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This study examined the short-term relationship between ambient air pollutants and

children’s outpatient visits, and identified the e�ect of modifications by season. Daily

recordings of air pollutants (CO, NO2, O3, SO2, PM10, and PM2.5) and children’s

outpatient visit data were collected in Guangzhou from 2015 to 2019. A generalized

additive model adjusted for potential confounding was introduced to verify the

association between ambient air pollution and outpatient visits for children. Subgroup

analysis by seasonwas performed to evaluate the potential e�ects. A total of 5,483,014

children’s outpatient visits were recorded. The results showed that a 10 µg/m3

increase in CO, NO2, O3, SO2, PM10, and PM2.5 corresponded with a 0.19% (95%

CI: 0.15–0.24%), 2.46% (2.00–2.92%), 0.27% (0.07–0.46%), 7.16% (4.80–9.57%), 1.16%

(0.83–1.49%), and 1.35% (0.88–1.82%) increase in children’s outpatient visits on the

lag0 of exposure, respectively. The relationships were stronger for O3, PM10, and

PM2.5 in the warm seasons, and for CO, NO2, and SO2 in the cool seasons. When

adjusting for the co-pollutants, the e�ects of CO, NO2, and PM10 were robust. The

results of this study indicate that six air pollutants might increase the risk of children’s

outpatient visits in Guangzhou, China, especially in the cool season.
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Highlights

- The air pollutants were associated with children’s outpatient visits.

- The E–R curves between pollutants and outpatient visits sometimes were positive.

- The links between air pollution and outpatient visits were different in seasons.

- Most robust associations of CO, NO2, and PM10 with children’s outpatient risk.

1. Introduction

Ambient air pollution is a major global health issue with significant impacts worldwide,

especially in developing countries. According to the Global Disease Burden, air pollution is a

main cause of the global disease burden (1). Air pollution is a serious problem in China (2)

due to rapid industrialization and urbanization over the past few decades. As the fourth largest

environmental risk factor, air pollutants caused about 1.58 million deaths in China in 2016 (3).

Many epidemiological studies have demonstrated that exposure to air pollution, including

carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), particulate

matter with an aerodynamic diameter <10µm (PM10), and particulate matter with an

aerodynamic diameter <2.5µm (PM2.5), can cause a range of adverse health effects. PM10 and

PM2.5 are significantly associated with cardiorespiratory mortality risks, and even an increased

risk of respiratory mortality (4). SO2, PM10, and PM2.5 are positively correlated with lung cancer
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mortality in Guangzhou (5). One study showed that ambient NO2

and PM2.5 exposure are significantly contacted with aggrandized all-

cause non-accidental mortality (6). The adverse impacts of PM2.5

on cardiovascular emergency have been observed in previous studies

(7, 8). Studies have also shown a positive correlation between PM2.5

exposure and daily medical treatment for respiratory diseases (9, 10).

Moreover, SO2 and PM10 exposure are linked to increasing the risk

of hospitalization for mental disorders (11). In short, previous studies

have mostly reported the relationships between some of the six major

air pollutants and human health effects, whereas there are few studies

on the short-term relationships between six ambient air pollutants

and health impacts.

Ambient outdoor and indoor air pollution caused the death of

∼660,000 children in 2012 (12). Children are perhaps more sensitive

than adults to the adverse health influences of air pollutants due

to biological, behavioral, and environmental reasons (12). Children’s

exposure to ambient air pollution can have harmful and irreversible

affections on organ systems because of their immature immune

systems and developing lung functions (13). Compared with adults,

children may inhale higher doses of air pollutants because they

breathe more frequently and spend more time outdoors engaging in

physical activity (14). Exposure to air pollution in infancy can cause

lasting damage to cells and tissues, increase the risk of disease in

children, and may have lifelong effects (15). Ambient air pollution

exposure can affect child’s development, so it is necessary to study the

impacts of air pollutants on children’s health.

