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Introduction: Care services provided by long-term care facilities (LTCFs) are

currently plagued by care resource shortages and insu�cient utilization. The

analysis on the temporal and spatial distribution of human resources and non-

human resources in LTCFs, could provide a basis to optimize resource allocation

and e�cient use of limited resources.

Methods: This study used data envelopment analysis to comprehensively evaluate

the e�ciency of human and non-human resources in di�erent time spans and

regions. The spatial Markov chain and spatial correlation were also applied to

explore the heterogeneity of and correlation between the service e�ciency of

LTCFs in di�erent regions and then analyzes the influencing factors of e�ciency

using Tobit regression model.

Results: The quantitative changes in the service e�ciency of LTCFs in various

provinces showed a “W” shape in two periods, ranging from 0.8 to 1.6. The

overall e�ciency of LTCFs in di�erent regions had a lower probability to achieve

short-term cross-stage development. Non-human resource e�ciency presented

a “cluster” distribution mode, demonstrating a great probability to achieve cross-

stage development, which might be due to the regional disparities of economic

development and land resource. Tobit regression analysis results also showed

that the comprehensive e�ciency of LTCFs decreases by 0.210 for every square

increase in construction space variation. However, human resource e�ciency

had a significant spatial polarization, making it di�cult to develop area linkages.

The reason for this might be the nursing sta� have relatively stable regional

characteristics, weakening the inter-provincial spatial connection. We also found

that female workers, aged between 35 and 45 can positively a�ect the e�ciency

of LTCFs. Those sta� stay focused and improve their skills, which might improve

the e�ciency of LTCFs. So improving technology and service quality changes

by increasing female workers, aged between 35 and 45, and avoiding excessive

construction space changes can enhance the growth of service quality and

personnel stability of LTCFs.

Conclusion: There is an urgent trade-o� among sta� quality improvement,

resource reduction, construction excessive and substantial regional variation

in e�ciency. Therefore, strengthening policy support to encourage inter-

regional initiatives, particularly highlighting the development of human resources

interaction and common development is urgent.

KEYWORDS

data envelopment analysis, spatial Markov chain, service e�ciency, long-term care

facilities, non-human and human e�ciency
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Introduction

The increasing life expectancy and declining fertility rate have

led to a surge in the proportion of the older population, posing a

severe global challenge of deep aging (1). Specifically, in China, the

total number of people aged 60 years and above reached 264.02

million, accounting for 18.7% of the entire population in 2020,

while the proportion is still rising, exceeding that of most EU

countries (2, 3). A report in 2017 showed that there were about

40.63 million older adult people with disability in the country

(4), and it is projected that 68 million older people in China will

experience various degrees of disabilities in China by 2030, and

approximately 18.6% of these people may require assistance for

daily living activities (5). On the contrary, according to the first

National Seminar on Intelligent Eldercare Strategy in 2012, the

proportion of empty nesters will reach 54% by 2050 (6), which

broke the traditional Chinese way to support families (7). As

the family-oriented care function for older adults is constantly

weakening, the demand for equitable and efficient long-term

care facilities (LTCFs) will continue to increase (8). The Chinese

government established 163,800 LTCFs with 3.928 million beds

by the end of January 2019 (9). Total beds account for 3% of

the country’s older population. However, developed countries can

reach 5–7%, namely, the number of beds required should be at

least 12.45 million (10). In addition, only 300,000 registered long-

term care workers cannot meet the care needs of 40 million older

people with disabilities (8, 11). The increasing demand for human

and non-human care services makes the service supply of LTCFs

obviously insufficient (12).

There also existed weak quality regulation and insufficient

utilization of efficiency of LTCFs, resulting in the current situation

of care resource waste and imbalance development of LTCFs. For

example, in the “Research Report on the Development of China’s

LTCFs,” it was highlighted that approximately 257 LTCFs in 12

interviewed cities, including Tianjin, Harbin, Jinan, and Wuhan;

among those, about 32.5% were in the deficit of income (13).

In addition, the deaths from the 2019 novel coronavirus disease

(COVID-19) are heavily skewed toward older individuals (14). A

report referred that the epidemics of COVID-19 has caused a 20%

loss of revenue and a 30% increase in operating costs for long-

term care facilities (LTCFs) (11). Furthermore, surveys showed that

the phenomenon of “one bed is hard to find” in public LTCFs

and “more than half of the beds are vacant” in private LTCFs is

becoming increasingly obvious (15, 16). Even though 63% of older

people who need eldercare are waiting for LTCFs, there still exist

54% of the beds in private institutions are vacant (17). Some of

the LTCFs might be too expensive for older adults to afford. The

other LTCFs have lower prices, but due to poor service quality,

insufficient resources, and facilities, vacancy is also apparent (18).

These presented the imbalance in the utilization of care resources

Abbreviations: LTCFs, long-term care facilities; TE, technical e�ciency; DEA,

data envelopment analysis; BCC model, Banker-Charnes-Cooper model;

SBMmodel, Slacks-Based Measure model; PTE, pure technical e�ciency; SE,

scale e�ciency; TFPC, total factor productivity changes; LTCFs, long-term

care facilities; TC, technological changes; PTEC, pure technical e�ciency

changes.

by different types of LTCFs, and most institutions have far lower

efficiency than their projected level, thus they cannot meet the

needs of older adults (19). Therefore, how to further improve the

service quality of LTCFs, reasonably allocate human and non-

human service resources, increase their input-output benefits,

improve service efficiency, and realize the sustainable development

of LTCFs has become a concern and urgent problem to be solved

by government departments.

With the deepening of the research on the service quality of

LTCFs, foreign scholars began to paymore attention to the problem

of inputs and outputs of LTCFs at the same time. A sample survey

was conducted in nursing homes in certain areas of Finland, Italy,

Japan, and Norway, which investigated the relative efficiency and

influencing factors, based on explorations on the application of the

data envelopment analysis (DEA) method and regression model

(20–23). DEA was defined as an advantageous non-parametric

technique for evaluating performance in terms of relative efficiency

and can deal with multiple inputs and outputs (24). Also, it does

not need to set an artificial weight coefficient (25). In addition,

the DEA has no direct relationship with the dimensions of input

and output indicators, and when it comes to service quality and

cost-effectiveness, it does not need to calculate the health status

and standard cost of service individuals, which applies to various

situations with data limitation (26).

