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The number of patients with heat illness transported by ambulance has been

gradually increasing due to global warming. In intense heat waves, it is crucial

to accurately estimate the number of cases with heat illness for management

of medical resources. Ambient temperature is an essential factor with respect to

the number of patients with heat illness, although thermophysiological response

is a more relevant factor with respect to causing symptoms. In this study, we

computed daily maximum core temperature increase and daily total amount of

sweating in a test subject using a large-scale, integrated computational method

considering the time course of actual ambient conditions as input. The correlation

between the number of transported people and their thermophysiological

temperature is evaluated in addition to conventional ambient temperature. With

the exception of one prefecture, which features a di�erent Köppen climate

classification, the number of transported people in the remaining prefectures,

with a Köppen climate classification of Cfa, are well estimated using either

ambient temperature or computed core temperature increase and daily amount of

sweating. For estimation using ambient temperature, an additional two parameters

were needed to obtain comparable accuracy. Even using ambient temperature,

the number of transported people can be estimated if the parameters are carefully

chosen. This finding is practically useful for the management of ambulance

allocation on hot days as well as public enlightenment.
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1. Introduction

Global warming is making heat waves more intensive, longer-lasting, and more
common worldwide (1–3). The mortality and mobility of heat-related illness caused
by heat waves have been extensively studied (4–7). To assess the impact of further
global warming, different climate models have been proposed at the overall warming
temperatures of 1.5◦C, 2◦C, and 3◦C (8, 9). According to Song et al. (10), the risk
factors for heat-related mortality are different at the global, intermediate, and local scales.
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In aging societies, heat-related morbidity and mortality are
expected to increase (11). Japan has the highest proportion of the
elderly in the world (12). The yearly number of cases of heat-related
illness transported by ambulance over the entirety of Japan, with its
total population of 125 million, has been increasing gradually, from
a range of 40,000 to 60,000 from 2010 to 2017 and then reaching a
record high of 95,137 in 2018. Since then, it has remained high, at
60,000–70,000 (13). The number of cases registered with the use of
an ambulance is closer to the actual number of cases than is the case
in other countries, as ambulance transportation is free in Japan.

A positive correlation has been reported between ambient
temperature and the number of heat illness patients (14–16).
The surge of transported patients on hot summer days results
in a greater ambulance use, causing temporary shortages. Thus,
estimating the number of heat illness patients is essential for
ambulance allocation management and dynamic systems operation
on hot summer days (17).

Heat-related illnesses are broadly classified according to two
symptoms, namely, dehydration and collapse of heat balance (18).
The thermophysiological parameters for these are water loss and
core temperature, respectively, although the two are related. The
time course response of thermoregulation is significantly affected
by age, lifestyle, and environment, making the epidemiology and
pathology of heat stroke difficult to ascertain.

Several methods of estimating numbers of cases of heat-
related illness have been proposed using analysis (19, 20) and
machine learning taking weather data (21, 22). In Nishimura
et al. (20), we demonstrated that estimation using regression
models has comparable accuracy to that produced by a machine
learning architecture. Our regression model identifies that the
weather condition is associated with adverse heat illness events
not only on the day of the event but also on preceding
days (∼3days). This is particularly obvious for non-external
heat-related illness in the elderly. Thus, additional efforts are
needed to identify external heat-related illness or estimate
total number of patients. In particular, the association between
population-level estimated core temperature and water loss
with the number of transported people is worth evaluating in
different regions.

In this study, we developed an estimationmodel for the number
of heat illness patients in eight metropolitan prefectures in Japan.
In particular, an integrated computational technique was used that
took into account multiphysics and thermophysiology to derive the
thermophysiological response of a standard test subject for different
weather condition. Heat adaptation at different prefectures is
also considered.

2. Methods

2.1. Data sources

Eight prefectures with different climatic conditions were
selected for this study, as shown in Figure 1. The northernmost,
Hokkaido, is at 43◦03’51” N and 141◦20’49” E, and the
southernmost, Fukuoka, is located at 33◦36’23” N and 130◦25’05”E.
The climates are classified as Df and Cfa within the Köppen
scheme (23).

