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Introduction: The diagnosis and treatment of ankylosing spondylitis (AS) is a di�cult

task, especially in less developed countries without access to experts. To address this

issue, a comprehensive artificial intelligence (AI) tool was created to help diagnose

and predict the course of AS.

Methods: In this retrospective study, a dataset of 5389 pelvic radiographs (PXRs)

from patients treated at a single medical center between March 2014 and April 2022

was used to create an ensemble deep learning (DL) model for diagnosing AS. The

model was then tested on an additional 583 images from three other medical centers,

and its performance was evaluated using the area under the receiver operating

characteristic curve analysis, accuracy, precision, recall, and F1 scores. Furthermore,

clinical prediction models for identifying high-risk patients and triaging patients were

developed and validated using clinical data from 356 patients.

Results: The ensemble DL model demonstrated impressive performance in a

multicenter external test set, with precision, recall, and area under the receiver

operating characteristic curve values of 0.90, 0.89, and 0.96, respectively. This

performance surpassed that of human experts, and the model also significantly

improved the experts’ diagnostic accuracy. Furthermore, themodel’s diagnosis results

based on smartphone-captured images were comparable to those of human experts.

Additionally, a clinical prediction model was established that accurately categorizes

patients with AS into high-and low-risk groups with distinct clinical trajectories. This

provides a strong foundation for individualized care.

Discussion: In this study, an exceptionally comprehensive AI tool was developed

for the diagnosis and management of AS in complex clinical scenarios, especially in

underdeveloped or rural areas that lack access to experts. This tool is highly beneficial

in providing an e�cient and e�ective system of diagnosis and management.

KEYWORDS

artificial intelligence, deep learning, machine learning, ankylosing spondylitis, pelvic

radiograph
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Introduction

The exact cause of ankylosing spondylitis (AS), a chronic
inflammatory illness, remains unknown (1). AS is characterized by
inflammation and stiffness, mainly at the cartilage–boneinterface (2).
Risk factors for the condition include heredity and the environment,
and it is more prevalent in younger males. AS is thought to be
an immune-mediated illness accompanied by inflammatory cell
infiltration (1, 3). AS is accompanied by several comorbidities,
chronic pain, functional impairment, and resource consumption
which places an economic burden on the nation and society (4–
6). Early, consistent therapy may successfully slow the disease
progression. Many medications have a positive effect and can ease
patients’ symptoms and enhance their quality of life (7, 8). However,
not every patient with AS receives prompt diagnosis and care.
Misdiagnosis and missed diagnosis frequently result in delayed
diagnosis, which prevents patients from receiving treatment at the
most effective time (9). Due to serious lesions on the spine or hip
joint, many patients with AS ultimately lose the capacity to care for
themselves and surgery remains the only option. The quality of life
for patients with AS can be improved by surgery, thanks to the highly
developed surgical technologies currently available (10, 11). However,
compared to patients with other degenerative illnesses, patients
with AS are at a significantly higher risk for surgery and major
post-operative complications (12–16). For early diagnosis, magnetic
resonance imaging (MRI) can help identify the early lesions of
sacroiliitis, specifically bone marrow edema (3). Deep learning (DL)
techniques have been employed to create models that can increase the
diagnostic effectiveness of MRI (17, 18). These models perform well
during validation; their area under curve (AUC) values are higher
than 0.9. Inflammatory abnormalities in the sacroiliac joints can
be detected early using MRI, and DL techniques can further boost
diagnostic precision. For developed nations, this is feasible. However,
this approach may not be feasible in some developing nations due
to the lack of MRI equipment. Moreover, because MRI examinations
are expensive, using them as the main screening tool would put an
immense financial strain on patients. Patients with AS often tend
to ignore the initial symptoms and seek medical assistance at the
closest medical facilities, many of which are community hospitals
without MRI technology. Pelvic radiograph (PXR) examinations are
reasonably priced and can be used to detect early sacroiliitis lesions.
PXR examinations can be performed by all medical facilities and are
common in developing and impoverished countries. According to the
modified New York criteria (3), AS can be identified if the bilateral
sacroiliitis scores on the PXRs are higher than 2, or if the score on
either side was higher than 3, along with some clinical symptoms.
Patients with AS often seek medical assistance for clinical symptoms
such as lower-back discomfort and limited lumbar spine motion; the
diagnosis can be performed if the patient meets the imaging criteria.
Therefore, by using PXR, a skilled radiologist, rheumatologist, or
orthopedic surgeon can swiftly diagnose whether a patient has AS.
This is a very effective technique that prevents needless medical
resource wastage in addition to being affordable. However, AS is an
uncommon condition compared tomore widespread conditions such
as lumbar disc herniation. Underdeveloped regions, in particular,
lack sufficient AS diagnostic professionals. Although diagnosing AS
is not challenging in institutions with experts, it is challenging in
most primary hospitals to identify AS early and advise patients to

seek treatment from a specialist. As a result, AS is often overlooked
or misdiagnosed in developing nations, delaying diagnosis and
preventing patients from receiving the best possible care (9).

