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Introduction: The worldwide COVID-19 pandemic, which began in December

2019 and has lasted for almost 3 years now, has undergone many changes and

has changed public perceptions and attitudes. Various systems for predicting the

progression of the pandemic have been developed to help assess the risk of

COVID-19 spreading. In a case study in Japan, we attempt to determine whether

the trend of emotions toward COVID-19 expressed on social media, specifically

Twitter, can be used to enhance COVID-19 case prediction system performance.

Methods: We use emoji as a proxy to shallowly capture the trend in emotion

expression on Twitter. Two aspects of emoji are studied: the surface trend in emoji

usage by using the tweet count and the structural interaction of emoji by using an

anomalous score.

Results: Our experimental results show that utilizing emoji improved system

performance in the majority of evaluations.
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1. Introduction

Almost 3 years have passed since the beginning of the worldwide COVID-19 pandemic

at the end of 2019. The pandemic has been causing severe global problems in many aspects

of life. During a pandemic, information availability is critical to helping people get through

the hardships. Social media in particular has been a prevalent source of COVID-19 related

information (1, 2). A questionnaire survey of 1,003 US-based adults by Neely et al. (1)

showed that 76% of the respondents relied at least somewhat on social media for COVID-19

related information, that 59% read COVID-19 related information on social media at least

once per week, and that 63.6% were unlikely to check facts with a healthcare professional.

A cross-sectional study among university students in Germany by Dadaczynski et al. (2)

showed that 37.6% (5,302/14,092) of the respondents used social media occasionally or

frequently to search for information on COVID-19 and related issues.

Social media has been shown to reflect social mental states. An analysis of Facebook

posts by Settanni andMarengo (3) revealed that, overall, the expression of negative emotions

positively correlated with anxiety, depression, and stress symptoms and that negative emoji

usage positively correlated with anxiety symptoms. Park et al. (4) found that the use of words

related to negative emotions and anger significantly increased among Twitter users with

major depressive symptoms compared with those otherwise. Wald et al. (5) showed that

the traits in the Big 5 Personality Index (6) (agreeableness, conscientiousness, extroversion,

neuroticism, and openness) and those in the Dark Triad (7) (psychopathy,Machiavellianism,

narcissism) could be predicted for social media users from their Twitter posts (“tweets”) with

rather good accuracy (area under the ROC curve of 0.736).
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Furthermore, several studies have revealed that social media

users tend to exhibit negative emotions toward COVID-19

progression. Wheaton et al. (8) showed that “time interacting with

social media did predict symptoms of depression and stress, but

not anxiety or OCD (obsessive-compulsive disorder) symptoms.”

Arora et al. (9) showed that “people with a negative sentiment

are more susceptible to addictive use of social media.” An analysis

of Twitter data for February, May, and June, 2020, by Kaur

et al. (10) showed that the highest percentage of tweets belonged

in the “negative” category. Toriumi et al. (11) showed in their

analysis using Twitter data for Japan that social emotions toward

COVID-19 from February to April, 2020, were mainly influenced

by “fear.” Another analysis of Twitter data by Dyer and Kolic

(12) revealed “evidence of psychophysical numbing: Twitter users

increasingly fixate on mortality, but in a decreasingly emotional

and increasingly analytic tone.” Social media can thus cause severe

mental health problems including high levels of stress, anxiety, and

contagious fear (13, 14). Furthermore, high levels of COVID-19

misinformation and fake news can exaggerate perceived risk (15).

Nevertheless, regulating fake news content is still a challenging

problem (16).

This study was aimed at determining whether COVID-19

related emotion trends on Twitter can enhance COVID-19 case

prediction in Japan. The core idea is that emoji usage is a potential

proxy that captures user emotions from user contents. Emoji

are digital images depicting simple but eye-catching illustrations

including facial expressions (e.g., ) for expressing emotional

messages effectively as social media users share a common

understanding of emoji and use them on social media as non-

verbal communication cues to assist communication (17–20).

Several studies have focused on capturing emotion from texts

including posts on Twitter (“tweets”), for example, sentiment

analysis (21), and emotion analysis (22). However, accurately

understanding emotional tweets by using full-text analysis is still a

challenging task. Therefore, shallow emotion analysis using emoji

is instead an attractive approach, especially since it is applicable

in multilingual contexts. Our utilization of emoji was done from

two perspectives: the surface trend of emoji by tweet count

analysis and the structural interaction of emoji by anomalous score

computation. Furthermore, we built an ensemble of long short-

term memory (LSTM) models (23) to perform the target COVID-

19 case prediction task, which is described in the next section.

Our data collection shows that the top popular emoji used

in Japanese tweets are facial expressions that representing several

emotions including happiness, sadness, fear, and anger. From the

results by the previous studies, we hypothesize that the social

media emotion reaction relates to emotional behavioral changes

influencing COVID-19 epidemic progression, so the social media

emotion reaction captured from the data of those top popular emoji

can help improve our COVID-19 case prediction system.

Even though there are studies of COVID-19 case prediction

systems that use data from social media, particularly Twitter,

the potential of emoji analysis in enhancing COVID-19 case

prediction system performance has not yet been well explored.

Yousefinaghani et al. (24) collected tweets related to COVID-19

symptoms for building a system to predict COVID-19 outbreaks.

Azzaoui et al. (25) performed tweet analysis using common

text analysis techniques like term frequency-inverse document

frequency without explicit consideration of emotion analysis. Chew

et al. (26)mentioned the use of Twitter data as a source of emotional

responses toward COVID-19, but they did not perform emotion

analysis on the data. Tran and Matsui (27) considered the tweet

count of emoji-using tweets but did not perform a breakdown

analysis of each emoji.

2. Materials and methods

In this section, we describe in details of our approach to

building and evaluating our framework for predicting COVID-

19 cases given the past cases and COVID-19 related Twitter

data. Our framework illustrated in Figure 1 consists of three

major processes: Data Collection (Section 2.1), Anomaly Detection

(Section 2.3), and Prediction System Construction (Section 2.4). In

the “Data Collection” process, we collect COVID-19 related tweets

containing emoji to obtain the social media emotion trends via

tweet count and detect anomaly in those trends by analyzing full-

text tweets in the “AnomalyDetection” process. After preparing our

necessary input data including the social media data and COVID-

19 case data from official data sources, we build our COVID-19

case prediction system utilizing LSTM, a deep neural network for

time-series modeling, and “ensemble of the best,” as described in

the “Prediction System Construction” process. The framework is

developed with and evaluated on almost 3 years’ worth of data from

January 2020 to October 2022.

2.1. Data collection

We considered Twitter as the social media platform for this

study because of these two main points: 1) Twitter is a top popular

social media platform in Japan and 2) Twitter promotes public

social media engagements. According to Statista1, Japan ranks 2nd

in the number of Twitter users in 2022 after US. According to

BigBeat2, Twitter with more than 50 million users ranks 2nd

after LINE which focuses on private engagements while Twitter

promotes public engagements which can be easily participated by

strangers. On top of that, Twitter provides API for researchers to

access full historical data.