Although most of the studies in developed countries on the

service efficiency of LTCFs are relatively complete, their research

approaches and results may not apply to China due to different

levels of development. There still exist amounts of shortcomings in

the studies related to the efficiency of China’s LTCFs. For example,

scholars focused only on theoretical study for institutional planning

of LTCFs, including the exploration of institution building and

service standards, service contents, and service personnel. Some

conducted a theoretical and analytical study for institutional

planning of LTCFs in a certain province or city (27), being short

of quantitative studies, which cannot provide a scientific basis for

promoting the overall healthy development of nursing homes in

China from a macro perspective (28). In addition, the existing

studies are often limited to use the cross-sectional data to apply the

single stage (29) and DEA Tobit two-stage models in conducting

regional static research (30), less considering the application of

longitudinal data from time and regional dynamic analysis of

service efficiency changes and its influencing factors exploration.

The analysis of the dynamic spatial layout of medical facilities

in China and abroad is mainly based on the impact of the

service needs of patients on the spatial distribution of institutions.

The accessibility of healthcare and hospitals and surrounding

environmental factors related to the needs of the patients aremainly

studied by means of network analysis, geographic information

system (GIS) (31), spatial sentence (32), social network analysis

(SNA) (33), enhanced two-step floating catchment area (E2SFCA)

(34), multivariable regression methods (35), ordinary least squares

(OLS) (36), spatial autoregressive (SAR), and geographically

weighted regression (GWR) (37) in the community prevention

and healthcare facilities. Christoph Pross specified a Bayesian,

geoadditive, Stochastic Frontier Analysis (SFA) model to assess

hospital performance along the dimensions of resources and

quality of stroke care in German hospitals (38). Wu Anqi (39)
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explored the current situation of the spatial distribution of LTCFs

and the accessibility of LTCFs in Lanzhou. Regional growth

convergence has always been the main topic in the empirical

study of efficient growth. Quah proposed to use kernel density

estimation and Markov chain methods to study the evolution

of regional growth distribution (40). The spatial Markov chain

analysis method is used to test whether the transfer dynamics faced

by a region are affected by the efficient level of neighboring regions

(41). However, the conditional convergence test data without

considering geographical features might inevitably result in serious

deviation when evaluating the quantitative of the pension industry

agglomeration (42). Thus, Rey proposed a new index based on

the reconstruction of the spatial decomposition of the classical

Gini coefficient (i.e., the Moran index), which is highly correlated

with spatial autocorrelation and data distribution (43). Chinese

provinces and cities have been maintaining a rapid development

of LTCFs, but there is also a lack of coordination between regions.

It is an important empirical problem to measure the growth or

convergence of service efficiency of LTCFs in different regions

combined with spatial Markov chain analysis and the Moran index.

Spatial distribution and spatial spillover effects are the focus of

the studies on the spatial characteristics of LTCFs (44). However,

the analysis results of service efficiency and resource allocation of

LTCFs are not expressed in space from the supply side, and there is

a lack of dynamic analysis of the service efficiency of LTCFs across

time, space, and region. In addition, the existing studies used cross-

sectional data, and the LTCFs were restricted regionally, which

did not have the representativeness of the overall characteristic

distribution, and the research conclusions lacked practicality and

extension. Furthermore, the current LTCFs efficiency literature has

rarely taken into account the importance of geographic clusters

(30). Neglecting the efficiency of LTCFs in the same or neighboring

regions might induce systematic biases to inefficiency estimated

effects of their determinants if efficiency varies not only between

providers but also across regions. However, current studies only

focus on regional differences, spatial distribution, and spatio-

temporal dynamic evolution in hospitals and the healthcare field

(45). Taking the socioeconomic and technological attributes of

LTCFs as the basis, it is necessary to further study whether the

inputs and outputs of LTCFs as a production activity in different

regions are reasonable, as well as their spatial connections, and then

to explore their influence mechanism and effective promotion path.

Therefore, combined with the Pareto optimal theory, we

selected the input-output indicators for the efficiency evaluation of

LTCFs from the aspects of human and non-human resources and

applied the super efficiency model in data envelopment analysis

to measure, rank, and classify the efficiency of 31 provinces and

regions in China. Based on this, spatial autocorrelation, Markov

chain, and spatial Markov chain were used to explore the regional

differences and dynamic evolution of the service efficiency of

LTCFs in the context of aging by considering areas and time

heterogeneity, and then to analyze the influencing factors of LTCFs’

efficiency by panel Tobit regression. The goal of this study is to

provide a more complete understanding of the dynamic spatial

distribution changes and the influencing factors of the decrease

in the human and non-human resource efficiency of LTCFs at the

national level. This is done in order to reveal the spatial changes and

connections of LTCF’s efficiency as influenced by different factors

and explore the path to achieve higher efficiency. In turn, it provides

a basic reference for the government to optimize the allocation

of eldercare service resources and the spatial pattern of eldercare

services and then to improve the service quality.

Methods

Data sources

Data were obtained from the China Civil Affairs Statistical

Yearbook, a national survey compiled by the Statistical Annual

Report of the Social Service Industry, and the reports of relevant

departments, which are related to social services in each year among

all LTCFs in the 31 provinces of China from 2013 to 2020. The

data content includes the input and output indicators of LTCFs,

where the input indicators include human resources indicators and

non-human resources indicators.

Variable selection

There is no consensus conclusion on the standard of input-

output variables for the evaluation of the efficiency of LTCFs

(46, 47). Based on the theory of production factors in economics,

the principles of representativeness, independence, and operability

should be included in the evaluation index selection. To be more

specific, input factors can be divided into capital, labor, and

material inputs, and output factors include economic and social

benefits (48).

Considering the operability of decisions, input indicators

should include the items that decision makers can control over

and modify (49). As LTCFs were labor-intensive industries, fixed

assets and institutional staff were commonly used separately as

capital input human input index (50, 51). The actual number of

beds could be easily controlled by managers, which belongs to

material input. A number of studies also considered the number

of beds, the number of institutions, and the original price of

fixed assets as indicators of material resources (27, 52, 53). In

addition, as the pension industry functions as a labor-intensive

industry, there is less possibility for the capital of the labor

substitution. Hence, human capital is an appropriate input index

for efficiency comparison including the number of social workers

and the number of employees, which are the main care resources

in LTCFs (54). Therefore, the input indicators established in this

study include the number of institutions, the number of employees

at the end of the year, the original price of fixed assets, the number

of social workers, and the number of beds at the end of the year

(Table 1).