Artificial intelligence (AI) systems can be employed to aid
in diagnosis, particularly the high-performing DL models, which
can greatly increase the accuracy of AS diagnosis in developing
countries, especially in underdeveloped areas. Convolutional neural
networks (CNNs) are typically used to analyze image data. The
prediction accuracy of CNNs is higher than that of human experts in
numerous medical datasets, including the identification of aberrant
electrocardiograms (19), early diagnosis of biliary atresia (20), and
detection of pelvic injuries (21). However, to date, no large-scale,
multicenter investigation has been performed on the early detection
of AS by using CNN. PXR examination is very common in both
primary care settings and tertiary hospitals, and any high-quality
AI model based on PXR would considerably improve diagnostic
accuracy where primary hospitals lack expertise. However, many
primary hospitals lack not only diagnostic skills but also the ability
to assess the course of a disease and determine which patients require
additional medical care. As a result, despite these institutions using
diagnostic models to increase the accuracy of AS diagnosis, they fail
to properly triage patients and achieve individualized care.

To close such gaps, in this study, we aimed to construct a
comprehensive AI-assisted tool for AS diagnosis and AS patient
clinical prediction. By using ensemble learning techniques, we
established a model having the best performance in this field. The
study results also demonstrate that combined diagnosis by human
experts and the diagnostic model can increase the accuracy of
diagnosis. In addition, we considered the fact that the hospital’s
X-ray equipments are typically not connected to the Internet,
making it difficult to efficiently input images into the model.
With the use of smartphone-captured images, our diagnostic model
can perform accurate judgments, accomplishing in-the-moment
intelligent diagnosis and further enhancing the practical applicability
of the proposed model. To accomplish the most rational distribution
of medical resources, we created an AI-assisted tool that not only
significantly increases the diagnostic accuracy of radiologists but also
enables early detection and shunting of high-risk groups, aids in
realizing individualized therapy, and allows high-risk individuals to
receive more medical attention.

Overview

In this paper, we present the following sections: Results,
Discussion, and Methods.

The Results Section covers: (1) basic information of the subjects
and datasets included in the study; (2) performance of multiple
ensemble deep learning diagnostic models in the internal validation
set; (3) performance of above models in the multicenter external test
set and selection of the optimal model; (4) testing of the optimal
model using images taken by smartphones; (5) performance of
clinical prediction models; (6) methods of model deployment.

The Discussion considers the following aspects: (1) the
advantages of the AS deep learning diagnostic model; (2) the
practicality of the model; (3) the interpretability of the model; (4) the
training techniques of the model; (5) the excellent performance of the
clinical prediction models and their clinical significance.
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TABLE 1 Characteristics of the study subjects of the DL model.

Name Levels Testset (N = 539) Trainset (N = 5,013) p

Gender Female 169 (31.4%) 1,932 (38.5%) 0.001

Male 370 (68.6%) 3,081 (61.5%)

Age Mean± SD 29.7± 7.7 37.5± 12.0 <0.001

Diagnosis AS 238 (44.2%) 1,749 (34.9%) <0.001

Non-AS 301 (55.8%) 3,264 (65.1%)

TheMethods Section outlines the details of data collection, model
training, and model evaluation criteria used in this study.

Results

Patient and dataset

For the ensembled DL diagnostic model, we utilized 5,389 PXRs
from 5,014 patients from the First Affiliated Hospital of Guangxi
Medical University as the training set and used 539 PXRs from
three additional centers as the external test set. For demographic
information, see Table 1.

In addition, we created Bath Ankylosing Spondylitis Functional
Index (BASFI) and Bath Ankylosing Spondylitis Disease Activity
Index (BASDAI) prediction models by using machine learning (ML)
after collecting comprehensive clinical and imaging data of 356
patients with AS from the First Affiliated Hospital of Guangxi
Medical University. The training set consisted of 284 patients, and
the external test set included 72 patients. Data from the training set
and external test set are described in Table 2.

Internal evaluation of the ensemble DL
models

The ensemble DL models were assessed using 5 fold cross-
validation. First, the training set images were divided into five non-
overlapping complementary subsets. Four subsets were used for each
training round to train the model, while the one remaining subset
was utilized for validation. This procedure was performed five times.
Thus, a reliable validation approach was used to express the outcomes
of the five validations as mean± standard deviation.

Numerous comparison tests were conducted to develop a better
ensemble DL model. First, the training set was distilled, that is,
the training set samples were trimmed, and the images with higher
quality were retained; the quality of the images was assessed by
two radiologists to examine the effect of the quality and quantity
of training samples on the model. Finally, a training set with a
sample size of 3,905 was acquired. Second, the images were cropped
to examine whether the model—in the datasets before and after
distillation—performs better in diagnosis when trained using only the
local image of the sacroiliac joint or the global image of the whole
pelvis. The best ensemble DL model was selected for each of the four
datasets by using the aforementioned method. Information about the
DL model training and comparison is presented in Figures 1A–D,
which displays the overall performance of four ensemble DL models.

External evaluation of the ensemble DL
models

On an external test set made up of 539 cases from three centers,
the four best ensemble DL models established above were studied.
The results are displayed in Figure 2, which also includes the results
of the two experts’ diagnoses. Table 3 presents the metrics employed
for evaluating the model and experts’ diagnosis.