FIGURE 1

Location of eight prefectures in Japan selected for this study. Japan

includes 47 prefectures. The Köppen climate classification in each

prefecture are also presented.

Three datasets were utilized in this study. The first dataset
includes the daily ambient temperature provided by Japan
Meteorological Agency, Japan (24). The second describes the age
composition of the population in each prefecture, as provided by
Official Statistics of Japan (25).

The final dataset reports the number of people transported by
ambulance owing to heat-related illnesses, provided by the Fire
and Disaster Management Agency under the Ministry of Internal
Affairs and Communications, Japan, between 2013 and 2019 (13).
They provided the daily number of ambulance dispatches owing
to heat-related illness in each prefecture from June to September
annually. Data regarding the transported patients have been
collected by prefectures by date and age categories (infant, child,
adult, and elderly) since 2013, and the categories of occurrence
location were added from 2017. The number of people transported
via ambulance due to heat-related illness in Japan can be used as
a surrogate marker because the number of transported people and
that of the number of patients are correlated with each other (26).
The dataset for the number of transportations from 2013 to 2016
that were not classified by occurrence location was substituted by
dividing the total number by mean percentage transported from
indoor locations/homes and outdoor locations/workplaces from
2017 to 2019.

Table 1 shows the daily average and maximum ambient
temperatures per summer from June 1 to September 30 from 2013
to 2019, the average population and the population density from
2013 to 2019, and the average number of heat illness patients per
million population per summer from June 1 to September 30 from
2013 to 2019 in each prefecture.

Table 2 shows the percentage of heat illness patients
transported from indoor/home and outdoor/workplace from
2017 to 2019. The variation in the ratio of the transported
people from the indoor/home and outdoor/workplace over
the 3 years showed a ≤8% variation. Unlike a definition
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TABLE 1 Daily average and maximum ambient temperature per summer from June 1 to September 30, average population and population density, and

average number of patients due to heat-related illness per million population per summer from June 1 to September 30, all data from 2013 to 2019.

Average ambient
temperature (◦C)

Maximum ambient
temperature (◦C)

Population
(millions)

Population

density per km2
Number of
patients per

million

Hokkaido 20 33.7 5.3 63.7 192.9

Miyagi 22.4 35.6 2.3 319.1 391.8

Niigata 23.9 36.9 2.3 181.3 497.3

Tokyo 25.1 37.4 13.6 6205 330.5

Aichi 25.9 38.1 7.5 1449.9 506.4

Osaka 26.4 37.8 8.8 4634.6 469.2

Hiroshima 26 36.8 2.8 333.7 529.4

Fukuoka 26.2 37.3 5.1 1022.8 458.9

TABLE 2 Percentage of heat illness patients transported from

indoor/home and outdoor/workplace from June 1 to September 30 from

2017 to 2019.

Prefecture Location 2017 2018 2019 Average

Miyagi Indoor 40.8 41.3 48.0 43.9

Outdoor 59.2 58.7 52.0 56.1

Niigata Indoor 40.7 40.7 40.7 40.7

Outdoor 59.3 59.3 59.3 59.3

Tokyo Indoor 37.3 40.5 40.3 39.9

Outdoor 62.7 59.5 59.7 60.1

Aichi Indoor 32.8 39.0 35.2 36.5

Outdoor 67.2 61.0 64.8 63.5

Osaka Indoor 34.5 38.2 32.7 35.6

Outdoor 65.5 61.8 67.3 64.4

Hiroshima Indoor 42.5 42.7 43.2 42.8

Outdoor 57.5 57.3 56.8 57.2

Fukuoka Indoor 37.0 40.5 38.0 38.7

Outdoor 63.0 59.5 62.0 61.3

of Fire and Disaster Management Agency, places that
are not related to their homes were classified as outdoor
considering the consistency of non-external heat-related illness in
the elderly.