Output indicators are considered to be the most important

factors in evaluating the quality and quantity of long-term care

services (55). However, most studies only considered the output of

operating revenue and profit, and the number of patients and beds,

rarely considering the importance of service quality in evaluating

the efficiency of LTCFs (56, 57). The quality of service directly

affects the final effect of eldercare and the development prospects
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TABLE 1 The overall e�ciency evaluation of LTCFs in China in 2020.

DMU TE PTE SE RTS SBM Rank

Beijing 1 1 1 CRS 2.075259 3

Tianjin 1 1 1 CRS 1.113012 9

Hebei 0.923478 0.941243 0.981125 CRS 0.660007 27

Shanxi 0.663327 0.804785 0.824229 CRS 0.537396 30

Inner Mongolia 0.88907 0.905911 0.98141 CRS 0.767648 23

Liaoning 1 1 1 CRS 1.065222 13

Jilin 1 1 1 CRS 1.151649 7

Heilongjiang 0.806433 0.913878 0.88243 DRS 0.742034 24

Shanghai 1 1 1 CRS 2.765687 2

Jiangsu 0.863247 1 0.863247 DRS 1 17

Zhejiang 1 1 1 CRS 1.093885 10

Anhui 0.988325 0.989857 0.998452 CRS 0.928381 22

Fujian 0.920666 0.921996 0.998557 CRS 0.697082 26

Jiangxi 1 1 1 CRS 1.801637 4

Shandong 0.910557 1 0.910557 DRS 1 18

Henan 1 1 1 CRS 1 19

Hubei 1 1 1 CRS 1.148148 8

Hunan 1 1 1 CRS 1.081579 11

Guangdong 0.939754 1 0.939754 DRS 1 20

Guangxi 0.848276 0.849864 0.998132 CRS 0.524982 31

Hainan 1 1 1 CRS 1.552696 5

Chongqing 0.862676 1 0.862676 DRS 1.010352 16

Sichuan 1 1 1 CRS 1 21

Guizhou 0.736317 0.820939 0.896921 CRS 0.605067 28

Yunnan 0.80127 0.80203 0.999052 CRS 0.59572 29

Tibet 1 1 1 CRS 4.366281 1

Shaanxi 0.980765 1 0.980765 DRS 1.014799 14

Gansu 0.986527 0.986827 0.999696 CRS 0.717468 25

Qinghai 1 1 1 CRS 1.162113 6

Ningxia 1 1 1 CRS 1.066009 12

Xinjiang 1 1 1 CRS 1.014693 15

TE, technical efficiency; PTE, pure technical efficiency; SE, scale efficiency. Achieved optimal efficiency if the value is 1, while the efficiency is low if it is <1. The higher the super-SBM efficiency

index, the higher the efficiency.

of LTCFs. For example, the health condition of older people is very

important for the improvement and development of LTCFs, and

it has a direct impact on the final performance evaluation results

of the service such as the number of rehabilitation and medical

outpatients. The quality of service is based on the fall rates of

older adults, health conditions, the rate of complaint handling,

and the annual incidence of major accidents (58). Furthermore,

the number of older people with different care needs can reflect

their social effects, and thus older population was classified into

disabled, partially disabled, and completely independent in LTCFs,

which were measured by the Barthel index including six basic

activities of daily living, namely, eating, toileting, bathing, dressing,

getting in and out of bed, and mobility (30). Therefore, the output

indexes should include operating income, the number of disabled,

the number of partially disabled, the number of independents

in residential cares at the end of the year, and the number of

rehabilitation and medical outpatients (Supplementary Table S1).

According to the summary statistics of input-output variables

presented, the mean number of institutions reached the highest

in 2014. All the input indexes have a significant correlation with

output indexes, which indicates that the index selected is reasonable

(Supplementary Tables S2, S3).
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Data envelopment analysis

Data envelopment analysis is a linear programming technique

proposed by Charnes et al. to deal with evaluation problems

containing multiple input and output indicators (59), which are

categorized into input- and output-oriented. Considering the

input controllability of the pension industry and the limited

eldercare resources in China, it is of great practical significance

to increase the output with the given input to make more

reasonable use of resources. Therefore, input-oriented variable

scale DEA models, i.e., the generalized Charnes-Cooper-Rhodes

(CCR) and Banker-Charnes Cooper (BCC) models, were used to

analyze the comprehensive efficiency of LTCFs. The provincial

domain is set as a decision unit in combination with the actual,

i.e., a total of 31 decision units, which are presented by DMU

(i = 1, 2, ... . . . , n) (25). The calculation was adopted by the

MaxDEA software.

CCR and BCC models
Data envelopment analysis is a frontier analysis technology

based on linear programming. It uses management operations

research to construct the production frontier (optimal envelope),

then maps the data of the evaluated unit into space, and calculates

the relative efficiency value according to the mapped position. It

calculates the relative efficiency value according to the mapped

position: the relative efficiency value falling on the most envelope

line is 1 to achieve the optimal efficiency; if it falls at other

positions, the relative efficiency value is calculated according

to the position, and the efficiency value is <1. Therefore, the

efficiency value interval obtained by using traditional DEA is

(0,1) (60). The traditional DEA model mainly included CCR

model l (61) based on constant returns to scale and the BCC

model with variable returns to scale (62). The CCR model

calculates for technical efficiency (TE), while the BCC model

calculates for pure technical efficiency (PTE). The TE refers

to the extent to which a DMU can produce the maximum

output from its chosen combination of inputs, PTE refers to the

production efficiency affected by management and technology. SE

refers to the production efficiency affected by constructions or

scale factors. The relationship formula of these three values is

TE = PTE× SE.

Slack-based model (SBM) model
The additive model (AM) or SBM is based on input and output

slacks. In this study, a non-oriented and non-radial model known

as the SBM-DEA model has been used (63). This model breaks

through the limitation that the maximum efficiency value of the

traditional DEA can only be 1 (64). It takes the optimal envelope

curve as the benchmark, gives the relative mapping position of each

evaluated unit, sorts the optimal units with the original efficiency

value of 1, and can reflect the specific relative efficiency value of

the optimal efficiency unit. Therefore, the value of super efficiency

becomes (0,∞). The input-oriented DEA model was used to

compute TE scores of nursing care that can be expressed by the

following formula:



































max
[

θ − ε
(

eTs− + êTs+
)]

n
∑

j=1
xjλj+s

− = θx0

n
∑

j=1
yjλj − s+=y0

λj ≥ 0, j = 1, ..., n, s+ ≥ 0; s− ≥ 0

In the case of θ = 1, S− = 0, S+ = 0, the nursing home

is fully efficient, whereas θ < 1 means that a nursing home is

inefficient. The BCCmodel adds constraint conditions based on the

CCR model:

n
∑

j=1

λj = 1

At this time, it means that the return on the scale of DMU

remains unchanged and reaches the maximum output scale (65).