The origin-global top five ensemble model exhibited the best
performance, as shown in Figures 1E–H. The final diagnosis was
determined by merging the model with the diagnostic judgment
of the expert, and this result was contrasted with the outcome of
utilizing the model alone or having a single expert read the images
alone. The recall of the diagnostic increased further with the help of
the model. This will further lower the rate of underdiagnosis.

Because DL models are “black boxes,” assessing the veracity of
their conclusions is challenging. As a result, we used the LIME and
NORMLIME techniques to illustrate the key characteristics of an
image. The image was divided into superpixel blocks by using the
LIME and NORMLIME techniques, and these superpixel blocks were
then sorted. The LIME and NORMLIME map of one submodel of
the ensemble DL model is illustrated in Figure 3. The green areas are
the areas that the model focuses on. The first 19 superpixels in LIME
and NORMLIME show that the model reasoned mainly through the
sacroiliac joint and other parts of the pelvis bone, which are generally
consistent with the features that experts focus on. This demonstrates
the reliability of the model inference.

Performance of the ensemble model on
smartphone-captured images

It is cumbersome to immediately upload the image to the
model for prediction because X-ray equipment in China is typically
not connected to the Internet. Using a smartphone to capture a
photograph and transmit it to the model is the simplest solution
to this issue. This method results in some image quality loss when
compared to the original but does not greatly affect the DL model’s
diagnostic performance.

We used a smartphone to capture a photograph of each PXR
in the external validation set for validation to validate the model’s
robustness. During the shooting procedure, we strived to preserve the
original image’s details. In smartphones, images are stored in JPEG
format. The model was trained on clear original images; however,
the results demonstrate that images captured using smartphones also
provide acceptable results (AUC: 0.904, CI: 0.876–0.932) (Figure 2A).
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TABLE 2 Characteristics of AS patients and comparison between trainset and testset.

Name Levels Testset (N = 72) Trainset (N = 284) p

Surgery No 56 (77.8%) 213 (75%) 0.737

Yes 16 (22.2%) 71 (25%)

BASFI Mean± SD 2.7± 2.1 2.7± 2.1 0.867

BASDAI Mean± SD 1.9± 1.5 1.9± 1.4 0.826

Gender Female 12 (16.7%) 42 (14.8%) 0.831

Male 60 (83.3%) 242 (85.2%)

Age (year) <34 36 (50%) 136 (47.9%) 0.851

≥34 36 (50%) 148 (52.1%)

BMI (kg/m2) Mean± SD 21.7± 2.8 22.1± 3.0 0.301

Occupation Manual 17 (23.6%) 71 (25%) 0.927

Non-manual 55 (76.4%) 213 (75%)

Smoking No 46 (63.9%) 175 (61.6%) 0.827

Yes 26 (36.1%) 109 (38.4%)

Drinking No 58 (80.6%) 214 (75.4%) 0.439

Yes 14 (19.4%) 70 (24.6%)

Exercise No 64 (88.9%) 247 (87%) 0.811

Yes 8 (11.1%) 37 (13%)

Onset (year) <20 12 (16.7%) 87 (30.6%) 0.027

≥20 60 (83.3%) 197 (69.4%)

Delay (year) <7 57 (79.2%) 212 (74.6%) 0.520

≥7 15 (20.8%) 72 (25.4%)

Duration (year) <10 53 (73.6%) 183 (64.4%) 0.183

≥10 19 (26.4%) 101 (35.6%)

Family history No 62 (86.1%) 245 (86.3%) 1.000

Yes 10 (13.9%) 39 (13.7%)

Night pain No 37 (51.4%) 135 (47.5%) 0.651

Yes 35 (48.6%) 149 (52.5%)

PGA >3 18 (25%) 79 (27.8%) 0.740

≤3 54 (75%) 205 (72.2%)

Lumbar mobility Limited 60 (83.3%) 245 (86.3%) 0.655

Normal 12 (16.7%) 39 (13.7%)

Cervical mobility Limited 14 (19.4%) 39 (13.7%) 0.303

Normal 58 (80.6%) 245 (86.3%)

Fatigue No 15 (20.8%) 52 (18.3%) 0.749

Yes 57 (79.2%) 232 (81.7%)

Spinal pain Multiple locations 15 (20.8%) 57 (20.1%) 1.000

Single location 57 (79.2%) 227 (79.9%)

Hip involvement No 29 (40.3%) 143 (50.4%) 0.163

Yes 43 (59.7%) 141 (49.6%)

Peripheral arthritis No 66 (91.7%) 250 (88%) 0.507

Yes 6 (8.3%) 34 (12%)

(Continued)
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TABLE 2 (Continued)

Name Levels Testset (N = 72) Trainset (N = 284) p

Morning stiffness No 15 (20.8%) 73 (25.7%) 0.482

Yes 57 (79.2%) 211 (74.3%)

ESR <20 23 (31.9%) 112 (39.4%) 0.301

≥20 49 (68.1%) 172 (60.6%)

CRP <10 32 (44.4%) 115 (40.5%) 0.635

≥10 40 (55.6%) 169 (59.5%)

WBC Mean± SD 8.1± 1.9 8.4± 2.0 0.293

RBC Mean± SD 4.9± 0.7 5.0± 0.6 0.580

Anemia No 46 (63.9%) 180 (63.4%) 1.000

Yes 26 (36.1%) 104 (36.6%)

SJ Fused 30 (41.7%) 103 (36.3%) 0.478

Unfused 42 (58.3%) 181 (63.7%)

BH Mean± SD 2.3± 1.3 2.2± 1.3 0.555

BASFI, Bath Ankylosing Spondylitis Functional Index; BASDAI, Bath Ankylosing Spondylitis Disease Activity Index; BMI, body mass index; PGA, Patient Global Assessment of Disease Activity;

ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; SJ, sacroiliac joint; BH, Bath Ankylosing Spondylitis Radiology Index-Hip.