Associations between children’s health effects, specifically

respiratory diseases, and ambient air pollutants have been well

established. For example, lower respiratory diseases (16), upper

respiratory tract infection (17), acute bronchitis (18), acute

respiratory infections (14), pneumonia (19), and asthma (20) are

significantly correlated with ambient air pollution. However, most

studies have generally focused on a specific outpatient disease, and

there is a lack of studies on the relationship between air pollution and

children’s outpatient visits for general diseases. In addition, many

previous time-series studies lasted 2–4 years (18, 19, 21–23), and

5-year time-series studies have been limited.

Therefore, this study uses the time-series analysis method of

quasi-Poisson generalized additive model to evaluate the acute effects

of ambient air pollution (CO, NO2, O3, SO2, PM10, and PM2.5) on

outpatient visits for children inGuangzhou, China from 2015 to 2019.

2. Materials and methods

2.1. Study location

Guangzhou (113◦17′E 23◦8’N), a crucial central city in China, is a

comprehensive transportation hub and an international trade center

(Supplementary Figure S1). Guangzhou has an oceanic subtropical

monsoon climate, with a yearly average relative humidity of 77%, an

average temperature of 23◦C, and annual rainfall of about 1,720mm.

It has high temperatures and much rain water in the summer, and

is mild and comparatively dry in winter (24). Guangzhou covers an

area of 7,434.4 km2 and is divided into 11 municipal districts, with a

resident population of 18.81 million by 2021.

2.2. Outpatient data

The data of children’s outpatient visits were collected from

January 1, 2015 to December 31, 2019 from the Guangdong

Provincial Center for Disease Control and Prevention. The

outpatient visits for children were obtained from six hospitals:

Guangzhou Conghua District Hospital of Traditional Chinese

Medicine, Guangzhou Panyu Central Hospital, Guangzhou First

People’s Hospital, The First Affiliated Hospital of Guangzhou

Medical University, He Xian Memorial Affiliated Hospital

of Southern Medical University, and the Clifford Hospital

(Supplementary Figure S1).

2.3. Ambient air pollutants and
meteorological data

During the study period, daily 24-h average concentrations of

CO, NO2, SO2, PM10, and PM2.5, and maximum daily 8-h average
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concentration for O3 were obtained from the Urban Air Quality Real-

Time Release Platform (https://air.cnemc.cn:18007/) of the Ministry

of Ecology and Environment of the People’s Republic of China. The

routine average concentrations of these air pollutants were from

21 air monitoring stations spread in the urban area of Guangzhou

(Supplementary Figure S1). Meteorological indicators, including the

daily mean temperature and average relative humidity, were collected

from the Guangdong Meteorological Service at the same time. Those

two parameters were included in the model to adjust for the effects of

confounding factors.

2.4. Statistical analyses

A children’s outpatient visit is a low probability event,

conforming to the Poisson distribution. A time-series quasi-Poisson

generalized additive model was introduced to verify the relationships

between ambient air pollution and children’s outpatient visits.

According to the results of previous time-series studies (25, 26),

several covariates were adjusted in the model. In this main smoothing

model, degrees of freedom (df) were set on the basis of previous

studies (24, 27):

Log [E (Yt)] = βZt + ns
(

time, df = 7/year
)

+ ns
(

temperature, df = 6
)

+ ns
(

relative humidity, df = 3
)

+ DOWt + intercept,

where E (Yt) is the expected number of routine children’s

outpatient visits on everyday t, β is the regression coefficient, Zt
represents the pollutant concentration at day t, ns() is the natural

cubic curve, and DOWt is the dummy variable indicating the day of

the week of day t.

The potential delay effect was analyzed using various delay effect

constructions. These lag models were divided into two classifications:

single lag effects (lag0–lag5) and cumulative lag effects (lag01–lag05).

Then, by adding a natural spline function with 4 df to the above

GAM model, the exposure–response association between children’s

outpatient visits and ambient air pollutants were plotted. In addition,

stratified analysis was carried out according to the season. The cool

period was from October 1 to April 30, and the warm period was

fromMay 1 to September 30.

The significance of a difference between two groups was

examined by determining the 95% confidence interval (CI) as follows:

(β1 − β2) ± 1.96
√

(SE1)
2 + (SE2)

2, where SE1 and SE2 are their

TABLE 1 Daily air pollutants, meteorological data, and children’s outpatient visits during the study.