2.2. Equation for estimating number of
transported patients owing to heat-related
illness

In our previous studies (19, 20), we proposed an equation
for estimating the number of transported people owing to heat-
related illness. In particular, the classification of indoor/home and
outdoor/workplace was considered in Nishimura et al. (20), which
are approximately surrogate for non-exertional and exertional

heat stroke. The number of transported people can be estimated
as follows:

y (x) = yin (x) + yout (x) , (1)

yin (x) = ain

[

ekin(0.6x0+0.2x1+0.2x2) + lin

]

·

∑

n

{

P (n) ·
(

becn + d
)}

, (2)

yout (x) = aout

(

ekoutx0 + lout

)

·

∑

n

{

P (n) ·
(

becn + d
)}

, (3)

kin,out = fin,out ·

(

J
∑

i=1

wi · xi

)

+ gin,out , (4)

where yin and yout denote daily heat illness patients transported
from indoor/home and outdoor/workplace, respectively. The
variable xi denotes the input variable i days ago; x0 indicates the
input variable for the predicted day. The parameters a, l, f, and g are
fitting parameters. Three types of input variable were selected for
daily average temperature, daily maximum body core temperature
increase, and amount of sweating. Unlike Nishimura et al. (20), the
daily maximum body core temperature increase and the amount of
sweating were computed using our in-house computational code
(Section 2.3).

The number of cases of heat illness with transportation from
indoor locations [Equation (2)] is affected by the daily average
temperature for three successive days; the weightings of x0, x1, and
x2 were 0.6, 0.2, and 0.2, respectively (19), in addition to qualitative
discussion in Williams et al. (27). The numbers of patients
transported from outdoor [Equation (3)] are affected by the climate
on the corresponding day (28). Parameter n denotes age category
[five-year age intervals; n= 1 (20–24 years old), . . . ,14 (85 years old
and over)]; P(n) denotes the age composition of population in each
prefecture. The function becn + d is the regression curve derived in
Figure 4 in Kodera et al. (19) expressed the increase in the risk of
heat-related illness with age; the parameters b (=0.171), c (=0.494),
and d (=190.7) determined by the least-squares fitting method,
based on the age components of heat illness patients in Japan.

Equation (4) represents the short-term heat adaption during
the summer, i.e., the risk of heat-related illnesses k (coefficient of
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FIGURE 2

Time course of computed daily peak core temperature and total amount of sweating in each prefecture in 2019.

input variable xi) with a decrease from the beginning to the end of
summer, affected by climate over the previous several tens of days
(29, 30). J provides the number of weighting days, and parameterwi

denotes weighted linear function. The input variables and optimal
duration of J are evaluated in Section 3.2.

Fitting parameters a, l, f, and g were estimated to provide an
expected number of cases of heat illness with transportation from
indoor and outdoor locations, respectively. The parameters a and l

were determined first, followed by f and g. All of the parameters
were averaged over a 7-year time frame. Specifically, parameter
fitting was iteratively conducted for convergence: 6 years of data
(extracted over 7 years of data from 2013 to 2019) were used to
determine the parameters, and then those for the remaining year
were used through a leave-one-out cross-validation study (31). That

is, data from 2013 to 2018 were used to determine the parameters
for estimating the number of heat illness patients in 2019. Because
the amount of sweating and the increase in body core temperature
may be zero on days with a low heat load, we set l = −1 when
these input variables were used, so that the number of transported
patients converged to zero.

The estimation accuracy was evaluated in terms of the
determination coefficient (R2) and mean absolute error (MAE).
The F-test was carried out for Equations (2, 3) with each input
variable: daily average temperature, daily maximum increase
in core temperature, and amount of sweating. All statistical
analysis were conducted using Python 3.9.7. The threshold for a
statistical significance was set at p < 0.05 (see Section 4 in the
Supplementary material).
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FIGURE 3

Variation of coe�cient of determination averaged over 7 years (from June 1 to September 30 from 2013 to 2019) for the number of days over which

an input variable is averaged, corresponding to J in Equation (4). For the number of patients transported the indoor locations, the (A) ambient

temperature, (B) amount of sweating, and (C) body core temperature increase were considered. The same evaluation was conducted for patients

transported from outdoor locations in (D–F).