FIGURE 1

Comparison of di�erent ensemble DL models in each internal validation dataset and external test dataset. (A) Comparative radar plot of di�erent ensemble

DL models in the origin-global internal validation dataset. (B) Comparative radar plot of di�erent ensemble DL models in the origin-local internal

validation dataset. (C) Comparative radar plot of di�erent ensemble DL models in the distillation-global internal validation dataset. (D) Comparative radar

plot of di�erent ensemble DL models in the distillation-local internal validation dataset. (E–H) show the comparison of the performance of the models

validated in the above dataset in the external test dataset (Model 1, model 2, model 3, and model 4 represent the models with the top 5 AUCs in each

dataset using di�erent methods of integration). Model 1: the prediction results of the 5 sub-models are directly averaged with a classification threshold of

0.5. Model 2: the prediction results of the five sub-models are directly averaged with a classification threshold of the optimal cut-o� value in the training

set. Model 3: the prediction results of the 5 sub-models are weighted and averaged with a classification threshold of 0.5. Model 4: the prediction results

of the 5 sub-models are weighted and averaged with a classification threshold of the optimal cut-o� value in the training set.

Evaluation of clinical prediction model

Two clinical prediction models were constructed using the
clinical data of patients with AS. The correlation between the

variables is depicted in Figure 4B. ML techniques were employed to
only incorporate important factors in themodeling process due to the
duplicated information of variables. The evaluation of each variable’s
importance performed using four ML algorithms were combined,
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FIGURE 2

Comparison of ensemble DL model and human experts. (A) The ROC curve of ensemble DL model in the internal validation dataset, external test dataset,

and smartphone-captured images dataset. The performance of two experts with and without model assistance in the external test dataset. (B) The PR

curve of ensemble DL model in the internal validation dataset, external test dataset, and smartphone-captured images dataset. The performance of two

experts with and without model assistance in the external test dataset. (C) Comparative radar plot of ensemble DL model and human experts in the

external test dataset. (D) Normalized confusion matrix of ensemble DL model in the external test dataset. (E) Normalized confusion matrix of expert 1 in

the external test dataset. (F) Normalized confusion matrix of expert 2 in the external test dataset.

TABLE 3 Comparison of ensemble DL model and human experts.

Metrics TP TN FP FN Accuracy Precision Recall F1 FPR

Model 211 278 23 27 0.91 0.90 0.89 0.89 0.08

Expert 1 209 241 60 29 0.83 0.78 0.88 0.82 0.20

Expert 2 212 239 62 26 0.84 0.77 0.89 0.83 0.21

Expert 1 with model 220 225 76 18 0.83 0.74 0.92 0.82 0.25

Expert 2 with model 222 223 78 16 0.83 0.74 0.93 0.83 0.26

and the top seven variables were selected as the most crucial for
constructing the prediction models. Finally, two prediction models
have been constructed: the BASDAI prediction model and the BASFI
prediction model. The two models’ variables are shown in Figure 4.
The variables used in both models are cervical mobility, PGA, WBC,
and BMI.

The models’ performance in the training set was assessed using
10 fold cross-validation, and the assessment measured mean square
error (MSE). The data were standardized (22), and 10ML models
were trained for comparison (Figure 5). The parameters of the
models were then further optimized using a grid search optimization
technique (23, 24). The performance of the models was further
enhanced by applying the stacking approach in ensemble learning to
combine the final set of four best-performing models into the final
ensemble ML model. The correlation between the model’s true and
predicted values in the external test set was then depicted in Figure 6.

The optimal cut-off values for BASFI and BASDAI were 3.6 and
2.1, respectively. According to the optimal cut-off value, patients
were divided into two subgroups; the cumulative surgical risk
curves with p-value < 0.05 are shown in Figure 7, revealing a
substantial difference in the clinical trajectory and outcome between
the two subgroups.

Following the same cut-off values, patients from the external test

set were pooled, and cumulative surgical risk curves were drawn

(Figure 7). The model effectively differentiated patients between two

subgroups with different clinical trajectories, as indicated by log-rank

analysis with p-value < 0.05. We identified the high-risk group as
those patients who were more likely to require their first surgery
in a shorter period of time. If the first receiving institution lacks
experience in treating AS, this group should be recommended to seek
more specialized care at a more specialized facility. The prognosis
for the opposing segment, the low-risk group, maybe better, but
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FIGURE 3

Example images and interpretative analysis of the ensemble DL model. [(A) a, b] Example image from a patient with AS. [(A) c, d] Example image from

patient without AS. (B) LIME and NormLIME techniques to visualize the focused areas of interest of the submodel of ensemble DL model.