For the case study in Japan, the data used consisted of COVID-

19 infection data and COVID-19 related tweets in Japanese. The

COVID-19 infection data were publicly provided by the Japanese

Ministry of Health, Labor and Welfare.3 The tweet data were

collected using the Twitter API (version 2) with academic research

access by matching a set of predefined keywords and emoji whose

majority are facial expressions showing several kind of emotions:

happiness, sadness, fear, anger, etc. (see Supplementary material)

with the top 3 emoji are crying, sweating (may also be seen as

raindrop) and smiley emoji. We chose the keywords based on

observing Twitter trending phrases related to COVID-19 in Japan

with four categories: general posts about COVID-19, posts about

1 https://www.statista.com/statistics/242606/number-of-active-twitter-

users-in-selected-countries/

2 https://www.bigbeatinc.com/blog/japan_social_media_2022

3 https://covid19.mhlw.go.jp/en/
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FIGURE 1

General illustration of our framework.

the reporting of the number of infections, posts about vaccination,

and posts about Japanese government policy—the emergency state

declaration and the spread-prevention policy. The details of the

settings are shown in Table 1. Since location-tag is off by default

and mostly not turned on by users, to select tweets in Japanese,

we used the “lang” parameter provided by Twitter API with the

language code “ja.” In the period from 2020/01/01 to 2022/09/30,

we collected more than 20 million tweets in total. Beside the

COVID-19 related tweets, we performed a count of all tweets that

matched a predefined set of emoji. The total count was 8 billion for

the same period.

Figure 2 reveals a repetitive phenomenon: the reactions on

Twitter form a wave shape corresponding to each wave of COVID-

19. Tran and Matsui (27) hypothesized such a phenomenon on

the basis of behavioral changes observed from Apple mobility

trends reports. This phenomenon is also potentially due to

excessive negative information exposure (13, 14) and heightened

risk perception of social media users.

We performed a preliminary cross-correlation analysis between

the COVID-19 related tweet count for each emoji and the reported

number of COVID-19 cases over consecutive overlapping 28-day

windows from 2020/01/01 to 2022/12/31 and examined the highest

correlation and its corresponding lag value for each window. We

found there existed a correlation (mean: 0.5920, standard deviation:

0.2518) and a considerable variance of lags with mean of –0.44

days and standard deviation of 6.06 days. Over all the windows,

there are 25.64% of windows with positive lag values, 37.31% of

windows with zero lag values, and 37.05% of windows with negative

lag values. Details of the lag values for each emoji are shown

in the Supplementary material. The existence of correlation with

considerable variance of lag, even with the top popular emoji, shows

that capturing long-term relationship between the social media

emotion reaction and the COVID-19 epidemic could be difficult

using linear models, a method capable of capturing non-linear

TABLE 1 Tweet data collection setting.

Query Average daily
no. of Tweets

must contain at least one of {新型コロナ ,コロナ感染 ,コ

ロナ ,コロナワクチン ,緊急事態宣言 ,まん延防止 ,感

染者},

and must contain emoji (e.g., ), in the top 30 emoji

(list of the emoji shown in Supplementary material)

(translation: [new-variant corona, corona infection, corona

disaster, corona vaccine, emergency declaration, spread

prevention, infected person/people])

29,484

The keywords were selected based on our observation of the trending keywords on Twitter

which associate with reactions over COVID-19 news, COVID-19 case reporting, COVID-19

vaccination and government strong restriction policies.

long-term relationship could be promising. For this reason, we

adopt LSTM which will be introduced later in Section 2.4.

To compare to countries other than Japan, we collect

corresponding data from South Korea, Thailand, Indonesia, India,

and Germany. The COVID-19 cases data are from WHO.4 Tweet

counts of COVID-19 related tweets containing emoji are also

collected using Twitter API. For these countries, instead of using

self-designed keywords, we select tweets annotated with “COVID-

19” domain entity5 by “context annotation” feature of Twitter API

to select COVID-19 related tweets. Twitter only disclose limited

details 6 that don’t include specification of keywords used to

do so. We also collect tweet count for Japan using the “context

annotation” feature for comparison purpose. Due to privacy issues

4 https://covid19.who.int/data

5 Twitter API context annotation for COVID-19: { domain: { id: 123 }, entity:

{ id: 1220701888179359745, name: COVID-19 } }.

6 https://developer.twitter.com/en/docs/twitter-api/annotations/faq
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and, thus, Twitter location sharing “off” by default,7 the vast

majority of Twitter users have their location sharing features off,

so we rely on the most popular spoken language for collecting

tweets from these countries8 The selected countries both have their

distinguished languages popularly spoken in their own population

and rank top in Twitter usage9. The languages are in the top 20 by

tweet counts from Twitter Sample Stream API. Even though those

countries also have other languages, those languages are minor

or spoken by other countries, for example, Bengal (ranks 23rd by

the tweet counts) spoken by both India and Bangladesh (major

language). Including those secondary languages risk including an

overwhelming number of tweets from unexpected countries, so

we chose to include only the primary language for those selected

countries. The reaction with emoji is different among the 6

countries. The ratios of tweets containing emoji from 2020/01/01 to

2022/12/31 for each country are 4.08% (Germany), 8.27% (India),

8.02% (Indonesia), 8.66% (Japan), 2.84% (South Korea), and 4.60%

(Thailand). The ratios are quite stable through out the period. Plots

of the ratios are shown in the Supplementary material.

2.2. Estimation of the long-term tendency
of social media engagement in Twitter

To identify the differences in social media reaction between

COVID-19 waves, we calculated the total tweet count for a period

of 84 days (12 weeks): 7 weeks before, 1 week during, and 4 weeks

after each peak.

Total-Countx =
∑

t

xt (1)

We also compared the total tweet count of the COVID-19

related tweet collection with that of the “all tweet” collection and

calculated the ratio:

Total-CountCOVID-19 Related Tweets

Total-CountAll Tweets

2.3. Social media graph and anomaly
detection

At certainmoments in time, unexpected events occur that catch

the attention of social media users. They become viral and spread

rapidly over social media, leading to anomalous behavioral changes.

Anomaly detection in social media has attracted attention from

the research community (28), and several research efforts have

demonstrated different findings representing the characteristics

of social media evolution. Several anomaly types in social media

7 https://help.twitter.com/en/safety-and-security/tweet-location-

settings

8 “lang” codes: de (German, Germany), hi (Hindi, India), id (Indonesian,

Indonesia), ja (Japanese, Japan), ko (Korean, South Korea), and th (Thai,

Thailand).

9 https://www.statista.com/statistics/242606/number-of-active-twitter-

users-in-selected-countries/

have been studied including anomalous nodes, anomalous edges,

anomalous sub-graphs, and anomalous events.

Intuitively, the state of reactions on social media can be

represented as a graph that connects social media objects including

users, posts, entities, and topics. The graph can then be used to

analyze behavioral evolution. The graph continues to evolve as new

users join in, new posts are shared, new topics are discussed, and

new entities are mentioned.

In the work of Rossi et al. (29), large time-evolving graphs

were analyzed for anomaly detection. They found that it is possible

to identify interesting patterns and detect unusual structural

transitions. In a large Twitter relationships network, they observed

seasonality among the transitions. In particular, they found that

users generally behave much differently over the weekends, as

evidenced by an increase in the anomalous scores on those days.

They speculated that the manner of tweeting differs between

weekends and workdays. Motivated by their findings, we adapted

their method for use in analyzing our Twitter graph, looking for

clues to the factors that trigger anomalous behavioral changes on

Twitter.

We performed the analysis using an evolving dynamic Twitter

graph. We focused on capturing the temporal behavioral changes

in interconnected social media objects (users, emoji, hashtags,

domains, and entities) on the social media platform as it evolved

during the COVID-19 epidemic in Japan. The social media were

represented as a heterogeneous graph connecting the social media

objects.

In this section, we introduce our approach utilizing a

graph to represent Twitter data and our method for identifying

the anomalous temporal behavioral changes in the Twitter

objects. We expected that the social media network structural

changes identified with our approach would complement the

use of the tweet count to enhance our COVID-19 case

prediction system.