Mean SD MIN P25 P50 P75 MAX

Air pollution concentration (µg/m3)

CO 892.8 224.0 400.0 700.0 900.0 1,000.0 2,100.0

NO2 46.8 19.1 8.0 34.0 42.5 55.0 168.0

O3 90.1 52.3 0.0 49.0 84.0 122.0 287.0

SO2 10.4 4.4 3.0 7.0 10.0 13.0 37.0

PM10 55.3 27.3 9.0 36.0 48.0 70.8 212.0

PM2.5 34.5 19.1 5.0 21.0 30.0 44.0 155.0

Meteorological measures

Humidity (%) 80.3 10.3 31.0 75.0 82.0 88.0 100.0

Temperature (◦C) 22.3 5.9 3.6 17.9 23.5 27.3 31.2

No. of daily children’s outpatient visits 3,003 632 221 2,632 3,014 3,390 5,225

Season (N)

Cool 3,029 663 221 2,694 3,074 3,416 5,225

Warm 2,966 584 1,465 2,577 2,930 3,354 4,816

TABLE 2 Spearman’s correlations between daily average air pollution concentrations and meteorological factors during the study period.

CO NO2 O3 SO2 PM10 PM2.5 Humidity

NO2 0.57∗∗

O3 −0.17∗∗ 0.10∗∗

SO2 0.39∗∗ 0.55∗∗ 0.29∗∗

PM10 0.52∗∗ 0.75∗∗ 0.37∗∗ 0.67∗∗

PM2.5 0.59∗∗ 0.74∗∗ 0.30∗∗ 0.64∗∗ 0.96∗∗

Humidity 0.09∗∗ 0.03 −0.45∗∗ −0.35∗∗ −0.34∗∗ −0.30∗∗

Temperature −0.39∗∗ −0.34∗∗ 0.43∗∗ −0.04 −0.23∗∗ −0.31∗∗ 0.16∗∗

∗∗P < 0.01.
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standard errors, and β1 and β2 are estimate value for every subgroup

(28, 29). To test the robustness of the estimated relationships, we

changed the df with 4–10 per year (30, 31). Furthermore, co-pollutant

models were constructed to check the stability of the results.

We regulated all statistical analyses with R software (version

4.1.1) using the mgcv package. The effects are expressed as the excess

risk (ER), figured out by the (relative risk – 1) × 100%, and 95% CI

of children’s outpatient visits per 10 µg/m3 increase in ambient air

pollutants. P < 0.05 was considered statistically significant.

3. Results

Supplementary Figure S2 shows the time-series distributions of

CO, NO2, O3, SO2, PM10, PM2.5, and children’s outpatient visits

from 1 January 2015 to 31 December 2019 in Guangzhou. A total

of 5,483,014 children’s outpatient visits were recorded in the six

hospitals. Table 1 shows the descriptive statistics of daily ambient

air pollutants, children’s outpatient visits, and meteorological

conditions. The daily average concentrations of CO, NO2, O3, SO2,

FIGURE 1

Excess risk (%) and 95% confidence intervals of children’s outpatient visits a 10 µg/m3 increase in various ambient air pollutant concentrations along

di�erent lag days.
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PM10, and PM2.5 were 892.8, 46.8, 90.1, 10.4, 55.3, and 34.5 µg/m3,

respectively. These values for CO, NO2, SO2, PM10, and PM2.5 were

about 0.2, 1.2, 0.2, 0.8, and 1.0 times the secondary standard limits of

GB 3095-2012 set by China (4,000.0, 40.0, 60.0, 70.0, and 35.0 µg/m3

annually), and 0.2, 4.7, 0.3, 3.7, and 6.9 times the ambient air quality

standards in World Health Organization (WHO) (4,000.0, 10.0, 40.0,

15.0, and 5 µg/m3 annually), respectively. O3 concentrations on 193

and 699 days exceeded the daily criteria set by China (160 µg/m3)

and the WHO (100 µg/m3), respectively. The daily average value of

relative humidity was 80.3%, and the annual mean temperature was

22.3◦C in Guangzhou.