FIGURE 4

Variable selection for clinical prediction models. (A, C) The variable importance ranking for constructing the BASFI prediction model and BASDAI

prediction model, respectively. (B) Correlation heat map of the variables in the training set. (D) Venn diagrams for the above two models incorporating

variables (ET, Extra Tree Regressor; RF, Random Forest Regressor; GBM, Gradient Boosting Machine Regressor; AB, AdaBoost Regressor).
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FIGURE 5

Comparison of ML models. (A) Six ML algorithms for BASFI prediction before standardization. (B) Six ML algorithms previously mentioned for BASFI

prediction after standardization. (C) Four ensemble ML algorithms for BASFI prediction after standardization. (D) Six ML algorithms for BASDAI prediction

before standardization. (E) Six ML algorithms previously mentioned for BASDAI prediction after standardization. (F) Four ensemble ML algorithms for

BASDAI prediction after standardization (LR, Linear Regressor; LASSO, Least Absolute Shrinkage and Selection Operator; EN, Elastic Net; KNN, K Nearest

Neighbors; CART, Classification and Regression Trees; SVR, Support Vector Regression; AB, AdaBoost Regressor; GBM, Gradient Boosting Machine

Regressor; RF, Random Forest Regressor; ET, Extra Tree Regressor).

they would still require essential care. According to their respective
optimal cut-off values for patient subgroups, the two models’ kappa
value was 0.857, demonstrating that the results of the two models
are in excellent agreement and that various models can be employed
for inference in real-world clinical settings based on the information
about the patients.

Model deployment

For clinical usability, we deployed the model on a webpage by
using Python’s “streamlit” library. This makes it simple to use on both
PCs and smartphones. For a quick description of the procedure and
some examples, see Figures 8, 9.

Discussion

Ankylosing Spondylitis (AS) is a debilitating and costly disease
that affects both individuals and society as a whole. Early diagnosis
and tailored treatment are essential for the successful management
of AS. Magnetic Resonance Imaging (MRI) is an excellent method
for early diagnosis of AS. Unfortunately, due to limited resources
in some rural and less developed areas, MRI examinations are not
always available. To address this issue, there is an urgent need
for a more accessible and practical method for the early detection
of AS.

In this multicenter investigation, a state-of-the-art ensemble
DL model was trained and validated for the diagnosis of AS
based on PXRs. Our ensemble process is straightforward and
efficient. We average the prediction probabilities of the top five
CNN models that performed best during internal validation to
obtain the output of the ensemble model for final inference.
These five CNN models are ResNet50_vd_ssld, ResNet101_vd_ssld,
MobileNetV3_large, DenseNet201, and DarkNet53 (see methods
Section for more information on the models). The ensemble DL
model demonstrated strong performance in the internal validation
set, yielding precision, recall, and AUC values of 0.94, 0.91, and 0.98,
respectively. In addition, the model was validated in the multicenter
external validation set, yielding precision, recall, and AUC values of
0.90, 0.89, and 0.96, respectively. In the external validation set, its
diagnostic performance outperformed that of two human experts.
Interestingly, recall improved further when human expert diagnoses
were combinedwithmodel diagnoses. Higher recall can lessenmissed
diagnosis, which is better for people with clinically suspected AS.
Thus, not only can the proposed ensemble DL model assist primary
hospitals without experts in enhancing the accuracy of AS diagnosis
but can also further improve the diagnostic performance of seasoned
experts at tertiary hospitals.

It is difficult to directly input images from X-ray equipment
into our model for inference in actual clinical scenarios in China
because X-ray equipment is typically not connected to the Internet.
The simplest solution to this issue is to use smartphones to capture
photographs, which are subsequently inputted into the model for
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FIGURE 6

Performance of clinical prediction models and optimal cut-o� value for BASFI and BASDAI. (A) Predicted value and the true value of BASFI. (B) Distribution

and an optimal cut-o� value of BASFI. (C) Predicted value and the true value of BASDAI. (D) Distribution and an optimal cut-o� value of BASDAI.

inference. Therefore, to deploy the model on the website—which can
be utilized on the PC side and can deliver photographs directly into
the model on the smartphone side—we used Python’s “streamlit”
library. Anyone can quickly and easily start using the model,
thanks to its user-friendly interface, providing hospitals in rural
and underdeveloped areas access to AI diagnostics. Compared with
images obtained using X-ray equipment, images captured using
smartphones suffer an unavoidable loss of quality. However, the
model operates quite robustly on images captured using smartphones
by validating the inference performance of smartphone-captured
images by using a multicenter external test set of smartphone-
captured images. The AUC value of the model is 0.904, which is
comparable to the results obtained from the original images by
human experts. Thus, especially for inexperienced radiologists in
underdeveloped areas, this AI diagnostic tool based on smartphone-
captured images can considerably increase the effectiveness of
AS diagnosis.