2.3.1. Twitter graph
To construct our Twitter graph, we considered five Twitter

objects: user, emoji, hashtag, entity, and domain. These objects are

connected to the event of a tweet being posted, commented upon,

or retweeted (shared) and comprise the nodes of the graph.

• User: Twitter member.

• Hashtag: a way for users to include their tweets into a

(trending) broad topic of conversation.

• Entity: named entity; for instance, person, organization,

location, time, which is automatically annotated by Twitter’s

named-entity recognition system given the user tweet’s full-

text.

• Domain: domain context of tweet as defined by Twitter.

• Emoji: graphical representations of emotions, e.g., .

The graph also has five types of edges (relations):

• User→User: A user mentions another user in a tweet replying

to the mentioned user’s tweet or for tagging an additional user

into the current conversation.
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FIGURE 2

Chart of daily tweet count vs. reported number of COVID-19 infections in Japan (values were smoothed using 7-day moving average). Data suggest

that number of COVID-19 related tweets has been correlated to some degree with progression of the epidemic in Japan since its beginning. An

abnormal surge of social media reaction was observed on 29 and 30 October 2020, which is close to Halloween. Otherwise, the social media

reaction exhibits waves corresponding to the seven waves of COVID-19 epidemic in Japan.

• User → Hashtag: A user posts or shares a tweet containing

a hashtag. The user wants to include their post into a certain

broader topic of conversation.

• User → Emoji: A user posts or shares a tweet containing an

emoji. The user wants to express a certain emotion.

• User→Domain: A user posts or shares a tweet belonging to a

domain.

• User → Entity: A user posts or shares a tweet mentioning an

entity.

Formally, we define a graph G = (N,E), where N is the set

of nodes and E is the set of edges in G. At time slice t, snapshot

Gt = (Nt ,Et) is a subgraph of G with active edges Et connecting

active nodes Nt . For smoothly capturing graph state transitions

instead of capturing the graph at separate and short time points,

we use moving and overlapping time slices for taking snapshots of

G. For instance, if the time slice is 7 days, snapshotGt is constructed

with active nodes and edges over days [t − 6, t].

2.3.2. Graph feature representation
Following the work of Rossi et al. (29), we estimate the latent

features, which are called the “roles of the graph," and use them to

describe the behaviors of the graph. A role transition model is used

to capture the behavioral transitions of the nodes in each snapshot

over time t.

Features. Two categories of features are considered: basic

features and recursive features. In accordance with the definitions

of Henderson et al. (30), the basic features are node degree, weight,

and egonet measure, taking into account in-coming and out-going

directions. The recursive features are aggregations of the basic

features and previously discovered recursive features using sum

and/or mean. We also applying feature pruning using logarithmic

binning (30). Formally, we denote V = {Vt} as the features

obtained for snapshot {Gt}.

Roles. By applying latent semantic analysis using non-negative

matrix factorization (NMF), we find the latent feature space

considered to be the role of each node. Nodes with similar role

representations can be considered to be in one group with a

common role in the graph.We estimate the role representations as a

low-rank r matrix Rt ∈ R
n×r of the nodes of snapshot Gt as RtF ≈

Vt using NMF for reasons of interpretability and efficiency (29).

The value of r is chosen such that r < mint(nt , f ), where nt is the

number of active nodes at time t, and f is the number of discovered

features. In total, we obtained R = {Rt} as the role representations

for all snapshots of G.

Role transition model. The estimated role transition can be

used to analyze how the graph evolves over time. Given the high

interpretability of NMF, we used it to estimate the role transitions.

We estimate a transition matrix T such that Rt−1T ≈ Rt .

2.3.3. Anomaly analysis
The idea of anomaly analysis is that, if the prediction of the next

role of a node diverges from the observation, the divergence value

represents the anomalous score (29). The higher the divergence, the

more abnormal the behavioral change of the node when interacting

with the other nodes in the graph. Given a role transition matrix T

estimated using

Rt−k−1T ≈ Rt−k for ∀k ∈ [1,K], (2)

we can predict the next role representation at time t as

R̂t = Rt−1T. (3)

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1079315
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Tran and Matsui 10.3389/fpubh.2023.1079315

The divergence of the predicted R̂t from the observed Rt is

considered to be the anomaly and can be measured as

||R̂t − Rt||F , (4)

Where || · ||F is the Frobenius norm. In this study, we set K = 14

days.

In proceeding to the next step of building our prediction

system, we need to obtain anomalous scores for the emoji. For a

given emoji identified as node i of the graph, we obtain the emoji’s

anomalous score as the divergence of the predicted role vector R̂
(i)
t

(row ith of R̂t ) from the observed role vector R
(i)
t :

|R̂
(i)
t − R

(i)
t | (5)

The role transition matrix T captures the global transition of

the graph in the period of K days. The predicted role matrix R̂t
is, therefore, the expected next role representation by the global

transition. Hence, the anomalous score computed by Equation 5

represents the anomaly of the node as how it diverges from the

global transition.

2.4. COVID-19 case prediction system

Studies of the effects of social media on societal events including

COVID-19 have led to social media information being used for

constructing COVID-19 case prediction systems. In this study, we

investigated the effectiveness of using emoji, which are commonly

used in social media communications, in the prediction of COVID-

19 cases.

A system of multiple LSTM models. Our COVID-19 case

prediction system is constructed using an ensemble of long short-

term memory (LSTM) models. LSTM was proposed by Hochreiter

and Schmidhuber (23) and is widely and successfully used in

modeling sequential data (31). For each LSTM model in the

ensemble, given an input sequence x̄t,l = {xt−l+1, ..., xt} of length l,

the model is trained to output the number of COVID-19 cases o∗t+δ
,

i.e., at δ time steps since the last input time step. The input contains

the observed number of COVID-19 cases o and an additional

feature s, which is either the tweet count or the anomalous score of

an emoji. Each LSTMmodel is configured with 4 layers and hidden

size of 16 each layer. The operation of an LSTM cell, the building

block of the LSTM model illustrated in Figure 3 can be described

in the following Equations (6–12), where the vanilla LSTM cell is

extended with a linear layer to map the high-dimensional hidden

state ht to a single-value prediction o∗t .

it = σ (Wiixt−δ + bii +Whiht−1 + bhi) (6)

ft = σ (Wif xt−δ + bif +Whf ht−1 + bhf ) (7)

gt = tanh(Wigxt−δ + big +Whght−1 + bhg) (8)

jt = σ (Wijxt−δ + bij +Whjht−1 + bhj) (9)

ct = ft ⊙ ct−1 + it ⊙ gt (10)

ht = jt ⊙ tanh(ct) (11)

o∗t = Woht + bo (12)

The gating mechanism, a specialized feature of LSTM, with input

gate it , forget gate ft , and output gate jt controls the information

flow, and, thus, helps learn important long term memory captured

in the cell state ct , which is intuitively beneficial for learning long

term dependency between social media reaction and epidemic

situation.

Amulti-feature ensemble. Using the historical number of cases

and one additional feature as input, we construct a prediction

system that is an ensemble of LSTM models of different emoji

features {emoji} × {tweet count and anomalous score}. Instead of

constructing a complex model with the inputs being the number

of COVID-19 cases and many additional features, we construct an

ensemble of simple models, with each one focused on modeling

the relationship between the number of COVID-19 cases and one

predictor or one emoji feature.

A dynamic ensemble of the best models. Only the best models

are selected to be used in the ensemble at a certain time step. We

consider that a model is better than the others if its performance

was better at the most recent time step. Let t = t0 + 1t be the

time step at which we want to make prediction yt given input

x̄t0 ,l = {xt0−l+1, ..., xt0}, where t0 represents the last input time step.