In addition, when
∑n

j=1 λj = 1 < 1, it means that returns to scale

are increasing. If the input to DMU is appropriately increased

based on the original input, the output will be increased by a

higher proportion. When
∑n

j=1 λj = 1 > 1, it means diminishing

returns to scale, and the increasing input does not lead to a higher

proportion of output (66).

Malmquist model
Productivity measures changes in a production unit’s efficiency

in transforming inputs into outputs from time t to time t + 1

(67). Total factor productivity changes (TFPC) can be decomposed

into technical efficiency changes (TEC) and technological changes

(TC). TEC can also be decomposed into pure technical efficiency

changes (PTEC) and scale efficiency changes (SEC). The formula is

as follows:

TFPC = TEC× TC = (PTEC× SEC)× TC

Spatial statistical analysis

Time heterogeneity test
The method of testing time homogeneity was proposed by

Anderson and Goodman (68). The whole sample is divided into

t-period, and the Pearson χ2 and likelihood ratio are used to test

whether the transfer matrix estimated from each t-sub sample

is significantly different from the matrix estimated from the

whole sample.

Spatial Markov chain
Markov chain is a kind of Markov process whose time and

state are discrete. It can be used to study the random transfer of

economic phenomena without the interference of external factors.

The specific formula is as follows:

Mij = nij/ni (1)
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In Equation (1), n represents the sum of the number of spatial

units from type i tourism efficiency at time t to type j tourism

efficiency at time t+n; n represents the sum of the number of spatial

units of type i at all times during the study period, andM represents

the probability value that the tourism efficiency of spatial units of

type i at time t changes to type j at time t + n.

Through the spatial Markov chain, based on the adjacent spatial

weight matrix and taking the spatial lag of the research unit in

the initial year as the premise, the traditional Markov transition

probability matrix is decomposed into k conditional transition

probability matrices of k× k. The specific formula is as follows:

Lag = YiWij (2)

In Equation (2), y is the attribute value of the spatial unit;W is

the element of row i and column j of the spatial adjacency weight

matrixW.

Spatial autocorrelation analysis
Global spatial autocorrelation

Moran index can describe the spatial agglomeration degree of

tourism efficiency of each province.When the spatial weight matrix

is constructed according to the adjacency principle, the value range

of the global Moran index is [-1,1]. When its index is not equal to 0,

it indicates that there is a spatial positive autocorrelation or negative

correlation between the service efficiency of provincial LTCFs.

Moran
′

s I =

∑n
i=1

∑m
j=1 Wij(Xi − X̄)(Xj − X̄)

S2
∑n

i=1

∑m
j=1 Wij

∈ [−1, 1] (3)

In Equation (3), Xi is the observation value, Wijis the spatial

weight matrix, and the spatial autocorrelation matrix selects the

adjacency matrix.

Local spatial autocorrelation

To measure the local correlation property of each provincial

unit, the local spatial autocorrelation coefficient is introduced to

further identify the spatial correlation pattern of local areas (69).

LISAi = Zi

n
∑

j=1

WZj (4)

In Equation (3), LISAi is the local spatial autocorrelation

coefficient; Zi and Zj are the standardized values of service

efficiency of LTCFs of provinces. When the value of LISAi is

positive, it means that the similarity value of local spatial units tends

to be spatially concentrated, and when it is negative, it means that

local spatial units tend to be dispersed.

Tobit regression model

The Tobit model is suitable for the research of the regression

equation with a limited value of the dependent variable and is

conducive to accuratelymeasuring the influence of the independent

variable on the dependent variable (70). As the operating efficiency

of LTCFs measured by the DEA model is between 0 and 1, the least

square method (OLS) may cause deviation in the results, so the

panel Tobit model with limited dependent variables is adopted for

analysis, which can better solve the regression problemwith limited

dependent variables (71). In addition, the efficiency of LTCFs is

affected by not only the five input factor variables but also other

exogenous variables (72). According to the availability of relevant

literature and data, it mainly discusses three aspects, namely,

service subjects, human resources, and non-human resources.

Among them, service subjects include the type of object of service

(self-paid, extreme poverty, and entitled groups) and the total

number of subjects in LTCFs. Human resources include the

influence of gender, educational background (junior college, college

graduate, and above), age (35 years old or below, 36–45, 46–55,

or above 56 years old), the number of assistant social workers,

the number of volunteer service personnel, volunteer service time,

and other factors on the efficiency. Non-human resources include

construction space. To avoid the possible heteroscedasticity of the

data and improve the convergence rate of the model, the values of

the total number of variables were normalized before regression

analysis (73). Taking comprehensive efficiency as a dependent

variable, a panel data Tobit regression analysis was carried out to

find out the factors affecting operation efficiency (74). The model is

as follows:

Y = {
Y∗=α+βX+µ, Y∗>0
0,Y∗≤0

where Y∗ is the restricted dependent variable, X is the vector of

independent variables, α is the vector of intercept terms, β is the

vector of regression parameters, µ is the random error term, and

µ ∼ N(0, σ 2).

EFFit = αi + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6

+β7X7 ∼ β15X15 + εit

All statistical analyses were performed using MATLAB, Stata

16.0, DEA solver 5.0, and GeoDa software.

Results

The evolutionary trends of the e�ciency of
LTCFs from 2013 to 2020

The results of the DEA-BCC-CCR method showed that the

number of LTCFs that achieved the optimal efficiency in TE, PTE,

and SE presented a composite W-shape trend of change from 2013

to 2020. The number of institutions that have reached the optimal

efficiency values in TE, PTE, and SE reached the lowest level in 2015

and 2019 and reached the highest level in 2016 (Figure 1).
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FIGURE 1

The number of LTCFs with optimized service e�ciency in China (2013–2020). TE, technical e�ciency; PTE, pure technical e�ciency; SE,

scale e�ciency.