2.3. Computation of core temperature and
water loss due to sweating

Body core temperature increase and amount of sweating,
which were derived by computation, were used as surrogates

for estimating the daily number of transported people using
the non-linear analysis, in addition to the daily average
ambient temperature. Ambient temperature showed a good

correlation with the mobility of heat-related illness (14–16).
The increase in body core temperature and the amount of

sweating were computed in the time domain using our in-house
computational code, taking into account the time series of

ambient temperature and relative humidity from 2013 to 2019
(see Figure S2) (24).

Our computation combines thermodynamics in biological
tissues and thermoregulation, including vasodilatation
and sweating due to increased body temperature. Our
computational code is summarized in the Section 2 in
Supplementary material. To accelerate the computation, the

in-house computational code was vectorized and parallelized
and subsequently implemented on an SX-Aurora TSUBASA
system named AOBA (32). A detailed and validation of our
in-house computational code was presented in our previous
studies (33, 34).

3. Results

3.1. Computed body core temperature and
sweating

Figure 2 shows the computed daily peak core temperature
and daily amount of sweating for each prefecture in 2019.
The thermophysiological response to ambient heat stress was
significant in early August across Japan. In Hokkaido, body core
temperature increase and sweating amount were low even in
August. It should also be noted that the distributions of body
core temperature increase and sweating resembled each other.
Their correlation coefficient was more than 0.93 (p < 0.05) for
each prefecture.
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TABLE 3 The parameters in Equations (2–4) for estimating patients transported from indoor and outdoor locations for average ambient temperature,

amount of sweating, and body core temperature increase.

Input variables Miyagi Niigata Tokyo Aichi Osaka Hiroshima Fukuoka

Indoor/home

Average temperature a 3.55× 10−7 7.01× 10−7 2.01× 10−8 2.83× 10−8 3.05× 10−9 2.49× 10−9 2.44× 10−7

l −3.07×103 −2.51× 103 −2.33× 104 −3.08× 104 −1.09× 104 −2.14× 10−2
−4.79× 103

f −8.25× 10−3
−7.87× 10−3

−6.97× 10−3
−7.62× 10−3

−3.90× 10−3
−8.84× 10−3

−5.41× 10−3

g 5.85× 10−1 5.50× 10−1 6.31× 10−1 6.45× 10−1 6.08× 10−1 7.60× 10−1 5.07× 10−1

Amount of sweating a 1.87× 10−1 1.01 4.85× 10−2 8.41× 10−3 6.30× 10−3 2.08× 10−2 3.43× 10−1

l −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00

f −1.50× 10−7
−2.04× 10−8

−7.10× 10−8
−3.42× 10−7

−3.95× 10−7
−1.94× 10−7

−1.80× 10−8

g 2.01× 10−4 2.72× 10−5 2.34× 10−4 1.01× 10−3 1.09× 10−3 5.74× 10−4 4.00× 10−5

Body core temperature increase a 9.27× 10−3 3.10× 10−2 6.65× 10−3 1.39× 10−3 5.18× 10−4 1.71× 10−3 3.44× 10−3

l −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00

f −2.09× 101 −8.39 −5.22 −1.94× 101 −3.59× 101 −2.78× 101 −8.60

g 8.97 3.18 5.28 1.30× 101 1.89× 101 1.47× 101 8.28

Outdoor/workplace

Average temperature a 1.21× 10−7 8.36× 10−6 3.42× 10−7 1.85× 10−7 2.30× 10−8 5.25× 10−6 4.31× 10−6

l −5.13× 103 −4.55× 102 −3.92× 103 −9.62× 103 −2.50× 103 −2.99× 102 −7.42× 102

f −8.69× 10−3
−6.40× 10−3

−5.86× 10−3
−6.78× 10−3

−3.04× 10−3
−2.22× 10−3

−3.96× 10−3

g 6.35× 10−1 4.38× 10−1 5.19× 10−1 5.76× 10−1 5.34× 10−1 3.34× 10−1 3.88× 10−1

Amount of sweating a 1.00× 102 2.02× 102 2.02 8.03× 10−2 2.85× 10−2 7.76 4.70× 101

l −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00

f N/A N/A N/A N/A N/A N/A N/A

g 3.34× 10−7 1.24× 10−7 7.39× 10−6 1.91× 10−4 3.79× 10−4 1.93× 10−6 2.81× 10−7

Body core temperature increase a 7.94× 10−2 2.76× 101 1.57× 10−2 8.92× 10−3 3.35× 10−3 1.15× 10−2 2.53× 10−2

l −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00

f N/A N/A N/A N/A N/A N/A N/A

g 1.58 4.54× 10−3 3.21 5.08 8.08 4.56 2.42

The parameters are derived for data from June 1 to September 30 from 2013 to 2019.