DL models have long been criticized for being “black boxes,”
where the output is good, but nothing is known about the inference
process, and the findings are uninterpretable. The benefit of using
CNNs is that the focus of the model’s attention can be visualized,
reducing the neural network’s “black box” status. Understanding
the point of focus of a model’s inference is crucial for developing
the model and improving its level of effectiveness. It also aids in
increasing the confidence in the model’s inference. In this study,

we used the LIME and NORMLIME techniques to visualize the
inference process of the model. LIME relies on a local interpretation
that is specific to the current sample, whereas NORMLIME utilizes
a global interpretation that uses a certain number of samples and
enables some noise reduction. LIME and NORMLIME techniques
are interpretative algorithms that divide an image into superpixels,
calculate and rank each superpixel’s weight, and then identify the
blocks of superpixels that are the focus of the model and play the
most significant part in the inference process. As shown in Figure 3,
the submodel of the ensemble model focuses on the condition
of the sacroiliac. This also illustrates the reliability of the model
output because it is consistent with the attention of human experts.
In addition to the aspects that human experts concentrate on,
the model concentrates on several additional features, such as the
areas of the sacrum, iliacus, situs, and hip joints, which may be
affected by image noise or may represent prospective new features
in the PXR. Further research on these novel imaging features is
urgently required.

DL models need to be trained using large-scale datasets to
achieve excellent performance, and CNNs are no exception. However,
because AS is an uncommon disease, obtaining a large-scale PXR
dataset is challenging. It is challenging to prevent underfitting
and overfitting of the model with an insufficient sample size
(25, 26). This affects the model’s generalization performance.
The most common problem encountered during CNN training

Frontiers in PublicHealth 09 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1063633
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Li et al. 10.3389/fpubh.2023.1063633

FIGURE 7

Cumulative surgical risk curves. (A) Cumulative surgical risk curve for BASFI in the training dataset. (B) Cumulative surgical risk curve for BASFI in the test

dataset. (C) Cumulative surgical risk curve for BASDAI in the training dataset. (D) Cumulative surgical risk curve for BASDAI in the test dataset.

is overfitting. In this study, we employed several effective model
training strategies such as data augmentation (27), transfer learning
(28, 29), and ensemble learning (20, 30). To explore the optimal
ensemble DL model, based on the aforementioned strategies, we
conducted numerous comparison experiments, such as training
different architectures of CNN networks, training using datasets
of different sizes, and training using global and local images. The
5 fold cross-validation results revealed that the ensemble model
constructed using the top five models developed using the origin-
global dataset is the best option. Surprisingly, when the model
was trained using the distilled dataset, the performance in the
validation set improved; however, the performance in the test set
decreased. This may be because not all PXRs from a multicenter

are of high quality, and training the model by using only high-
quality images will result in its underperformance in generalization
to samples with diverse image qualities. This also demonstrates that
CNN training requires a large dataset with diversity rather than
a refined dataset with a small number of samples. Furthermore,
we found that although the results of the models trained using
different datasets differed, their final training results were quite
satisfactory. This suggests that our model training strategies are
quite robust and can be applied to similar studies in other
medical fields.

CNNs have been successfully employed for enhancing diagnostic
performance in a variety of medical imaging datasets, such as the
identification of aberrant electrocardiograms (19), early diagnosis
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FIGURE 8

Workflow diagram of our AI system. Our AI-assisted system enables a one-stop service for diagnosis and triage.

of biliary atresia (20), and detection of pelvic injuries (21). Robust
diagnostic models have been developed that, when used in clinical
scenarios, will drastically lower the rate of misdiagnosis. These
models are more effective than human experts. Unfortunately, the
greater diagnosis efficiency alone may not have a noticeable effect
on the patient’s prognosis. Doctors in developing nations and
underdeveloped regions may lack advanced diagnostic abilities. In
addition, they could be less informed about the disease’s severity
and clinical trajectory; this would lead to patients having a proper
diagnosis but failing to receive prompt and efficient treatment, which
is identical to a misdiagnosis or missed diagnosis. Therefore, in
this study, two clinical prediction models for AS were developed
to predict the clinical trajectory of the disease. To enhance the
performance of the models with a relatively small sample size, an
ensemble learning technique was also adopted for creating the clinical
prediction models. Two clinical prediction models, namely BASFI
prediction model and BASDAI prediction model, were constructed
to classify patients into high-and low-risk groups based on their
optimal cut-off values. The high-risk group is defined as patients
who were more likely to require surgical treatment for severe
spinal or hip lesions in a shorter period of time. We utilized
this definition of the high-risk group because in patients with

AS, spine or hip pathology is the primary factor contributing to
a deterioration in the quality of life, and surgery is ultimately
necessary when conservative therapy is ineffective at alleviating
symptoms. Therefore, the point in time when surgery is required
is an excellent indicator of a patient’s condition. Our clinical
prediction models enable early detection of the high-risk group and
patient triage via this node and enable individualized AS therapy.
Furthermore, the most logical distribution of healthcare resources
can be maximized by advising patients in the high-risk group to go
to specialized hospitals for specialized and individualized treatment
while providing the required treatments for patients in the low-
risk group.

In summary, we developed a comprehensive AI-assisted system
that combines AS diagnosis and clinical prediction. The proposed
ensemble DL model, which is presently the best ensemble DL model
in this field, is based on PXR images and has precision, recall, and
AUC values of 0.90, 0.89, and 0.96, respectively, on a multicenter
external validation set. The proposed clinical prediction model can
stratify patients with confirmed AS, identify high-risk patients among
them, and aid in bringing them to greater medical attention. This has
important ramifications for encouraging individualized AS therapy
and enabling sensible resource allocation in the healthcare system.
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FIGURE 9

AI-assisted system examples.