Table 2 displays the Spearman correlation coefficients among

ambient air pollution and meteorological elements in Guangzhou,

China. The six air pollutants were positively correlated with each

other, except O3 and CO, and negatively correlated with temperature,

except O3. Moreover, relative humidity was negatively correlated

with O3, SO2, PM10, and PM2.5, and positively correlated with

temperature, CO, and NO2. Significant correlations were observed

between the exposure variables, except between SO2 and temperature

and between NO2 and relative humidity.

As shown in Figure 1, a 10 µg/m3 increase in CO, NO2, SO2,

PM10, and PM2.5 was connected with excess risk of outpatient visits

FIGURE 2

The exposure–response curves of the associations of di�erent air pollution with the risk of children’s outpatient visits in single-pollutant model. The black

line represents the average relative risk of the pollutant concentration, and the dashed lines are the 95% confidence interval of the risk estimates.
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TABLE 3 Estimated ER and 95% CI of children’s outpatient visits a 10 µg/m3

increase in the concentrations of air pollution stratified by season.

Pollutant Whole Season

Cool Warm

CO 0.19 (0.15 to 0.24) 0.16 (0.10 to 0.21)∗ 0.08 (0.01 to 0.16)∗

NO2 2.46 (2.00 to 2.92) 2.03 (1.52 to 2.55)∗ 1.82 (0.86 to 2.80)∗

O3 0.27 (0.07 to 0.46) 0.15 (−0.14 to 0.45)∗ 0.29 (0.08 to 0.50)∗

SO2 7.16 (4.80 to 9.57) 5.67 (2.86 to 8.57)∗ 4.82 (0.95 to 8.85)∗

PM10 1.16 (0.83 to 1.49) 0.74 (0.36 to 1.11)∗ 1.00 (0.37 to 1.63)∗

PM2.5 1.35 (0.88 to 1.82) 0.82 (0.29 to 1.36)∗ 1.30 (0.41 to 2.20)∗

∗The difference between groups was statistically significant.

for children after adjusting for relative humidity and temperature.

The estimated effects on risk of air pollutant concentrations were

tested using models with different single lag days. The relationships

between air pollution and children’s outpatient visits were statistically

significant, except for O3 in the model with lag3–5 in the single-

pollutant. According to the model fit statistics, this means that

each 10 µg/m3 increase in ambient CO, NO2, SO2, PM10, and

PM2.5 corresponded to a 0.19% (95% confidence interval:0.15–

0.24%), 2.46% (2.00–2.92%), 0.27% (0.07–0.46%), 7.16% (4.80–

9.57%), 1.16% (0.83–1.49%), and 1.35% (0.88–1.82%) increase in

children’s outpatient visits on the day (lag0) of exposure, respectively.

The cumulative lag days, like single lag days, ranging from lag01 to

lag05. Overall, the influences of six air pollutants on the cumulative

lag days were stronger than on the single days. The maximum

cumulative effects were observed on lag02 for O3, 0.35% (0.12–

0.57%), and lag05 for CO, 0.34% (0.28–0.41%), NO2, 4.27% (3.55–

5.00%), SO2, 12.01% (8.50–15.64%), PM10, 2.03% (1.53–2.53%), and

PM2.5, 2.51% (1.79–3.23%).

The exposure–response curves of the correlations between

ambient air pollution and children’s outpatient visits are given in

Figure 2. The curves of the ambient air pollution were obviously

positive in the meaningful exposure range. The exposure–response

curves of CO, PM10, and PM2.5 displayed a sharp pitch at

concentrations <1,500 µg/m3, <100 µg/m3, and <100 µg/m3 and

then a decrease. The curves of O3 were nearly S-shaped, sharply rising

at concentrations ≥100 µg/m3 and flattening for concentrations

≥200µg/m3. The exposure–response curves of NO2 and SO2 showed

steep hill at concentrations <50 and <15 µg/m3, rapidly ascended

at concentrations ≥100 and ≥25 µg/m3, and became flattened at

mid-range concentrations.

Table 3 shows the estimated ER of children’s outpatient visits

and 95% CI by season breakdown of the concentrations of ambient

air pollution. Season stratification revealed significant differences in

the links between ambient air pollutants and the risk of children’s

outpatient visits. The associations with O3, PM10, and PM2.5 were

more prominent in warm than in cool seasons, and the links with

CO, NO2, and SO2 were much stronger in cool seasons. Specifically,

relationships between O3 and children’s outpatient visits were non-

significant in the cool seasons.