From all the trained models {f }, the best model f ∗,1
δ

for time lag δ at

time t is selected on the basis of

f ∗,1
δ

= argminfδ







1

τ2 − τ1 + 1

τ2
∑

k=τ1

ERR
(

fδ(x̄t−k−δ,l), ŷt−k

)







,

(13)

where ŷt−k =

{

yt−k if t − k > t0

ot−k otherwise
, (14)

and ERR(·, ·) is the mean relative absolute error described in

Equation (17). The 2nd, ...,mth best models f ∗,2
δ

, ..., f ∗,m
δ

are also

selected. The prediction at time t = t0 + 1t is given by

yt=t0+1t =
1

δ̂

1

m

δ̂+1t−1
∑

δ=1t

m
∑

i=1

f ∗,i
δ
(x̄t−δ,l). (15)

The parameter δ̂ enables the smoothness of the prediction to

be controlled. The higher the value of δ̂, the longer the period

of recent events that the system takes into account, resulting in

smoother prediction. The lower the value of δ̂, the more sensitive

the prediction is to the most recent events. For each emoji feature,

a set of r models is trained with different randomly initialized

parameters, which results in the total number of trained models

being |{f }| = |{emoji} × {tweet count, anomalous score}| × r. This

enables models trained for the same emoji feature to be selected

and used in the ensemble if they perform well with different sets of

weights. We employed these dynamic ensemble parameters: τ1 =

1, τ2 = 7,m = 10, and δ̂ = 1.

Data Smoothing. Inputs including the number of cases and

additional time series (emoji usage count, emoji anomalous score)

are smoothed using a 7-day moving average. The predicted number

of cases is therefore a 7-day moving average. We consider the

7-day moving average smoothing as an appropriate way to have

stable analysis of the data and a mitigation of case fluctuations due

to reasons including human errors, issues in local municipality’s

reporting mechanism, and the going-to-test timing of residents.
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FIGURE 3

LSTM model for COVID-19 case prediction with time lag δ configured to work on memory length of l. In inference step, with input sequence

{xt−l+1, ..., xt} of length l, the model predicts the number of COVID-19 cases o∗
t+δ

, i.e., at δ time steps since the last input time step. Additional

time-series s is for one of the emoji features (tweet count or anomalous score).

Training. The system is trained or updated by utilizing data

assimilation so that previously trained models are updated when

additional observations are available. For example, if time lag δ = 1,

when the data at time t are observed, the model trained up to time

t− 1 is updated or tuned using the additional data observed at time

t. Memory length l is set on the basis of the corresponding time

lag δ:

l = ⌊
3

2
δ + 14⌋, (16)

Where ⌊·⌋ is the round down operator. Memory length l is

calculated such that, the further into the future the system has to

predict, the further into the past the system needs to look. The

data until 2020/09/07 (before the 3rd wave) were used for obtaining

initial models with a maximum of 10,000 training epochs and early

stopping using 5% of the data held out as development set, before

the data assimilation stage. Each data assimilation run is carried out

with 25 fine-tuning epochs.

Evaluation. The prediction error is measured by the mean

relative absolute error (MRAE):

ERR(y, o) =
1

n

n
∑

i=1

|yt+i − ot+i|

|ot+i|
, (17)

Where y, o ∈ R
n are the system prediction and ground truth,

respectively, and n is the size of the evaluation window {t +

1, ..., t + n}, where the system predicts {yt+1, ..., yt+n} given the

input data up to xt . As we perform analysis for a long period

where the domain of values for the COVID-19 cases changed

dramatically through the course of waves, we select MRAE as

the evaluation metric because of its popular adoption in time-

series forecasting studies and its advantage of evaluating outputs

with large value fluctuation. Given an evaluation period d, and

an evaluation window size n ≤ d, we compute an error value

for each of the d − n + 1 consecutive overlapping evaluation

windows using Equation (17). Then, in the later sections, we will

report system performance with themean and standard deviation

of the errors for the evaluation windows, and illustrate system

comparison with “better error x% of the time” indicating the

number of evaluation windows, in percentage, where the preferred

system Spref achieves better error than the referenced system Sref
(Equation 18).

better error x% of the time (Spref , Sref , d, n)

=

∑d−n+1
w=1 1ERR[Spref ,w]<ERR[Sref ,w]

d − n+ 1
× 100% (18)
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3. Results of Japan

3.1. Long-term trend of social media
reaction on Twitter

From Figure 4, it can be easily seen that the social media

reaction in the subsequent waves ( 2nd – 7th ) was noticeably

reduced compared with that in the 1st wave. It was particularly

smaller in the 6th and 7th waves. Despite social media reaction

in general increasing by 167% in the 7th wave compared with that

in the 1st wave, the attention on COVID-19 dropped to 37% from

64 to 88% in the 2nd - 5th waves and most recently 49% in the 6th

wave. This led to the total tweet count ratio of “COVID-19 related

tweets” to “all tweets” (the “COVID-19 attention proportion”)

falling to 32% in the 6th wave and 22% in the 7th wave compared

with 56-62% in the 2nd – 5th waves. Overall, social media attention

on COVID-19 vs. general topics on Twitter dropped by 38–44%

from the 1st wave to the 5th wave and by 68–78% from the 1st

wave to the 6th and 7th waves.

3.2. Anomaly detection analysis

As illustrated in Figure 5, the anomalous score aligned with the

tweet count most of the time. This suggests that surges in social

media reaction are accompanied by structural changes in social

media networks. This was particularly the case for periods leading

up to a wave peak, where we observed a surge in both tweet count

and anomalous score. This means that, in addition to using the

tweet count to capture the surface trend of social media reaction,

we can also capture the magnitude of the structural changes in the

social media network during such periods.

However, there were several situations in which social media

reaction surged while the anomalous score did not follow, for

instance, around 2020/03/02 and 2022/09/05. Furthermore, for the

top 3 emoji (Figure 5), around 2022/02/21, the anomalous score for

the crying face emoji was similar to that for the other two emoji,

sweating and smiley, and did not align with the corresponding

tweet count. Such rare occurrences would, however, have little effect

on system performance due to the design of the prediction system

as an ensemble of independent models.

3.3. COVID-19 case prediction

Our experimental results show that using additional emoji

features improves prediction performance in terms of MRAE. As

shown in Figure 6, in the evaluation period from 2020/11/16 to

2022/08/21 (+6, +13, +20, or +27 days depending on the evaluation

window), using additional emoji features achieved better error

69.10–73.91% of the time. The improvement in term of relative

error reduction ranged from 0.1 to 94.14% with a mean of 28.77%

and median of 23.91%. As shown in Table 2, improvement was

evident most of the time during the 7 weeks before the week of each

wave.

As also shown in Table 2, the system performed better for the

4th wave compared with the 3rd wave, worse for the 5th

wave, and the worst for the 6th wave. From another perspective,

significant situational differences were observed for the 5th and

the 6th waves. The 5th wave was characterized by the COVID-

19 Delta variant, a significantly more fatal variant. The 6th wave

was characterized by the Omicron variant, a much more infectious

variant, but less deadly. Therefore, there was no declaration of an

emergency for this wave.

The results of an experiment on system performance with the

use of tweet count and anomalous score together and alone for each

wave (Table 3) show that using both improved system performance

in terms of the MRAE. Out of the 20 evaluations, the combination

yielded improvement ten times and equal performance once, tweet

count yielded better performance only eight times, and anomalous

score yielded better or equal performance only twice.

