 6 The odd-even split-half reliability of anxiety assessment models.

GPR LR SVRlinear SVRpoly SVRrbf SVRsigmoid

rsplit−half 0.803 0.801 0.808 −0.696 0.876 0.883

rsplit−half represents the odd-even split-half reliability. All correlation coefficients are highly

significant (p < 0.001).

and fused static and dynamic time-domain features and frequency-

domain features and used machine learning methods to establish

anxiety assessment models. Moreover, we evaluated the criterion

validity and split-half reliability of the proposed anxiety prediction

models. We also assessed the effects of different frequency-domain

feature construction methods, gait training data sizes, and gender

differences on the modeling results, verifying the contributions of

various time-domain and frequency-domain features. Our results

showed that the proposed gait video-based anxiety assessment

method had good reliability and validity.

People with anxiety disorders tend to be between 15 and 35

years old (50). Higher education levels appear to have a protective

effect on anxiety and depression (51). In our study, the participants

ranged from 21 to 28 years old, their educational backgrounds

were mainly involved postgraduate education, and their anxiety

levels were concentrated between minimal and mild anxiety. This

showed that our sample had a certain representativeness in the

higher education student groups.

We used the RMSE to evaluate the relative performance of

different models. Smaller RMSE and larger r values indicate better
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model performance. In Tables 2, 4, the RMSE and r values showed

inverse trends. This result showed that it was reasonable to use the

criterion validity to evaluate the performance of the models.

As the number of wavelet decomposition layers increases,

we can obtain more detail coefficient arrays representing high-

frequency information and more approximate coefficient arrays

representing low-frequency information. Since our sequence length

was 75, the coefficient arrays that cannot be divided into half are

filled with zeros in each wavelet decomposition. When the wavelet

decomposition level was too high, the length of the coefficient array

was too short, and the zero-padding operation introduced more

errors, which led to inaccurate frequency-domain features. This was

why the mean value of rL4 was smaller than that of rL3 . Therefore,

in wavelet decomposition, as the number of decomposition layers

increases, we can more easily distinguish between low-frequency

and high-frequency signals. However, the interference errors

caused by the continuous subdivision also increase.

In general, in machine learning, more training data leads

to better model effects (52). In our experiments, the model

performance did not improve and even decreased as the number

of gait training segment frames increased. For example, as shown

in Table 3, the modeling effect after fusing two or three gait

segments was worse than that of single gait segment modeling.

On the one hand, gait is a periodic process (53). More gait

segments lead to redundant information that does not contribute

to modeling. Therefore, it is sufficient to model with fewer gait

frames, which is similar to previous research results (34, 35, 37).

On the other hand, different gait segments are discontinuous, and

directly merging these sequences may cause mutations that reduce

model performance to some extent. We also observed that the

modeling effect of gait data including segment1 was better than that

of data including other segments, which may be due to the fatigue

of participants walking back and forth in a narrow space, which led

to inaccuracies in the subsequent gait videos.

Feature ablation studies were performed to examine how

different features contribute to modeling. Taking the GPR model

with good reliability and validity as an example, r3_GPR >

r2_GPR > r1_GPR verified that gait contains both dynamic and

static information and that dynamic information expresses gait

characteristics better than static information. Moreover, r5_GPR >

r4_GPR and r5_GPR > r3_GPR verified that time-domain and

frequency-domain information both contribute to modeling. The

results of the feature ablation studies showed that the various

constructed features were effective and necessary.

Previous studies have shown that the muscular strength of

anxious women is significantly lower than that of healthy women

and that these two groups show differences in gait, while these

differences are not obvious among males (23). In addition, anxiety

differs between the genders, and females are more likely to be

anxious than males (54). This may be the reason why the anxiety

prediction results are better for women than for men. This fact also

supports the finding that participants with severe anxiety in Table 1

were all women.

Cronbach’s alpha for the GAD-7 scale was 0.92 (9). In general,

an alpha value >0.7 is considered to indicate acceptable reliability.

In this study, except for the SVRpoly model, the split-half reliability

of the models was > 0.8. This result indicates that the odd-even

split-half reliability can be applied to evaluate model performance.

This study is a continuation and extension of our previous

work (37). We have optimized the methods of data segmentation,

frequency-domain feature construction, and feature selection in

experiments. Compared with previous studies, we explored in

detail the impact of various factors (different features, gait dataset

size, gender) on the model through comparative experiments

with various parameters. In this study, the modeling method is

more objective and reasonable, and the robustness and predictive

performance of the anxiety assessment model are improved. Our

research has some limitations. During data collection, a single

camera was used to capture gait videos of the participants walking

back and forth. Thus, the data contained some gait segments (such

as turning and back gaits) that were not suitable for modeling.

During preprocessing, the segmentation and recombination of

different gait segments might introduce data breakpoints that

can impact the model effects. In the future, we set the gait data

collection scene as participants walking normally on the treadmill,

ensuring that only the participants’ front-view gait videos are

recorded. We will try to avoid damaging the continuity of gait

videos in preprocessing. In addition, although we verified the

feasibility of assessing anxiety state based on gait videos, the

participants were mainly college graduate students. Since this

model was trained on only one social group, the generalizability

may be insufficient. Thus, we will recruit participants from different

groups according to the differences in age, gender, region, culture

and economic background to increase the diversity of training data.

Due to the convenience, real-time, and non-invasive properties

of our model, our approach can be applied in various scenarios.

For example, the model can be applied for personal daily anxiety

assessment. Moreover, companies can learn the employee anxiety

levels through video data to provide psychological counseling in

a timely manner and improve work efficiency. Using this method

to assess the anxiety level of social groups in a timely manner

can help to improve community mental health and public health.

In future work, our proposed method still has some room for

improvement. First, our current research uses traditional machine

learning models and artificially constructed features. Although

we have demonstrated the rationality and effectiveness of the

constructed features in experiments, we still rely on a lot of

subjective experience in the early stage. In recent years, many

studies have made breakthroughs using deep learning (55). So next

we will apply deep neural network to automatically extract gait

features and train anxiety assessment models with better predictive

performance. Second, our current research needs to convert gait

video frame by frame into human body key point coordinates, and

then calculate and analyze based on these 2D coordinates. In the

process of extracting key points, some gait information will be lost,

which will affect the model’s learning of gait information. In the

future work, we will use image streams for modeling directly based

on gait video, so that the neural network can capture more detailed

information in the gait.

5. Conclusion

In this study, we developed a convenient and timely anxiety

assessment method that may contribute to improving mental

health services. Our experiments show that gait can be used
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as an objective cue to measure anxiety, the gait video-based

anxiety assessment model has good criterion validity and split-half

reliability, and the model has a better prediction effect on females

than males. In addition, due to the periodicity of gait, increasing

the number of gait training segment frames has little effect on

the performance of the anxiety assessment model. The results of

comparative experiments showed that the static and dynamic time-

domain features and frequency-domain features improved model

performance. Our preliminary study provides ideas for developing

a convenient real-time anxiety assessment method.
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