In the sensitivity analysis, when we use df to adjust the

smoothness of time from 5 to 9, the results did not change

substantially, except for O3 (Figure 3). Table 4 establishes the

relationships between all ambient pollutants and children’s outpatient

visits in two-pollutant models, as assessed by another sensitivity

analysis. In the two-pollutants analysis, the Spearman’s correlation

coefficients <0.7 were introduced into the co-pollutant models. The

correlations of CO, NO2, and PM10 in the risk of children’s outpatient

visits remained robust in the co-pollutant models. However, after

adjusting for four air pollutants, the effects of O3 became non-

significant, while the adjustment for NO2 yielded significant results.

When adjusting for NO2 and PM10, the influences of SO2 decreased

and became not significant, respectively. After adjusting for CO, the

effects of PM2.5 decreased and became non-significant. Together,

these results indicate that CO, NO2, and PM10 may play more alone

role in children’s outpatient risk.

4. Discussion

We conducted a time-series study to assess the short-term

relationships between ambient air pollution and children’s outpatient

visits and observed significant relationships. Exposure–response

relationships between six ambient air pollutants and the risk of

children’s outpatient visits were positive in the meaningful exposure

range. The associations with O3, PM10, and PM2.5 were more

prominent in warm than in cool seasons, and the links with CO,

NO2, and SO2 were stronger in cool than in warm seasons. The

correlations of O3, SO2, and PM2.5 with children’s outpatient visits

were likely affected by other air pollutants, whereas CO, NO2, and

PM10 appeared to play more alone role in the risk of children’s

outpatient visits. This analysis provides the latest evidence to establish

the relationships between air pollutants and harmful health effects.

Significant relationships between CO, NO2, O3, SO2, PM10,

PM2.5, and children’s outpatient visits were found in this research,

which was commonly consistent with previous time-series studies

(22, 32–34). Each 10 µg/m3 increase of O3 and PM2.5 corresponded

to 0.27% (0.07–0.46%) and 1.35% (0.88–1.82%) increments in the

risk of children’s outpatient visits in the single-pollutant model,

respectively, but these were not significant in the co-pollutantmodels,

match with previous studies (31, 35). In the co-pollution model, the

adverse effects of O3 disappeared or even reversed may be explained

by the relative instability of ozone (36). A weak but significant

relationship between CO and children’s outpatient visits was found,

in line with a previous study (30, 37). In the analysis of the two

pollutant models, the associations with NO2 and PM10 remained

robust, which may reveal that NO2 and PM10 had more independent

effects on children’s outpatient visits. Previous studies have indicated

that the level of significance did not increase when SO2 be analyzed

in co-pollutant model (38, 39).

Although exposure–response relationships may change due to a

variety of limitations, including climatic characteristics, geographical

location, air pollution mixtures, and population sensitivity (11, 31),

the results still have reminders for human health assessment. In this

research, a linear and limitation association between CO, PM10, and

PM2.5 the risk of children’s outpatient visits were identified within a

certain range, whereas a linear and not threshold association between

O3, NO2, SO2 and children’s outpatient visits were confirmed. The

curve for NO2 tended to plateau at mid-range concentrations. The

S-shaped curve for O3 tended to plateau at high concentrations. As

a result, ambient air pollutant concentrations should be constantly

reduced to protect human health and reduce the risks of outpatient

visits among children.
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FIGURE 3

ER (%) and 95% CI of children’s outpatient visits a 10 µg/m3 increase in air pollution concentrations on the day of exposure.

The differences in the effects of CO, NO2, O3, SO2, PM10, and

PM2.5 on the risk of children’s outpatient visits between cold and

warm seasons were statistically significant. The influences of PM10

and PM2.5 on this risk were significantly stronger in warm seasons,

consistent with previous studies (31, 40). The possible reason may

be that children spend more time outdoors in warm than in cold

seasons. So their exposure dose perhaps lower during the cold seasons

(31). The relationships of SO2 and NO2 with children’s outpatient
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TABLE 4 ER (%) and 95% CI of children’s outpatient visits in co-pollutant

models.