The e�ciency evaluation of LTCFs in China
in 2020

In 2020, the overall efficiency value of LTCFs in 16 provinces

(51.61%) was 1, which was in constant returns to scale, and the

LTCFs in 6 provinces (19.35%) were in the stage of decreasing

returns to scale. The super-SBM efficiency of LTCFs in Tibet

ranked the highest, followed by Shanghai. The ranking of LTCFs

in Guangxi Province is the lowest, followed by Shanxi Province

(Table 1).

Combined with the radar map of the service efficiency

distribution of LTCFs in all provinces in 2020 (Figure 2), it showed

that the efficiency of various LTCFs varies significantly among all

the units.

Malmquist total factor production and its
decomposition from 2013 to 2020

Malmquist intertemporal analysis demonstrated that the

decrease in total factor productivity in LTCFs in 24 provinces is

mainly caused by the decrease in technology. At the same time,

the decrease in TE of LTCFs in six provinces is caused by a

decrease in SE, in another four provinces by a decrease in PTE,

and in three provinces by a decrease in both PTE and SE (Table 2;

Supplementary Table S4).

Dynamic evolution analysis of service
e�ciency distribution among LTCFs

The test statistics used are Pearson χ2 statistics (q) and

likelihood ratio statistics (LR) for the time heterogeneity test. The

FIGURE 2

Distribution of TE, PTE, and SE of LTCFs in all provinces in 2020. TE,

technical e�ciency; PTE, pure technical e�ciency; SE, scale

e�ciency.

results show that both statistics reject the assumption of smooth

transition probability at a significance level of 0.01. Therefore, the

following will be divided into two periods, i.e., 2013–2017 and

2018–2020 (Supplementary Table S5).
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TABLE 2 Intertemporal analysis on the overall e�ciency of LTCFs in 31

provinces (2013–2020).

DMU TEC TC PTEC SEC TFPC

Beijing 1 1 1 1 1

Tianjin 1 0.974 1 1 0.974

Hebei 1.015 0.963 1.012 1.003 0.977

Shanxi 1.007 0.945 1.011 0.996 0.952

Inner Mongolia 1.03 0.982 1.03 1 1.011

Liaoning 1.043 0.936 1.036 1.007 0.976

Jilin 1 0.977 1 1 0.977

Heilongjiang 0.985 0.948 0.987 0.998 0.934

Shanghai 1 1.036 1 1 1.036

Jiangsu 0.991 0.973 1 0.991 0.964

Zhejiang 1 0.981 1 1 0.981

Anhui 1.004 0.935 1.004 1 0.939

Fujian 1.083 0.942 1.081 1.002 1.02

Jiangxi 1 0.973 1 1 0.973

Shandong 0.989 0.908 1 0.989 0.898

Henan 1 0.991 1 1 0.991

Hubei 1 0.874 1 1 0.874

Hunan 1.006 0.959 1.003 1.003 0.965

Guangdong 0.992 0.974 1 0.992 0.966

Guangxi 0.989 1.002 0.986 1.003 0.99

Hainan 1 1.003 1 1 1.003

Chongqing 1.01 0.955 1.01 1.001 0.964

Sichuan 1 0.895 1 1 0.895

Guizhou 0.97 0.869 0.972 0.998 0.843

Yunnan 0.972 0.953 0.974 0.998 0.927

Tibet 1.008 1.140 1 1.008 1.149

Shaanxi 1 0.939 1 1 0.939

Gansu 1.034 0.966 1.031 1.002 0.999

Qinghai 1 0.903 1 1 0.903

Ningxia 1 0.873 1 1 0.873

Xinjiang 1.028 0.922 1.023 1.004 0.948

TFPC, total factor productivity changes; PTEC, pure technical efficiency changes; SEC, scale

efficiency changes; TC, technological changes; TEC, technical efficiency changes.

According to the quantile rule [within 25% is low level (L), 26–

50% is medium and low level (ML), 51–75% is medium and high

level (MH), and >75% is high level (H)], the service efficiency of

provincial LTCFs is divided into four categories, and the changes

in transition probability are compared between two periods, i.e.,

2013–2017 and 2018–2020. The results of the traditional Markov

transition probability matrix showed that the diagonal probability

of the super-SBM value is significantly higher than that of other

positions, indicating that in the medium or short term, the

efficiency development of LTCFs in China is relatively stable. This

implies that it is difficult for provinces to realize the transition

by relying on their own development without external causes.

However, adjacent level types reached a large transfer probability,

which might be the reason that industrial accumulation is the

main development process in the current situation. Comparing the

efficiency of human resources with that of non-human resources

in LTCFs, the diagonal and other positions of human resources

were more different in the 2013–2017 period with worse liquidity.

However, in the 2018–2020 period, the liquidity was significantly

higher than that of non-human resources, and there was a greater

probability of cross-level development (Table 3).

After adding the spatial correlation matrix, the results of the

service efficiency of national LTCFs also showed a stable transition

probability, including the human resource efficiency and non-

human resource efficiency of LTCFs. For example, when the overall

efficiency is in an L, ML, or H adjacent area, the diagonal transition

probability is higher than that of other locations. Only when the

adjacent area is MH, provinces with MH have a high probability of

transferring to the adjacent horizontal section, ML or H. In human

resource efficiency, when the adjacent area is L, the provinces that

are L and MH have a higher probability of transferring to ML

and L, respectively; when the adjacent area is ML, the provinces

that are ML will have a greater probability of transferring to L;

when the adjacent area is H, the provinces with L have a greater

probability of transferring to ML; and when the adjacent area is

MH, the diagonal transfer probability is higher than that of other

locations. In terms of non-human resource efficiency, when the

adjacent area is ML, the provinces with MH are more likely to

transfer to ML; when the adjacent area is MH, the provinces that

areMH themselves are more likely to transfer to L andH; and when

the adjacent area is H, the provinces with MH themselves have a

greater probability of transferring to H. The diagonal probability

values of other adjacent space transfer matrices are much greater

than those of other positions, which reflects the convergence of

mechanism efficiency space. This is consistent with the results

of spatial autocorrelation, which showed that LTCFs continue to

form industrial clusters in their own regions in the process of

development with high homogeneity (Table 4).