Methods

Patients and data collection

The Ethics Committee of the First Affiliated Hospital of Guangxi
Medical University authorized this multicenter study, and each
participant filled out a written consent form.

We collected 6,436 PXRs by using the electronic imaging system
of the First Affiliated Hospital of Guangxi Medical University
between March 2014 and April 2022. From three additional
centers’ electronic imaging systems, 600 PXRs were collected (Three
additional centers: the First People’s Hospital of Nanning, Wuzhou
Red Cross Hospital, People’s Hospital of Baise). Patients who satisfied
the diagnostic standards of the modified New York criteria (3) were
included in the AS group, and the PXRs of patients with a diagnosis
of non-AS were used as controls. Two radiologists with more than
10 years of PXR reading expertise assessed the initially included PXR
images to weed out those that had an inadequate imaging quality.
Finally, 2,015 PXRs from the AS group and 3,374 PXRs from the non-
AS group from our hospital were used. A total of 238 PXRs in the AS
group and 301 PXRs in the non-AS group from other centers were
included. The data collecting process is depicted in Figure 10A.

We retrospectively gathered the data, including general
information, epidemiological indicators, clinical indicators,
laboratory results, and imaging scores, of 585 patients with
confirmed AS in our hospital by using the electronic case system
and electronic imaging system to construct a clinical prediction
model for AS. Comprehensive data were available for 356 patients.
The aforementioned patients were randomly divided into a training
set and a test set in the ratio of 7:3. Table 2 lists the information
regarding the patients in the training and test sets, and the data
collection flowchart is displayed in Figure 10B.

Subgroups of training set images

To assess the robustness of the proposed ensemble DL model and
determine the optimal model, the training set was processed further.
First, the training set samples were distilled; a portion of the images
with lower image quality was removed, and the images with higher
image quality were retained and used to construct the new training
set. Two radiologists with 10 years of PXR reading expertise evaluated
the image quality. Next, a new training set with a sample size of 3,905
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FIGURE 10

Model construction flow charts. (A) Ensemble DL model construction flow chart. (B) Ensemble ML models construction flow chart.

was obtained, with 1,572 cases in the AS group and 2,333 cases in the
non-AS group. Images with bounds in four directions just slightly
beyond the sacroiliac joint were used for training to compare the
effects of local images of the sacroiliac joint vs. global images of PXR
on the training of the model. Finally, four training sets were obtained:
global image training set before distillation, local image training set
before distillation, global image training set after distillation, and local
image training set after distillation.

Ensemble DL model training and internal
validation

We constructed an AI-assisted model for AS diagnosis
by using deep CNN and ensemble learning. First, single
CNN models were developed in the training set, and a
total of ten distinct CNN models were trained: ResNet50,
ResNet50_vd_ssld, MobileNetV3_small_ssld, DenseNet201,
ResNet101_vd_ssld, MobileNetV3_large, MobileNetV3_large_ssld,
MobileNetV3_small, DarkNet53, and Xception41. For
more information on the models discussed in our
search results, please refer to the PaddleX Model Zoo at
https://paddlex.readthedocs.io/zh_CN/release-1.3/appendix/model_
zoo.html. This page contains a comprehensive list of the various
models available, along with detailed descriptions, usage examples,
and performance metrics.

Before entering the CNN network, we preprocessed the images
as follows to implement data augmentation in order to increase
the robustness of the model training: 1. Resize the image to a new
image with a short edge length of 512 pixels, according to the

original scale; 2. Randomly crop a region of 224 pixels in width
and height on the new image; 3. Perform random rotation, random
horizontal inversion, random vertical inversion, and normalization
operations on the crop region. However, for the validation and test
sets, we removed the above image augmentation operations and
simply resized the original image into a new image with a short edge
of 256 pixels at the original scale, cropped the center region of the
new image with a width and height of 224 pixels, and performed the
normalization operation afterwards.

We employed a 5 fold cross-validation approach for internal

validation throughout model training to assess the resilience of the

process. The training set was randomly divided into five equal-sized,

non-overlapping subsets. Four of these subsets were used to train
the model during each training session, while the fifth subset was
used to validate the model. The above process was repeated five

times; the metrics used for validation included accuracy, precision,
recall, AUC, and F1 score. In addition, transfer learning (28, 29) and

data augmentation (27) were used to increase the accuracy of the
models. All the models were pretrained on ImageNet-1 k before being
trained on our training set, and the training samples were randomly
rotated, cropped, horizontally flipped, and vertically flipped. The
training and validation sets of images underwent standardization.
The top five models in terms of AUC during internal validation were
then used to create an ensemble DL model by using an ensemble
learning technique. We employed two ensemble approaches. One
included calculating the final prediction probability by averaging the
output prediction probabilities of the fivemodels. The other approach
involved assigning each of the five models a distinct weight based on
their AUC values, averaging the output probabilities with the weights,
and using the weighted average as the final prediction probabilities.
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Four training sets were used in this study, and all the models were
trained using the aforementioned method. For each training set, the
best model was selected, and the four models were compared to
determine the best one.