Our system achieved competitive performance when

comparing with Google Cloud AI forecasting system (32). As

shown in Figure 7, in the forecast periods reported by Google

Cloud AI forecasting system, our system could achieve better

prediction error in 76.92–81.87% of the time. Their system was

designed with consideration of a number of features including,

for instance, per capita income, hospital patient experience rating,

air quality measures, mobility index, and governmental policies

such as restricting restaurants and school closure, but social media

emotion was not considered. They published the “COVID-19

Public Forecasts”10 dataset containing the prediction outputs for

U.S. and Japan.

4. Results of other countries

In this section, we present the results of our method for

Germany, India, Indonesia, South Korea and Thailand. Like Japan,

these countries are the tops in Twitter usage and have their

tweets conveniently collected by their primary spoken languages.

Location-based filtering is difficult since Twitter users are turning

off location sharing as their concerns of privacy issue. Due to

Twitter API capping the number of tweets that can be downloaded

(10M/month11), we don’t present the anomaly detection analysis

for these countries in this paper. Tweet count data as mentioned

in Section 2.1 are collected using Twitter API “context annotation”

feature. We also put the results of Japan as comparison.

4.1. Social media reaction on Twitter

As shown in Figure 8, the long term tendencies of social media

reaction on Twitter among the 6 countries are quite similar. The

reaction dramatically surged in the beginning of the COVID-19

pandemic and quickly made a steep drop afterward. In 2021, each

country faced new waves at different timing and so the social media

reaction raised again. Noticeably as also shown in Table 4, in 2022,

relatively much lower level of social media reaction was observed in

10 https://console.cloud.google.com/marketplace/product/bigquery-

public-datasets/covid19-public-forecasts

11 https://developer.twitter.com/en/docs/twitter-api/tweet-caps
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FIGURE 4

Social media (Twitter) reaction in Japan measured by total tweet count (Equation 1) for each COVID-19 wave over period of 12 weeks: 7 weeks

before, 1 week during, and 4 weeks after peak of corresponding wave. Values shown are relative to those for 1st wave. Social media reaction in 6th

and 7th waves was obviously much less than that in previous waves. Additionally, total tweet count ratio (“COVID-19 related tweets” vs. “all tweets”)

dropped to 32% in 6th wave and 22% in 7th wave compared with 56-62% in 2nd - 5th waves.

all countries. In general, social media reaction toward the COVID-

19 pandemic dramatically surged in the beginning and gradually

faded out overtime.

Though having quite similar tendencies, the magnitudes of the

social media reaction surges are somewhat different among the

6 countries. Comparing to the beginning of COVID-19, Japan,

Germany, and Thailand exhibit several times relatively higher

magnitudes of the social reaction surges comparing to India (one

time high-magnitude surge), and the two countries, Indonesia and

South Korea, with relatively low magnitudes of the social media

reaction.

4.2. COVID-19 case prediction

The results of COVID-19 case prediction for Germany,

India, Indonesia, South Korea and Thailand as shown in Table 5

demonstrate that using emoji features yields better prediction

performance in most of the cases and worse performance in only

3 cases out of 192 cases. Although with differences among the 6

countries appearing in the percentage of emoji usage in COVID-

19 related tweets (Germany: 4.08%, India: 8.27%, Indonesia: 8.02%,

Japan: 8.66%, South Korea: 2.84%, and Thailand: 4.60%), and the

ratio of COVID-19 related social media reaction over general social

media reaction (Figure 8 and Table 4), COVID-19 related tweets

containing emoji can provide informative features contributing to

the improvement of our COVID-19 case prediction system.

As seen in Table 5, we can observe several noticeable abnormal

errors larger than 100%, for instance, 〈 India, Period 6 (Jan-Mar

2022), Window = 28 〉 with 798.1% for the bare system not using

emoji features B and 377.2% for the system using emoji features E.

Based on Equation 17, the error value of 798.1% indicates that the

predicted number of cases is about 9 times of the observed number

of cases. In analyzing this situation, we see that, in the mentioned

period, India was in an unprecedented epidemic wave when the

raising and dropping of the number of cases were dramatic in a

relatively shorter period of time comparing to the previous waves

(Figure 8). While the higher speed of raising number of cases could

be attributed to a newer variant, the dropping speedwas also higher.

It took 21 days since 2022-01-26 (the peak of the wave in Period

6) for the (smoothed) number of cases to drop about ≈7 times,

while for the same dropping ratio of≈7 times, it took 45 days since

2021-05-09 (the previous peak), and 78 days since 2022-07-23 (the

next peak). Even though our system equipped with emoji features

managed to cut the error to 377.2%, this is still a considerable error.

Similar situations are also observed in other countries. In these

situations, the prediction error gets magnified at a greater rate as we

try to predict further into the future with a larger window size. The

system had a hard time to adapt to a dramatic change of situation

where past data do not contain adequate information.

5. Discussion

The results of our study on utilizing social media data for

constructing a COVID-19 case prediction system suggests that

using social media can be helpful for epidemic forecasting. In terms

of prediction accuracy, our experimental results show that using

both tweet count and anomalous score improved the MRAE of

COVID-19 case prediction. In terms of practicality, the utilization
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FIGURE 5

Anomalous scores of top-3 used emoji with corresponding tweet counts for each COVID-19 wave over period of 12 weeks: 7 weeks before, 1 week

during, and 4 weeks after peak of corresponding wave. Anomalous scores represent situations in which there were surges in social media reaction,

which resulted in structural changes in social media network.
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FIGURE 6

COVID-19 case prediction system performance (MRAE). Error at given date was measured on basis of prediction for evaluation window starting from

given date from 2020/11/16 to 2022/08/21. Using additional emoji features yielded better error 69.10–73.91% of the time. Relative error reduction

ranged from 0.10 to 94.14% with mean of 28.77% and median of 23.91%. Dynamic ensemble parameters: τ1 = 1, τ2 = 7,m = 10, δ̂ = 1.
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FIGURE 7

Comparison with Google Cloud AI (32). The “forecast date” indicates the date when each system is executed to produce the predicted number of

cases for the next 7, 14, 21, and 28 days. All the periods indicated by the forecast dates are taken from the “COVID-19 Public Forecasts” dataset by

Google Cloud AI. Our system achieved better error in 76.92–81.87% of the time. Dynamic ensemble parameters: τ1 = 1, τ2 = 7,m = 10, δ̂ = 1.
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TABLE 2 COVID-19 case prediction system performance with and without use of emoji for each wave.

Wave Window starting date Window = 7 Window = 14 Window = 21 Window = 28

With emoji features

3rd wave 2020/11/16–2021/01/03 6.39(4.90) 11.23(7.86) 18.29(10.65) 24.39(11.73)

4th wave 2021/03/22–2021/05/09 4.98(3.40) 9.69(5.73) 13.82(8.18) 17.99(10.79)

5th wave 2021/07/05–2021/08/22 10.25(8.06) 20.10(11.11) 28.20(12.67) 40.19(16.62)

6th wave 2021/12/20–2022/02/06 15.91(14.25) 28.77(18.95) 44.98(19.15) 61.47(23.53)

7th wave 2022/07/04–2022/08/21 9.15(6.36) 16.00(11.12) 25.50(15.97) 35.41(17.77)

Without emoji features

3rd wave 2020/11/16–2021/01/03 6.22(4.15) 12.18(5.86) 19.63(8.86) 24.37(8.71)

4th wave 2021/03/22–2021/05/09 5.69(2.91) 10.79(6.21) 14.88(10.50) 21.11(13.21)

5th wave 2021/07/05–2021/08/22 10.49(6.84) 21.18(8.82) 29.38(12.30) 41.43(16.76)

6th wave 2021/12/20–2022/02/06 17.03(14.66) 33.27(18.20) 51.09(19.46) 64.21(25.43)

7th wave 2022/07/04–2022/08/21 8.66(4.79) 16.68(11.80) 26.18(16.62) 36.07(18.15)

The values are mean and standard deviation (in parentheses) of MRAE of consecutive overlapping evaluation windows with starting date 7 weeks before week of corresponding peak.