Spatial correlation analysis of overall
e�ciency and human and non-human
resource e�ciency of LTCFs

To explore the interactive effect of the development of LTCFs

among provinces, Moran’s I was used to reflect the spatial

relationship among regions. According to Table 5, the non-human

resource efficiency in different provinces had a weak spatial

correlation in 2013–2015; the human resource efficiency had a

weak spatial correlation only in 2017; and the overall efficiency

of LTCFs failed to pass the test in 2013–2020. As for non-

human resource efficiency, in the early stage of development,

the LTCFs were not developed in all regions, and there was a

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1066190
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2023.1066190

TABLE 3 Dynamic evolution analysis of service e�ciency distribution of LTCFs in two time periods (2013–2017 and 2018–2020) in China.

Year Level Super-SBM Human resource e�ciency Non-human resource e�ciency

L ML MH H L ML MH H L ML MH H

2013–2017 L 0.563 0.188 0.188 0.063 0.594 0.375 0.000 0.031 0.563 0.219 0.063 0.156

ML 0.162 0.676 0.081 0.081 0.212 0.424 0.182 0.182 0.163 0.651 0.070 0.116

MH 0.231 0.154 0.308 0.308 0.067 0.100 0.667 0.167 0.167 0.278 0.278 0.278

H 0.034 0.034 0.276 0.655 0.103 0.103 0.103 0.690 0.065 0.097 0.258 0.581

2018–2020 L 0.688 0.250 0.063 0.000 0.667 0.200 0.133 0.000 0.733 0.267 0.000 0.000

ML 0.053 0.632 0.211 0.105 0.176 0.412 0.294 0.118 0.083 0.583 0.167 0.167

MH 0.167 0.083 0.583 0.167 0.000 0.214 0.643 0.143 0.111 0.222 0.222 0.444

H 0.000 0.133 0.067 0.800 0.188 0.063 0.063 0.688 0.071 0.214 0.071 0.643

L, low level; ML, medium and low level; MH, medium and high level; H, high level.

TABLE 4 Spatial Markov chains.

Total Human resource e�ciency Non-human resource e�ciency

Level Ti/Ti+1 L ML MH H L ML MH H L ML MH H

L L 0.500 0.167 0.167 0.167 0.200 0.600 0.000 0.200 0.429 0.143 0.000 0.429

ML 0.000 0.833 0.000 0.167 0.000 0.833 0.167 0.000 0.000 1.000 0.000 0.000

MH 0.143 0.000 0.714 0.143 0.667 0.000 0.333 0.000 0.000 0.000 1.000 0.000

H 0.000 0.000 0.333 0.667 0.333 0.000 0.000 0.667 0.100 0.000 0.300 0.600

ML L 0.577 0.192 0.192 0.038 0.591 0.318 0.045 0.045 0.640 0.200 0.080 0.080

ML 0.077 0.692 0.115 0.115 0.467 0.333 0.133 0.067 0.106 0.574 0.149 0.170

MH 0.250 0.125 0.375 0.250 0.071 0.143 0.500 0.286 0.125 0.417 0.250 0.208

H 0.077 0.077 0.269 0.577 0.200 0.100 0.000 0.700 0.067 0.167 0.200 0.567

MH L 0.769 0.154 0.077 0.000 0.769 0.231 0.000 0.000 0.800 0.100 0.000 0.100

ML 0.235 0.471 0.176 0.118 0.200 0.533 0.133 0.133 0.200 0.600 0.000 0.200

MH 0.167 0.333 0.167 0.333 0.000 0.115 0.692 0.192 0.500 0.000 0.000 0.500

H 0.000 0.222 0.111 0.667 0.061 0.091 0.182 0.667 0.000 0.500 0.000 0.500

H L 0.556 0.222 0.222 0.000 0.429 0.500 0.071 0.000 0.500 0.500 0.000 0.000

ML 0.250 0.688 0.063 0.000 0.267 0.333 0.267 0.133 0.375 0.500 0.125 0.000

MH 0.143 0.286 0.286 0.286 0.143 0.357 0.357 0.143 0.000 0.000 0.250 0.750

H 0.000 0.000 0.200 0.800 0.222 0.000 0.111 0.667 0.000 0.182 0.182 0.636

L, low level; ML, medium and low level; MH, medium and high level; H, high level.

certain linkage between the resource efficiency of various provinces.

However, with the continuous development and integration of the

local pension industry, provinces began to accumulate pension

resources within their own province, causing the inter-provincial

spatial connection to weaken. As for human resource efficiency,

there is no spatial correlation between provinces. There was a

negative spatial relationship that passed the 0.1 test in 2017,

but Moran’s I in the other years failed to pass the test. There

existed a negative exponential phenomenon, which resulted in an

obvious polarization phenomenon and failed to form area linkage

to develop efficiency.

Analysis of local spatial autocorrelation
aggregation of service e�ciency of LTCFs
in various provinces from 2013 to 2020

Supplementary Figures S1A–H shows that during the period

2013–2020, when the test level is at p ≤ 0.05, there is a significant

positive spatial correlation (+ +) between one province and

its adjacent provinces or regions, which can be identified as

diffusion effect that shows a relatively rapid development model,

and there is a significant positive spatial correlation (– –) between

eight provinces and their neighboring provinces or regions. The
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TABLE 5 The Moran’s I of human resources and non-human resources in LTCFs.

Year Total e�ciency Human resource e�ciency Non-human resource e�ciency

Moran’s I P Moran’s I P Moran’s I P

2013 −0.123 0.167 −0.081 0.345 −0.141 0.099

2014 0.024 0.252 −0.059 0.471 0.081 0.079

2015 −0.162 0.108 −0.083 0.306 −0.179 0.072

2016 −0.046 0.498 −0.097 0.147 0.016 0.269

2017 −0.019 0.184 −0.006 0.074 −0.031 0.477

2018 0.031 0.239 0.110 0.113 0.016 0.202

2019 −0.024 0.384 −0.019 0.406 −0.018 0.369

2020 −0.040 0.449 −0.079 0.374 −0.012 0.314

efficiency growth rate of these provinces is relatively slow, showing

a typical lagging development model; there is a significant negative

spatial correlation (+ –) between one city and its adjacent cities,

which can be identified as the polarization effect or reflux effect; and

there is a significant negative spatial correlation (–+) between four

provinces and their neighboring provinces, which can be identified

as the centrifugal effect.

The empirical analysis of influencing
factors of LTCFs e�ciency

Based on the Tobit model constructed in the previous section,

the results showed that female workers aged between 35 and 45

years can positively affect the efficiency of LTCFs at a significant

level of 1% and 5%. In addition, the type of service subjects has a

positive impact on the efficiency of LTCFs. A possible reason for

this is that those groups are generally in poorer health or able to

receive more government subsidies from long-term care insurance,

thus this income increases the efficiency of LTCFs.