Two-pollutant models Estimates

CO – 0.19 (0.15 to 0.24)∗

+NO2 0.08 (0.02 to 0.13)∗

+O3 0.19 (0.14 to 0.23)∗

+SO2 0.16 (0.11 to 0.21)∗

+PM10 0.15 (0.09 to 0.21)∗

+PM2.5 0.18 (0.12 to 0.24)∗

NO2 – 2.46 (2.00 to 2.92)∗

+CO 2.01 (1.46 to 2.56)∗

+O3 2.73 (2.22 to 3.25)∗

+SO2 2.85 (2.21 to 3.50)∗

O3 – 0.27 (0.07 to 0.46)∗

+CO 0.06 (−0.14 to 0.26)

+NO2 −0.25 (−0.46 to−0.04)∗

+SO2 0.04 (−0.17 to 0.25)

+PM10 −0.10 (−0.33 to 0.12)

+PM2.5 −0.01 (−0.23 to 0.22)

SO2 – 7.16 (4.80 to 9.57)∗

+CO 3.51 (0.98 to 6.10)∗

+NO2 −2.64 (−5.59 to 0.39)

+O3 6.98 (4.43 to 9.59)∗

+PM10 2.53 (−0.74 to 5.91)

+PM2.5 4.82 (1.58 to 8.16)∗

PM10 – 1.16 (0.83 to 1.49)∗

+CO 0.50 (0.09 to 0.92)∗

+O3 1.25 (0.87 to 1.63)∗

+SO2 0.89 (0.41 to 1.37)∗

PM2.5 – 1.35 (0.88 to 1.82)∗

+CO 0.17 (−0.43 to 0.77)

+O3 1.36 (0.83 to 1.89)∗

+SO2 0.65 (0 to 1.31)∗

∗P < 0.05.

visits were stronger in the cool season. This finding was in agreement

with several studies (41, 42) but contradictory to others (33, 35). The

specific reason for these differences between warm and cool seasons

must be clarified in the future.

The observed influences of ambient air pollution on children’s

outpatient visits are biologically plausible. NO2 and SO2 can augment

the permeability of airway mucosa and increase allergic diseases

(43). NO2 can also induce airway inflammation and may restrict

the smaller airways and terminal bronchioles (44). PM2.5 and

PM10 can be deeply inhaled into the lungs (45), causing various

inflammatory reactions (46–48), and local inflammation of alveoli

can further develop into systemic inflammatory (49). O3 affects

airway inflammation in children by increasing the levels of cationic

proteins associated with leukocytes and eosinophils (50). PM2.5, SO2,

and NO2 can increase airway oxidative stress and reduce small airway

function (51).

This study has a few limitations. First, we used in average

pollutant concentrations from fixed-site monitors rather than

individual monitoring data, which might have resulted in exposure

errors (52). Second, although we used data on children’s outpatient

visits from six hospitals in the study city, selection bias might have

existed. Third, due to the limitations of the collected children’s

outpatient records, we can only get the number of children’s

outpatients per day, without studying other stratification analyses

and finding multiple visits during a course of illness (26). Fourth,

none of the hospitals is a children’s hospital which has the largest

number of children’s outpatient visits in the city. In addition,

the matching between environmental exposure and illness is not

enough because of the lack of the children’s residential address and

monitoring data from the nearest monitoring stations according

to the location of hospitals, which is also the inadequacy of this

study. Finally, we did not include confounding factors at the personal

level (e.g., lifestyles and indoor pollution exposure) (53), which

might affect the relationships between ambient air pollution and

individual vulnerability.

5. Conclusions

This time-series analysis suggests that ambient air pollution,

especially CO, NO2, and PM10, can significantly increase the risk of

children’s outpatient visits in Guangzhou, China. The relationships

were stronger for CO, NO2, and SO2 in the cool seasons, and for

O3, PM10, and PM2.5 in the warm seasons. The findings of this

study suggest that persistent efforts to reduce air pollution levels in

Guangzhou would have health benefits, resulting in a decrease in

children’s outpatient visits. These results can only be generalized to

cities with similar populations, societies, and environments.
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