Performance was generally better when emoji features were used. The error values are shown in percentage with % omitted. The bold values indicate better performance.

of emoji as a means of shallow emotion analysis can be easily

applied to multilingual social media platforms worldwide. In

addition to the use of tweet count and anomalous score, a future

direction is to investigate higher dimension representation of

emoji, for instance, by utilizing EmojiNet (33), a dictionary of emoji

senses, to represent emoji in a high-dimensional vector space of

semantics.

As shown by the change in social media reaction over the long

course of the COVID-19 epidemic in Japan, behavioral changes

may differ remarkably wave-to-wave, which challenges our system’s

ability to adapt and perform well. The proportion of social media

attention to COVID-19 vs. general topics on Twitter was only 32

and 22% in the 6th and 7th waves relative to that in the 1st

wave whereas it was 56–62% in the 2nd to 5th waves. One of

the major factors in these differences was governmental policies:

the Japan government did not declare a state of emergency during

three waves: the 2nd , 6th , and 7th . In the 2nd wave immediately

after the 1st wave, most people may have realized that the COVID-

19 epidemic was not over. Therefore, while COVID-19 was still

somewhat mysterious, there was not much surprise when the 2nd

wave hit. As a result, although there was social media reaction, it

dropped more than half (Figure 4). When the 3rd , 4th , and 5th

waves hit, the social media reaction proportion was around 30s%,

similar to that for the 2nd . Our system performed well for the

3rd and 4th waves, but not for the 5th one. This is attributed

to much higher morbidity in the 5th wave, to which our system

could not adapt adequately. Even after learning from the change

in the 5th wave, our system performed worse in the 6th wave,

which was characterized by an even higher level of morbidity and a

marked difference in government policy: a state of emergency was

not declared. Our system was able to learn from that change and

performed better for the 7th wave, which again came with another

higher level ofmorbidity and no declaration of a state of emergency.

Systems for epidemic forecasting that are based on only

machine learning and historical datamay be limited and suffer from

unstable system performance when the epidemic lasts long enough

to be characterized by several waves and different governmental

policies, public perceptions, and attitudes. Our experimental results

suggest that maintaining performance in later waves of an epidemic

is a challenge. Machine-learning-based systems may need more

data in order to adequately learn about social changes and thereby

maintain performance. Future work should consider situations

that are difficult to characterize from past data for constructing

prediction system based on machine learning.

If social media attention on an epidemic starts to fade, it may

be helpful to look at social media signals other than those directly

related to the epidemic as an aid to forecasting systems. Although

social media attention in Japan on COVID-19 has declined over

the course of the epidemic, social media activity related to general

topics grew by 280% in the 7th wave compared with that in

the 1st wave (Figure 4), a period of slightly less than 3 years.

Although looking at social media signals other than those directly

related to the epidemic seems to be a promising approach in term

of data volume, it is challenging in term of data collection and

processing. This is because data containing social media reactions

to all kinds of topics and problems is unrestricted and difficult to

control. Even though a restricted set of pandemic-related social

media data is more focused and can directly help obtain valuable

knowledge about the public issues during a pandemic, for instance,

social health problems including stress, fear, and anxiety (13–15),

a decrease in such social media data makes it more challenging

to analyze those problems. Hence, expanding the scope of social

media data analysis beyond pandemic-related topics while keeping

high-quality analysis is necessary and challenging in dealing with a

long-lasting pandemic.

Our results show the potential of using emoji as a proxy for

public social media emotion analysis in predicting the progression

of a pandemic, which suggests the potential of monitoring public

emotion for the task. On the one hand, for per-patient monitoring,

medical big data and wearable Internet of Medical Things (34–36)

provide the ability to monitor the physical conditions of patients

directly and aid them individually and privately in real time.
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TABLE 3 COVID-19 case prediction system performance with use of tweet count and anomalous score together and alone for each wave.

Wave Window starting date Window = 7 Window = 14 Window = 21 Window = 28

Both tweet count and anomalous score

3rd wave 2020/11/16–2021/01/03 6.39(4.90) 11.23(7.86) 18.29(10.65) 24.39(11.73)

4th wave 2021/03/22–2021/05/09 4.98(3.40) 9.69(5.73) 13.82(8.18) 17.99(10.79)

5th wave 2021/07/05–2021/08/22 10.25(8.06) 20.10(11.11) 28.20(12.67) 40.19(16.62)

6th wave 2021/12/20–2022/02/06 15.91(14.25) 28.77(18.95) 44.98(19.15) 61.47(23.53)

7th wave 2022/07/04–2022/08/21 9.15(6.36) 16.00(11.12) 25.50(15.97) 35.41(17.77)

Anomalous score only

3rd wave 2020/11/16–2021/01/03 6.44(5.15) 11.45(7.77) 18.57(10.53) 24.45(11.06)

4th wave 2021/03/22–2021/05/09 4.98(3.26) 9.71(5.53) 14.05(8.22) 18.46(11.06)

5th wave 2021/07/05–2021/08/22 10.15(7.31) 20.70(10.17) 29.16(11.64) 41.19(16.89)

6th wave 2021/12/20–2022/02/06 16.21(14.19) 29.94(18.30) 46.61(17.97) 63.57(22.98)

7th wave 2022/07/04–2022/08/21 9.06(6.11) 16.21(11.81) 25.65(16.60) 35.43(18.35)

Tweet count only

3rd wave 2020/11/16 - 2021/01/03 6.57(5.05) 11.68(8.27) 19.04(10.90) 24.97(11.99)

4th wave 2021/03/22–2021/05/09 5.11(3.21) 10.07(5.40) 13.54(8.31) 17.70(11.01)

5th wave 2021/07/05–2021/08/22 9.86(7.76) 19.97(10.74) 28.14(12.14) 40.26(16.55)

6th wave 2021/12/20–2022/02/06 16.22(14.48) 28.91(19.28) 45.19(19.36) 61.64(23.41)

7th wave 2022/07/04–2022/08/21 9.39(5.78) 15.88(11.09) 25.42(15.56) 35.31(17.00)

Tweet count only (using context annotation)

3rd wave 2020/11/16–2021/01/03 6.42(4.96) 10.69(7.18) 17.01(7.76) 23.01(7.45)

4th wave 2021/03/22–2021/05/09 5.24(2.94) 10.34(5.20) 14.11(7.93) 17.65(10.62)

5th wave 2021/07/05–2021/08/22 10.31(8.00) 21.21(11.29) 29.47(11.37) 40.85(15.24)

6th wave 2021/12/20–2022/02/06 17.09(14.33) 29.08(19.27) 45.06(19.72) 61.48(23.40)

7th wave 2022/07/04–2022/08/21 8.42(5.92) 15.85(12.11) 24.96(16.48) 34.53(17.55)

The values are mean and standard deviation (in parentheses) of MRAE of consecutive overlapping evaluation windows with starting date 7 weeks before week of corresponding peak.

Performance was generally better when both emoji feature categories were used. The error values are shown in percentage with % omitted. Decoration: bold+underline - the 4th setting

gets the best result over the other 3 settings, underline - the 4th setting gets better result than the 3rd setting, bold - best in the first 3 settings.