However, the construction space of the LTCFs might negatively

affect the efficiency of LTCFs at a 5% significant level. Table 6 shows

that the comprehensive efficiency of LTCFs decreases by 0.210 for

each square increase in construction space variation.

Discussion

This study applied DEA to comprehensively evaluate the

service efficiency of human and non-human resources in LTCFs

in different time periods and regions. By combining the

spatial Markov chain and spatial correlation, we explored the

heterogeneity and correlation of service efficiency of LTCFs in

different regions and their interactive effects to provide a reference

basis for optimizing the allocation of care resources and improving

service efficiency.

The evolutionary trends of the e�ciency of
LTCFs from 2013 to 2020

The number of LTCFs, which achieve optimal efficiency in

TE, PTE, and SE, presented a composite W-shape changing trend

from 2013 to 2020. During 2013–2015, the number of LTCFs with

optimized service efficiency showed a downward trend in volatility.

After reaching the peak in 2016, the number gradually decreased,

reached the “trough” in 2019, and showed an upward trend in

2020. Taking 2016 as a reference, the front and back fluctuations

show a symmetrical distribution, that is, the quantitative changes

in the optimization of service efficiency of LTCFs form a circular

rotation phenomenon in different years. The number of LTCFs with

optimized efficiency reached a peak in 2016 and 2020, respectively,

which might be due to the policy support of the three-year action

plan for eldercare services (2014–2016) issued by the Ministry of

Civil Affairs (75). In 2017, the State Council issued the “13th Five-

Year Plan for the Development of the National Cause for Aging

and the Construction of the Eldercare System”, which highlighted

that the eldercare service system based on home, supported by

communities, supplemented by institutions, and combined with

medical care will be more complete (76). Subsequently, the policy

and economic supports mainly focus on the development of home-

based community eldercare services. This has led to a downward

trend in the service efficiency of LTCFs since 2017. Specific

phenomena include the decline in bed utilization rate and low

service quality in LTCFs (77). However, theMinistry of Civil Affairs’

Implementation Opinions on Further Expanding the Supply and

Promoting the consumption of eldercare services in 2019 proposed

that LTCFs and community eldercare service institutions should

jointly provide support for home care (78). This further expands

the market service demand of LTCFs and improves the efficiency

of institutions. Taking 2020 as an example, the overall efficiency of

institutions in all provinces in China is evaluated. The results show

that the TE of LTCFs in 16 provinces (51.61%) is 1, the SE remains

unchanged, and the TE of LTCFs in the other 15 provinces is lower.

The reasons for low efficiency include the decline of scale efficiency

and pure technical efficiency. SE refers to the impact of industrial

structure on output efficiency through continuous optimization

and improvement of its own allocation; PTE reflects the internal

management and personnel management level of LTCFs. Due

to the regional distribution and functional diversity of natural

resources in China, provinces with high SE are mainly distributed

in Northwestern regions with wide geographical areas and rich

land resources (19) such as Henan, Tibet, and Xinjiang (79).

Hence, the comprehensive efficiency of LTCFs in Northwestern

regions is less likely to be affected by SE. The southeastern regions,

such as Jiangsu, Shandong, Guangdong, and Chongqing, have a
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TABLE 6 Tobit regression analysis of the influential factors of LTCFs e�ciency.

Variables Coef. S. t. T–value p–value 95%CI

Constant 0.9794 0.0456 21.4800 0.0000 0.8896 1.0692

Support subjects

Entitled group 0.1308 0.0559 2.3400 0.0200∗ 0.0207 0.2409

Extreme poverty group 0.2251 0.0662 3.4000 0.0010∗∗ 0.0946 0.3556

Self-paid group 0.0986 0.0646 1.5300 0.1280 −0.0287 0.2259

Annual older people 0.0949 0.0566 1.6800 0.0950 −0.0167 0.2064

Human resources

Women 0.3895 0.1276 3.0500 0.0030∗∗ 0.1382 0.6409

Junior college −0.1312 0.1017 −1.2900 0.1980 −0.3315 0.0692

College graduate and above 0.0895 0.0899 1.0000 0.3210 −0.0877 0.2666

Age d35 and below −0.1508 0.1039 −1.4500 0.1480 −0.3556 0.0540

Aged between 35 to 45 −0.3176 0.1314 −2.4200 0.0160∗ −0.5764 −0.0588

Aged between 46 to 55 −0.0191 0.0878 −0.2200 0.8280 −0.1920 0.1538

Aged 56 and above 0.1321 0.0825 1.6000 0.1110 −0.0305 0.2947

Social workers 0.0321 0.0512 0.6300 0.5320 −0.0688 0.1330

The numbers of volunteers 0.0275 0.1244 0.2200 0.8250 −0.2176 0.2726

Volunteer service hours 0.1321 0.1423 0.9300 0.3540 −0.1482 0.4125

Non-human resources

Construction space −0.2101 0.0716 −2.9300 0.0040∗∗ −0.3511 −0.0690

LR 62.2000

R2 0.2400

∗∗ , ∗Represent significance levels of 1 and 5%, respectively.

lower SE due to the characteristics of land supply scarcity. As

their PTE is high, the reduction in the comprehensive efficiency

of the above regions is mainly due to their low-scale efficiency

(80). The Malmquist cross-period (2013–2020) analysis results also

show that the decline of total factor productivity of LTCFs in the

provinces of Northwestern regions is mainly caused by the decline

of technical level (13), which is in accordance with the opinion

from Torabipour that technical levels played a major role in total

productivity changes (81).

The dynamic evolution of the e�ciency of
human resources in LTCFs

The output and input efficiency indicators of LTCFs were

divided into human and non-human resources, and the situation of

the two periods 2013–2017 and 2018–2020 was analyzed separately.