External validation of ensemble DL models
and comparison with human experts

We used 539 PXRs from three additional clinical centers as an
external test set for multicenter external validation of the proposed
ensemble DL model for assessing the model’s generalization ability.
The evaluation metrics included accuracy, precision, recall, AUC,
and F1 score. We utilized the diagnostic outcomes of human experts
as a benchmark to more accurately assess the model’s performance.
Without seeing any patient’s PXR beforehand and without having
access to the patients’ basic information or clinical data, two
radiologists withmore than 10 years of expertise in interpreting pelvic
X-rays reviewed 539 PXRs. Then, the accuracy, precision, recall,
AUC, and F1 scores of the ensemble DL models and the human
expert were compared. Next, to assess the performance of the human
expert with the assistance of themodel, we combined the results of the
human expert and the model’s evaluation. The method is as follows:
whenever a human expert or the model judges the PXR to be AS,
the final result is recorded as AS; otherwise, it is recorded as non-AS.
The accuracy, precision, recall, AUC, and F1 scores were calculated
separately for the two experts aided by the model.

We used the NORMLIME approach, which enhances the LIME
(31) method and is an advanced way of model interpretation to
visualize the inference process of each submodel in the ensemble DL
model to validate the model performance. By dividing the image into
superpixel blocks and observing the superpixel blocks that the model
deems to be most relevant, the reliability of the model judgment
was evaluated.

Ensemble DL model validation on
smartphone-captured images

To assess the model’s performance on the smartphone-captured
images, we snapped an image of each PXR in the external validation
set by using a smartphone and assembled a test set of the resulting
images. The images were captured such that as many aspects of
the original image were preserved as possible. For example, the
shooting angle and proximity to the computer screen were adjusted
to minimize the difference between the original image displayed
on the phone and the computer. The metrics evaluated for the
model included accuracy, precision, recall, AUC, and F1 score. To
evaluate the diagnostic efficacy of the expert in combination with the
model while using smartphone-captured images, the aforementioned
metrics were also examined for the expert’s model-aided predictions.

Training and validation of clinical prediction
models

The 356 patients included in the study were randomly divided
into a training set and a test set in the ratio of 7:3. The test set was

utilized for external model validation, whereas the training set was
used for model construction and training. BASFI, BASDAI, whether
to undergo surgery and time to first surgery were not included
in the model construction as these are variables for assessing the
outcome. Four ensemble models based on decision tree models were
used to compute the importance of each variable. The importance
determined from the four models was then added to determine the
importance of each variable. We selected the top seven important
variables for modeling and used them for training six single ML
models before they were standardized. Following standardization,
the variables were used for training the six models as previously
mentioned. The variables following standardization were then used
to train four ensemble ML models. All six models were trained
using 10 fold cross-validation to ensure the robustness of the model
evaluation outcomes. We constructed two prediction models: the
BASFI prediction model and the BASDAI prediction model. The
grid search technique was used to select the hyperparameters of
the models. The MSE for each model was compared. To create the
final ensemble ML models, the top four models were selected and
combined using the stacking approach. The test set was used to
evaluate the ensemble models, and the MSE values were computed.

Identification of high-risk groups among
patients with AS

In accordance with the survival analysis approach, we identified
the first surgical procedure as the end event and the interval between
the patient’s initial visit and the first surgical procedure as the time
without surgery. By finding the best difference between the data on
each side of a point in the training set, we obtained the optimal
cut-off values for BASFI and BASDAI by using log-rank tests. The
R packages “survival” and “suivminer” were used to complete this
operation. For BASFI and BASDAI, the optimal cut-off values in the
training set were 3.6 and 2.1, respectively. According to the ideal cut-
off values, the patients with AS were divided into high and low BASFI
groups or high and low BASDAI groups, respectively, to investigate
the cumulative surgical risk curves. Because the cumulative surgical
risk for patients in the high BASFI group and high BASDAI group
increased more rapidly, they were classified as a high-risk group. In
the test set, patients were separated into high-and low-risk groups
based on the predicted values of the two models by using the optimal
cut-off values from the training set and the cumulative surgical risk
curves. A p-value of <0.05 for the log-rank tests for the two models
indicated that the models can successfully divide the test set’s patients
into high-and low-risk subgroups.

Statistical analysis

The Delong test (32) was used to compare the AUC values.
Different kappa value ranges indicate various degrees of agreement.
Kappa (20) values of <0.20, 0.20 to <0.40, 0.40 to <0.60, 0.60
to <0.80, and 0.80–1.00 indicate poor, moderate, fair, good, and
very good agreement, respectively. A two-sided p-value of less
than 0.05 was regarded as statistically significant in all statistical
tests. The AS clinical prediction models were trained using the
“sklearn” library in Python 3.7, and the ensemble DL models were
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trained using the “paddlex” library. The “streamlit” library was
used for the model deployment. Multiple interpolations performed
using the “mice” package of R were added to the data used to
construct the clinical prediction models. To plot cumulative surgical
risk curves, the “survival” and “survminer” packages of R were
used [AI Studio’s cloud servers are used to train DL models
(https://aistudio.baidu.com). All DL models are trained on NVIDIA
Tesla V100 Graphic Processing Unit (GPU)].
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