However, such data is valuable and may not be shared across

regions without strict regulations. On the other hand, public social

media data analysis can help with monitoring in real time the

public in terms of critical aspects, for instance, emotions, which can

support cross-region analyses. Emoji can be easilymonitored across

all public social media platforms in all languages at low cost and

thereby support shallow emotion analysis. Though multilingual

language models can also be adapted for emotion analysis, access to

public social media platforms is limited by the access rate, making

mass full-text access difficult, which poses a challenge for mass and

deep emotion analysis.

The different interpretations of the meaning of emoji make

it difficult to use emoji to correctly interpret the true underlying

emotion of social media users in general and toward COVID-19 in

particular. On the bright side, studies showed that large similarity

exists in interpreting emoji meanings in age-based and nation-

based analyses. Gallud et al. (37), though a questionnaire, found

that older people did not have a lesser understanding of emoji than

young people, though, there were also results indicating the varying

understandings. In the questionnaire, which asked for the meaning

of emoji referred in Emojipedia 12, some emoji got answers with

high accuracy (>80%), some got answers with low accuracy (<30%).

The “fear” emoji (17.1% accuracy) was also answered as “surprise.”

Also in the work of Kutsuzawa et al. (38), they found that,

for both young and middle-aged groups, in general, emoji were

similarly clustered in Arousal-Valence space, but some emoji were

interpreted differently among different age groups. Schouteten

et al. (39) found that emoji meanings (pleasure-arousal-dominance

dimensions) are largely similar in 5 countries (Germany, Singapore,

Malaysia, UK, and New Zealand). Still, misunderstandings of

emoji were also observed (40), for instance, “praying hands”

misunderstood as “a high five,” “irritation, anger, and contempt”

misunderstood as “pride face,” and “confused” misunderstood as

“frustrated and sad face.” Despite the results of large similarity

in interpreting emoji meanings, deeper interpretation of the true

underlying emotion is challenging. In a systematic review of

12 http://emojipedia.org
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FIGURE 8

COVID-19 related social media (Twitter) reaction depicted by the ratio of weekly total tweet counts of “COVID-19 related tweets” vs. “all tweets”

since January 2020. The reported number of infections is plotted in weekly sum.

TABLE 4 COVID-19 related social media (Twitter) reaction depicted by the ratio of annually total tweet counts of “COVID-19 related tweets” vs. “all

tweets.”

Germany India Indonesia Japan South Korea Thailand

2020 2.32% 3.23% 1.01% 1.70% 0.37% 0.23%

2021 2.20% 1.69% 0.56% 1.37% 0.14% 0.27%

2022 1.38% 0.38% 0.15% 0.91% 0.14% 0.07%

research on emoji, Bai et al. (41) stated that, “at present, it is

difficult to accurately measure participants’ true reactions through

self-reporting. Categorizing emotions by amassing a corpus using

big data is unable to depict users’ complex emotions such as

are expressed by emoji at a more detailed level, for example

emotions such as shame, anger and so on.” They suggested that

“observing whether users’ actual facial expressions differ from their

selected emoji emotionally in communication can help researchers

understand users’ psychological mechanism in communication”. In

the light of those studies, while we have found evidence for the
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TABLE 5 Evaluation results of our system for 6 countries with the emoji features with Twitter’s “context annotation”.

Window = 7 Window = 14 Window = 21 Window = 28

Period B E B E B E B E

G
er
m
an

y

1 8.8(6.1) 6.8(5.7) 17.8(12.3) 13.9(10.1) 24.4(14.0) 20.9(14.6) 29.9(17.0) 26.4(18.5)

2 12.8(9.5) 10.0(5.6) 26.0(16.1) 20.5(10.7) 35.4(20.8) 29.6(14.9) 42.4(22.5) 36.4(18.2)

3 17.9(9.5) 14.1(8.7) 40.5(23.8) 30.0(19.8) 71.7(48.0) 52.7(36.0) 120.3(93.6) 78.5(51.8)

4 8.8(6.6) 8.4(6.0) 18.4(10.7) 16.9(10.2) 27.7(12.9) 25.0(12.8) 34.6(14.9) 32.5(14.6)

5 8.6(5.8) 8.2(6.3) 18.6(11.5) 16.4(10.0) 26.4(13.1) 25.0(11.5) 32.6(12.3) 32.5(11.4)

6 8.6(6.7) 7.8(6.1) 15.4(11.0) 14.8(10.5) 21.4(14.6) 20.9(14.2) 27.0(17.2) 26.7(17.2)

7 17.7(8.5) 16.3(8.7) 37.6(14.9) 32.2(13.1) 61.3(28.0) 50.8(20.7) 81.9(45.9) 71.1(38.3)

8 9.2(6.9) 7.9(5.9) 18.1(13.1) 16.1(11.2) 29.6(18.2) 25.6(16.4) 40.9(23.8) 36.8(20.7)

In
d
ia

1 8.4(6.0) 7.0(5.3) 13.7(7.0) 12.5(6.2) 18.8(9.3) 18.4(8.0) 26.7(12.9) 25.2(10.6)

2 6.5(4.4) 6.4(4.9) 13.4(8.4) 13.5(8.5) 19.8(11.3) 19.0(11.2) 26.7(13.7) 25.3(13.8)

3 7.3(5.2) 5.9(4.2) 19.4(12.2) 15.7(11.4) 42.8(28.5) 30.7(24.0) 81.7(53.7) 58.7(41.9)

4 8.1(7.4) 6.9(6.3) 13.3(14.9) 12.3(12.6) 17.7(18.8) 16.5(16.9) 21.9(20.5) 19.6(19.8)

5 8.8(9.0) 8.0(9.0) 22.6(16.9) 19.0(15.7) 31.8(19.1) 27.4(18.4) 37.6(19.7) 32.8(19.7)

6 35.7(25.6) 19.9(14.8) 171.9(136.9) 66.9(45.3) 456.0(381.7) 177.9(120.4) 798.1(644.2) 377.2(284.6)

7 11.6(8.8) 9.9(7.9) 24.0(13.0) 21.1(11.7) 32.8(15.8) 30.1(14.3) 36.2(15.5) 34.5(14.8)

8 7.3(4.6) 6.1(4.4) 17.3(11.7) 15.1(11.4) 30.2(21.6) 27.1(20.7) 51.4(32.6) 44.4(32.4)

In
d
o
n
es
ia

1 7.7(5.2) 7.0(5.0) 12.1(7.2) 12.4(8.4) 16.6(7.2) 16.2(9.5) 19.8(7.0) 19.3(9.5)

2 8.7(6.4) 8.5(6.0) 15.8(9.1) 14.5(9.3) 23.1(10.8) 20.4(11.2) 30.9(14.0) 27.3(14.5)

3 12.2(9.4) 9.4(7.0) 17.6(12.1) 15.1(11.1) 21.2(15.3) 19.0(14.1) 24.9(18.4) 22.8(16.8)

4 12.8(7.7) 11.1(6.7) 35.4(11.8) 24.8(11.9) 74.1(35.8) 47.6(25.6) 159.0(86.7) 93.6(58.2)

5 10.4(7.0) 9.8(6.8) 19.3(10.3) 17.9(10.9) 32.9(13.5) 26.1(12.0) 58.5(28.7) 36.7(11.6)

6 23.7(12.3) 20.6(12.0) 71.7(45.7) 46.9(25.9) 190.6(174.7) 112.3(79.9) 405.3(432.7) 281.9(265.7)

7 18.8(13.4) 15.7(12.6) 52.0(42.0) 30.0(17.6) 135.2(155.4) 55.1(46.3) 300.8(430.8) 96.7(116.9)

8 6.8(4.6) 6.3(4.0) 15.6(7.9) 14.2(7.6) 25.4(13.1) 23.1(12.1) 40.8(20.0) 34.9(17.8)