3.2. Duration of short-term heat adaptation

To clarify the duration that characterizes short-term heat
adaptation, the correlation between observed and estimated
numbers of patients transported from indoor/home and
outdoor/workplace locations were evaluated in each prefecture for
different input parameters. The evaluation period ran from June
1 to September 30 in 2013–2019. Figure 3 shows the coefficient
of determination R2 averaged over the 7 years for the number of
days over which an input variable is averaged, corresponding to
J in Equation (4). The coefficients of determination of Hokkaido
were lower than those of the remaining prefectures. The amount
of sweating and core temperature increase were relatively small
due to its milder climate. In the remainder of this report, our
discussion focuses on the characteristics of the seven prefectures,
excluding Hokkaido.

For the average ambient temperature, R2 increases with
increase of averaging days (J) and then reached a plateau. The

value of R2 is high in Tokyo, Aichi, and Osaka, where the
population density is large. Even for the remaining prefectures, high
coefficients of determination were observed. R2 reached a plateau
at 40 days and 30 days of weighted days for the patients from
indoor/home and outdoor/workplace locations, respectively.

The R2 in terms of computed core temperature and
sweating were less sensitive to the averaged days than those
for average ambient temperature, regardless of whether patients
were transported from indoor/home or outdoor/workplace
locations. Estimation accuracy was improved only in Aichi,
Osaka, Hiroshima, and Fukuoka, where average summer
temperatures are higher than in the other prefectures
studied (see Table 1).

The optimal parameters for the equation for estimating the
number of patients transported from indoor and outdoor locations
are listed in Table 3. Note that the number of parameters used
for fitting was four for ambient temperature and two for the core
temperature and amount of sweating. The validity of the equations
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FIGURE 4

Observed and estimated number of patients with heat illness in seven prefectures (averaged over the period from 2013 to 2019) for average ambient

temperature, amount of sweating, and body core temperature increase. Blue region represents the 95% confidence interval of estimation using

computed daily amount of sweating.

using the parameters in Table 3 is shown in Section 4 of the
Supplementary material.

3.3. Estimation of heat illness morbidity in
seven prefectures

Figure 4 shows the observed and estimated numbers of daily
patients, averaged over 7 years, for each prefecture. Moreover,
the confidence interval region (95%) when estimating with daily
amount of sweating is also presented. R2 and MAEs per million

population are listed in Table 4. The coefficient of determination
R2 exceeded 0.6 and was particularly high for Tokyo, Aichi, and
Osaka. No significant difference was observed in R2 between
input parameters. MAEs have a mild correlation with the number
of patients per million population. Because more patients were
transported from outdoor locations, MAEs from those locations
were larger than those from indoor locations. As seen in Figure 4,
the estimated number of transported people is lower than the
actual value and the variation is large just after the end of the
rainy season (around July 20) in each prefecture, but actual value
is almost within the 95% confidence interval. The number of
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TABLE 4 Coe�cient of determination R
2 and MAEs per million population in seven prefectures (averaged over the period from 2013 to 2019).