The results showed that the development of service efficiency of

LTCFs in China is relatively stable and sustainable in the short-term

period. This indicated that the convergence trend of the efficiency

of LTCFs is increasing, with a gradual decrease in liquidity as

time periods were extended (82). However, the transfer probability

changed slowly between adjacent levels, which is similar to the test

result of spatial autocorrelation, indicating a lower probability of

achieving short-term cross-stage development (83). The regions

are difficult to realize the transition by relying on their own

development without any external causes. The reason for this might

be LTCFs focused on the industrial accumulation in the early

stage, forming a high homogeneity, and strong substitutability,

with insufficient coordinated development, weakening the inter-

provincial spatial connection, and poor liquidity (84, 85). Sufficient

human resource embeddedness can not only promote the technical

development of the eldercare service industry in the region but also

play a greater role in regional diffusion than agglomeration; that is,

it has a positive impact on the development of the pension industry

in neighboring provinces (86–88). In human resource efficiency,

our results showed that there was significant spatial polarization

without spatial correlation among regions, making it difficult to

develop area linkages. The reason for this might be that the staff

have relatively stable regional characteristics, weakening the inter-

provincial spatial connection. We found that female workers aged

between 35 and 45 years can positively affect the efficiency of

LTCFs. The efficiency growth is highly dependent on those workers

with proficient skills (89). Those staff, at this age range, can stay

with high workloads in order to refine and improve their existing

skills in performing tasks efficiently, and in the process, complete

their work with passion. They are expected to have more patience

and dedication to eldercare so that they can obtain better service

quality and then improve the efficiency of LTCFs in the process

(30). However, younger staff aged <35 years do not have any
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sense of longevity with their jobs due to their lack of sufficient

skills or have more determinants of intention to leave jobs than

older staff in LTCFs (90). Moreover, older staff aged more than

45 years stay focused and are less likely to improve their existing

skills. They perform highly repetitive care tasks in a timely manner

and complete their assignments within a tight work schedule (91).

With restricted personal resources, they can only work in a highly

regulated environment and tend to be job burnout and exhausted

(90). So, increasing female workers aged between 35 and 45 years

can enhance the growth of service quality and personnel stability

of LTCFs, in turn, improving the service quality and the overall

efficiency of LTCFs. In addition, the type of service subjects has

a positive impact on the efficiency of LTCFs. A possible reason

for this is that those groups are generally in poorer health or able

to receive more government support and subsidies from long-

term care insurance, so this income increases the efficiency of

LTCFs. Therefore, strengthening policy support to encourage inter-

regional initiatives, particularly highlighting the development of

human resources interaction and common development, is urgent.

The dynamic evolution of the e�ciency of
non-human resources in LTCFs

Non-human resources like construction space can also affect

the temporal and spatial changes of the efficiency in LTCFs

(92). More specifically, non-human resource efficiency presented

a “cluster” distribution mode, demonstrating a certain linkage

among various provinces, indicating a great probability to achieve

cross-stage development, particularly in the later period. Economic

development and land resource gaps might be the main reasons

for regional disparities. Non-human resources, like economic

development level, environmental regulation, education level, and

resource endowment indicators, are all important prerequisites

and guarantees for the development of the ability of the eldercare

industry (93), but they have little impact on the development

of technological innovation ability in surrounding provinces and

do not have an obvious spatial spillover effect. Tobit regression

analysis results also showed that the comprehensive efficiency of

LTCFs decreases by 0.210 for every square increase in construction

space variation. The appropriate scale for technical support is an

important factor in improving the quality of the facilities (33).

Excessive scales will increase care service consumption and cause

problems such as deficits. Lower scales will affect comprehensive

efficiency and reduce the ability of LTCFs to attract older adults

in need of care and improve care technology and quality. Our

results demonstrate that there is an urgent trade-off between

resource reduction, construction excessive, and substantial regional

variation in efficiency. Therefore, it is necessary to avoid excessive

construction space changes and improve technology and service

quality changes to further improve the efficiency of LTCFs.

Conclusion

This study provided an analysis of the phased characteristics,

cross-temporal distribution, regional distribution, spatial

correlation characteristics, and the analysis of influencing

factors of the innovative development of China’s eldercare service

industry. The service efficiency of LTCFs in various provinces has

a large regional difference and fluctuation range. The economic

development and land resources gap might be the main reasons

for the regional disparity. The continuous differentiation of the

spatial pattern of service efficiency of LTCFs in various provinces

is the performance of the stability of the spatial pattern, indicating

less probability to achieve short-term cross-stage development as

a whole. To be more specific, the non-human resources efficiency

presents a “cluster” distribution mode, demonstrating a certain

linkage among various provinces, which causes a great probability

to achieve cross-stage development, particularly in the later period.

Blindly increasing the construction space and scales of LTCFs

does not necessarily increase the output effectively. However, with

regard to human resource efficiency, there is a significant spatial

polarization without spatial correlation among regions, which

makes it a failure to develop by area linkage. The age and gender

distribution of staff might increase the inter-provincial spatial

differences. As for the supply of resources, the government should

command and dispatch the human and non-human resources

in the whole country through a top-down design based on the

characteristics of each province.

The government must formulate relevant policies to cultivate

eldercare staff, optimize the allocation of resources, and enhance

quality supervision to increase the service efficiency of LTCFs

as a whole. There is also a need to take measures to deal

with the spatial polarization limitations of human resources

in LTCFs. For example, policymakers should encourage inter-

regional drives and the interaction of human resources to

promote the common development of the eldercare industry in

various regions. Managers of LTCFs should pay more attention

to demand-oriented, combined with the policy, and strengthen

the institutional operation and management, thus achieving the

common development of service efficiency and quality.

Strengths and limitations

According to the Pareto optimal theory, we selected the input-

output indicators for the efficiency evaluation of LTCFs from the

aspects of human and non-human resources to get a more refined

basis for the development of LTCFs. The spatial Markov matrix

was used to conduct continuous dynamic research on the efficiency

of the services by considering areas and time heterogeneity. To

make a scientific and accurate conclusion, we analyze the local

spatial autocorrelation aggregation analysis of the service efficiency

of LTCFs between adjacent provinces and their transfer condition.

In a long-term period, we could find out the continuous and real

changes in human resources and non-human resources efficiency

of LTCFs in the development process, and explore the influencing

factors leading to temporal and spatial changes.

In this study, the longitudinal data was used to analyze

the temporal and spatial pattern of service efficiency in China’s

LTCFs, and further comprehensive and municipal data still

need to be included in the future. More measurement design

should be considered to further explore the potential influencing

mechanisms of spatial differences in LTCFs. The efficiency changes
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of both human and non-human resources calculated in this

study are compared, but they cannot represent the changes in

all the efficiency characteristics of LTCFs. The index data of

eldercare service efficiency classification must be mined from

multiple dimensions.
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