Ja
p
an

1 7.8(5.1) 6.7(4.7) 13.3(6.4) 11.5(6.6) 20.5(9.9) 18.0(8.3) 26.5(11.2) 24.3(9.3)

2 16.5(11.7) 14.1(10.2) 38.3(31.7) 34.1(28.5) 62.9(52.9) 59.4(51.5) 87.9(74.8) 83.8(72.7)

3 13.3(12.1) 9.2(7.8) 23.6(22.8) 17.6(15.4) 32.8(32.5) 26.5(24.3) 44.5(41.6) 37.3(34.9)

4 17.3(11.5) 14.3(9.6) 45.3(36.8) 38.3(29.3) 93.7(90.9) 75.0(69.7) 204.3(225.4) 144.9(142.1)

5 14.2(7.3) 11.9(6.8) 37.6(22.1) 26.0(13.3) 76.9(67.4) 40.7(23.3) 184.4(194.6) 78.0(74.2)

6 11.9(12.4) 11.0(12.2) 21.3(15.5) 17.8(16.3) 33.2(18.0) 26.1(18.3) 45.0(23.6) 36.7(22.6)

7 17.0(12.5) 11.8(10.4) 29.9(22.7) 22.6(17.3) 39.2(26.3) 30.9(21.4) 47.0(26.3) 37.8(23.5)

8 19.7(18.5) 11.4(7.9) 34.6(23.7) 22.7(14.2) 50.6(32.3) 37.2(21.0) 76.3(51.2) 58.2(33.1)

S
o
u
th

K
o
re
a

1 9.3(6.3) 8.8(5.5) 17.6(9.8) 17.0(9.1) 26.4(13.3) 25.6(12.3) 34.2(17.7) 33.8(18.7)

2 8.6(5.9) 7.8(5.6) 15.8(15.8) 14.9(13.4) 22.7(24.1) 21.6(21.4) 28.9(28.8) 26.3(26.5)

3 8.8(5.8) 6.9(4.6) 12.8(8.4) 10.7(7.4) 14.8(9.8) 13.3(9.7) 16.8(11.2) 15.6(11.3)

4 7.8(7.6) 6.8(6.5) 14.3(13.9) 11.0(10.5) 16.8(15.4) 13.2(11.7) 18.5(15.6) 14.8(12.6)

5 14.8(10.7) 11.3(7.7) 25.8(11.5) 22.9(12.6) 31.8(11.9) 31.0(15.2) 34.0(12.3) 35.4(17.1)

6 11.5(7.5) 11.1(7.5) 24.5(13.0) 22.9(13.5) 37.7(14.6) 35.3(17.6) 49.6(20.2) 48.9(26.3)

7 15.8(9.9) 11.6(8.8) 43.5(26.2) 29.0(18.8) 90.7(58.8) 61.2(39.8) 170.2(101.0) 112.4(73.2)

8 14.0(9.0) 12.7(9.1) 27.1(15.5) 25.2(13.8) 47.7(29.0) 40.8(23.7) 69.7(43.8) 59.7(37.7)

(Continued)
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TABLE 5 (Continued)

Window = 7 Window = 14 Window = 21 Window = 28

Period B E B E B E B E

T
h
ai
la
n
d

1 30.1(27.2) 26.9(29.0) 35.1(24.7) 33.6(28.8) 40.2(23.3) 38.9(27.2) 45.3(25.0) 43.5(27.3)

2 89.3(120.5) 67.1(83.3) 141.7(191.6) 124.4(167.0) 175.2(221.0) 151.7(191.6) 177.0(208.3) 158.8(186.8)

3 23.1(13.9) 18.7(13.2) 30.6(17.2) 26.3(16.9) 35.6(18.2) 31.5(17.9) 38.7(18.9) 35.4(18.7)

4 7.6(5.8) 5.9(4.5) 15.3(8.9) 11.9(7.1) 23.3(10.1) 18.1(7.8) 30.6(11.4) 24.4(8.8)

5 4.3(3.2) 4.2(3.3) 10.2(7.4) 9.8(7.9) 18.5(11.0) 16.2(11.6) 27.0(12.9) 23.0(14.6)

6 9.4(8.8) 7.9(8.2) 15.2(13.5) 14.4(12.8) 19.1(15.2) 18.1(14.3) 23.3(16.0) 21.8(15.2)

7 10.3(6.3) 9.6(6.4) 25.1(16.1) 22.1(14.2) 41.4(28.1) 35.6(22.1) 61.9(42.8) 49.9(34.2)

8 12.0(11.9) 10.2(10.5) 27.8(28.8) 21.3(22.6) 34.2(34.9) 28.3(27.6) 45.2(47.2) 40.9(41.1)

The values are mean and standard deviation (in parentheses) of MRAE of the prediction windows starting at the dates in each 3-month period of 1) Oct-Dec 2020, 2) Jan-Mar 2021, 3) Apr-Jun

2021, 4) Jul-Sep 2021, 5) Oct-Dec 2021, 6) Jan-Mar 2022, 7) Apr-Jun 2022, and 8) Jul-Sep 2022. Notations: B - bare system not using emoji features, E - system using emoji features. In most of

the cases, except 3, the system using emoji features (B) perform better. The error values are shown in percentage with % omitted. The bold values indicate better performance.

effectiveness of using emoji features in improving COVID-19 case

prediction system, much deeper analysis of social media users’ true

underlying emotions which significantly affect their behaviors is a

difficult challenge.

This work has these limitations:

• Even though Twitter is a super popular and influential social

media platform, not a majority of the population of each of

the mentioned countries have a Twitter account or actively

use the platform. Therefore, the collected data are not coming

from the whole population. While the data could be seen as

influential social media signal as also shown in our results, it

should be treated with caution when representing the general

population’s reaction.

• Only COVID-19 related tweets are considered. As shown

above in the data from the 6 countries, COVID-19 related

tweets only constitute a small potion of social media. Arik

et al. (32) showed that it is necessary to study factors, e.g.,

per capita income, hospital patient experience rating, and air

quality measures, which affects the epidemic progression. It is

then intuitive to expand the study to social media reaction over

those topics, for example, economics, and climate, together

with COVID-19.

• Emoji is used as the sole proxy to capture social media

emotion reaction. Even though our study showed positive

contribution of emoji features, emoji usage is still relatively

small with less than 10% given the data from the 6 countries.

For larger coverage of social media emotion analysis, full-text-

based analysis could be considered for platforms where full-

text access at large scale is feasible, especially when considering

other topics together with COVID-19. Even though Twitter

API provides Sample Stream API which can be used for

collecting 1 or 10% random tweets, biases in the sampling

method were reported (42, 43) and exploitable (44).

• Location-based social media data collection is difficult. It will

even be more so in the future when privacy issues will be even

more recognized and respected. This work uses language to

collect country-based data, which is applicable to only some

countries. For future utilization of social media data, location

sharing policy should be more fine-grained managed, for

example, letting users select a lower precision level of location

to share only the city or state they are in.

6. Conclusion

We have investigated the use of emoji as a proxy for estimating

social media reaction in terms of emotion trends on Twitter with

the aim of constructing a system for predicting the daily number

of COVID-19 cases in Japan. Our experimental results showed

that using emoji features improves system performance. These

experimental results together with our analysis of Twitter data

suggest that prediction of the later waves of an epidemic could be

more challenging. The difficulty may be related to changes in both

the epidemic characteristics (variants and their properties) and

social media reaction. Future work should consider situations that

are difficult to characterize from historical data for constructing

prediction system based on machine learning.
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