R
2 [All (Indoor/Outdoor)] MAEs per million population [All (Indoor/Outdoor)]

Average
temperature

Amount of
sweating

Body core
temperature
increase

Average
temperature

Amount of
sweating

Body core
temperature
increase

Miyagi 0.65 (0.62/0.61) 0.65 (0.64/0.58) 0.66 (0.64/0.61) 1.68 (0.77/1.02) 1.71 (0.76/1.07) 1.68 (0.77/1.01)

Niigata 0.70 (0.66/0.67) 0.66 (0.66/0.59) 0.68 (0.66/0.63) 1.97 (0.84/1.25) 1.95 (0.80/1.32) 1.90 (0.82/1.25)

Tokyo 0.68 (0.68/0.62) 0.71 (0.65/0.69) 0.69 (0.64/0.66) 1.25 (0.50/0.82) 1.11 (0.48/0.72) 1.20 (0.51/0.77)

Aichi 0.77 (0.74/0.74) 0.76 (0.73/0.71) 0.76 (0.76/0.68) 1.55 (0.61/1.05) 1.56 (0.61/1.12) 1.63 (0.57/1.22)

Osaka 0.74 (0.71/0.73) 0.71 (0.68/0.67) 0.74 (0.71/0.65) 1.47 (0.56/0.97) 1.55 (0.58/1.09) 1.48 (0.57/1.09)

Hiroshima 0.71 (0.68/0.63) 0.67 (0.66/0.61) 0.66 (0.65/0.57) 1.76 (0.76/1.21) 1.92 (0.81/1.22) 1.91 (0.81/1.25)

Fukuoka 0.64 (0.62/0.62) 0.67 (0.66/0.61) 0.66 (0.64/0.63) 1.77 (0.71/1.14) 1.67 (0.68/1.12) 1.74 (0.68/1.13)

FIGURE 5

Time series of MAEs per million population in Tokyo for average ambient temperature, amount of sweating, and body core temperature increase

(averaged over the period from 2013 to 2019). Standard deviations are indicated by error bars.

transported patients was overestimated around early July for the
average ambient temperature, while from mid-August to mid-
September, the amount of sweating and body core temperature
increase.

To clarify the findings from Figures 4, 5 shows the time series of
MAEs averaged over the period from 2013 to 2019 in Tokyo. MAEs
were greatest from mid-July to mid-August, when the number
of patients was highest. Differences in estimation accuracy were
seen among the input variables, as shown by the trends identified
in Figure 4. In July, the estimation accuracy was high for the
computed core temperature and sweating, and in late August, the
accuracy was high for ambient temperature.

Ambulance allocation is crucial for days when the number of
transported patients. To evaluate the effectiveness of the method
of estimation for 3 months, we focus on accuracy where the
ambient temperature is large. To calculate heat-related risk, wet-
bulb global temperature (WBGT) (35) is often used, a value that
takes into account humidity and solar radiation in addition to
ambient temperature. In Tokyo, the daily average number of heat
illness cases was 136 for WBGT ≥ 31◦C. In Figure 6, we present a

comparison of estimation accuracy among the input variables for
WBGT ≥ 31◦C. The criterion approximately corresponds to ≥10
transported patients per million population.

In Figure 6, comparable accuracy was observed for seven
prefectures. The difference in MAE per million population, defined
as observed value minus estimated value, was distributed on the
negative side (overestimation) for computed core temperature
and sweating, relative to that for average ambient temperature.
Table 5 summarized the MAE per million population for the
days of WBGT ≥ 31◦C. From Table 5, for the amount of
sweating and the increase in body core temperature, the values
of MAE were marginally small, suggesting a better agreement for
estimated and observed values for hot days with larger numbers of
transported patients.

4. Discussion

In this study, core temperature and sweating were computed
to estimate the morbidity of heat illness patients for different
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FIGURE 6

Di�erence from observed to estimated patients per million

population in the days of WBGT ≥ 31◦C. This approximately

corresponds to a rate of transported patients per million population

of ≥10 in seven prefectures from 2013 to 2019.

TABLE 5 Average MAEs per million population and number of days with

WBGT ≥ 31◦C for seven prefectures in Figure 6.

Average
temperature

Amount
of

sweating

Body core
temperature
increase

Number
of days

Miyagi 9.75 7.84 9.26 14

Niigata 9.27 7.86 7.31 20

Tokyo 3.73 3.29 3.7 130

Aichi 4.45 4.46 4.32 102

Osaka 4.28 4.41 4.04 93

Hiroshima 5.89 6.35 6.55 29

Fukuoka 3.63) 3.71 4.03 173

prefectures of Japan. Eight prefectures were used that range from
humid continental to subtropical climates (see Figure 1) (23).

In our analysis, Hokkaido, which belongs to Df in the Köppen
climate classification scheme, was not well correlated with any
input parameters because in that prefecture, body core temperature
increase and sweating were low, even in August (see Figure 2). In
other words, the number of hot days was limited, and thus, heat
acclimatization is different or non-existent. One potential reason
for this is that Hokkaido has a mild climate with only occasional
heat waves. Thus, estimations covering very mild and extreme
hot temperatures have less accuracy than those in the remaining
prefectures. We then excluded Hokkaido for the remainder of
the analysis.

As seen in Figure 2, the difference in daily peak core
temperature and daily sweating amount were similar due to the
daily course of ambient conditions. For the remaining seven
prefectures, we derived parameters to estimate transported people
in terms of Equations (2–4) with the parameters listed in Table 3.
Note that the additional two parameters (f and l) were needed to

obtain comparable accuracy in estimation of ambient temperatures
to that shown in the sweating and core temperature.

As shown in Figure 3, the R2 reached plateau at 40 days
and 30 days of weighted days for patients from indoor and
outdoor locations, respectively. This takes into account the human
acclimatization to heat in the environment for a certain period
(a few weeks). The R2 values for computed core temperature
and sweating were less sensitive to averaging days than that for
average ambient temperature, regardless of whether patients were
transported from indoor or outdoor locations. The R2 values for
patients transported from outside is high even at 1 day (without
averaging) or at least higher than the R2 for indoor patients with
weighted average of <20 days. This suggests that the effects of
heat adaptation are not crucial for outdoor patients (especially
for workers). This hypothesis indicates that heat acclimatization is
not crucial for outdoor patients in reality, rather adjustments to
behavior, such as changing clothing with changes in the season.
For the indoor patients, some heat accumulation was observed for
<3 weeks. The numbers of patients transported from indoor and
outdoor locations in Nagoya, Japan, were correlated with ambient
temperature averaged over 50 and 20 days, respectively, in our
previous study (20). The values obtained here are comparable to
those data, from one city and one input variable.

Let us review heat accumulation further. Most previous
studies investigated short-term adaptation via exercise (36–38).
In Nakamura et al. (29), heat accumulation in daily life was
investigated in a single region of Japan with a sample of five
individuals, and it was found that 10 days were needed for
intermittent heat exposure and 48 days for more continuous head
adaptation. By contrast, this is a population-level study, and some
difference can be observed (39, 40).

Smaller numbers of parameters were needed to estimate
the numbers of transported people in terms of the computed
thermophysiological responses, and these estimations provided
better accuracy. An additional two parameters (f and l) were used
in the estimation with ambient temperature, corresponding to heat
accumulation (f ) and additional tuning for accuracy compensation
(l). Note that no physiological rationale exists for parameter (l) or a
variable for different prefectures.

The estimated numbers of heat illness patients are in good
agreement with observed values in seven prefectures. The proposed
equations are applicable to different prefectures once weather,
thermophysiological data, population, and age are incorporated.
However, the estimation accuracy was variable for different seasons,
as shown in Figure 5. In particular, the estimated numbers
of people were smaller than the observed values following
the rainy season, as shown in Figure 4. On those hot days,
estimations with thermophysiological responses provided better
accuracy (Figure 6).

The proposed equations have been used more than 20 times in
the TV programs in Japan for public awareness. Fire departments
in Nagoya City (Aichi prefectures) have introduced this system,
sharing information with hospitals. The expected number of people
transported owing to heat-related illness by using the proposed
equations considering long-term temperature changes and the
aging of the population in each region could be useful as a manner
for future emergency systems. However, this system is tentatively
suspended in COVID-19 epidemic.
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This study was limited by the small number of extreme hot days
included in the development of equations. Specifically, in 2018, the
maximum ambient temperature was recorded in some prefectures.
However, the estimation obtained on such days is an extrapolation,
and thus accuracy is not warranted. Intense heat waves are expected
to continue in the future, and thus the formula and parameters
should also be revisited in the future.
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