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Recent years have seen remarkable progress of learning-based methods

on Ultrasound Thyroid Nodules segmentation. However, with very limited

annotations, the multi-site training data from di�erent domains makes the

task remain challenging. Due to domain shift, the existing methods cannot be

well generalized to the out-of-set data, which limits the practical application

of deep learning in the field of medical imaging. In this work, we propose

an e�ective domain adaptation framework which consists of a bidirectional

image translation module and two symmetrical image segmentation modules.

The framework improves the generalization ability of deep neural networks

in medical image segmentation. The image translation module conducts the

mutual conversion between the source domain and the target domain, while

the symmetrical image segmentation modules perform image segmentation tasks

in both domains. Besides, we utilize adversarial constraint to further bridge the

domain gap in feature space. Meanwhile, a consistency loss is also utilized to

make the training process more stable and e�cient. Experiments on a multi-site

ultrasound thyroid nodule dataset achieve 96.22% for PA and 87.06% for DSC in

average, demonstrating that our method performs competitively in cross-domain

generalization ability with state-of-the-art segmentation methods.

KEYWORDS

thyroid nodule segmentation, thyroid nodule classification, domain adaptation,

ultrasound image processing, medical image segmentation

1. Introduction

According to global Cancer statistics 2020 (1), thyroid cancer has become one of

the fastest-growing cancers in the past 20 years, ranking in 9th place for incidence.

Early symptoms manifest as thyroid nodules, and then as the disease progresses, patients

gradually feel pain. If not promptly detected and treated in the early stage, thyroid cancer

can cause significant harm to patients and even be life-threatening. Therefore, early and

accurate assessment is of crucial importance for improving the chances of cure and survival

for patients.

In thyroid diagnosis, ultrasound imaging technique (2) has become the preferred

imaging modality due to many advantages such as convenience, good reproducibility, and

low cost (3, 4). Usually, radiologists diagnose patients base on the ultrasound characteristics

of the images, which requires physicians to have rich experience and superb technology.

With the increasing number of thyroid patients year by year, the current demand for

radiologists is increasing so fast that it is no longer sufficient to rely on manual diagnosis

to meet the needs of society.
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Since machine learning and deep learning (5) pervade medical

image computing, they are becoming increasingly critical in the

medical imaging field, including medical image segmentation (6–

12). Leveraging learning-based techniques, multiple novel methods

have been proposed to conduct medical image segmentation

tasks. Compared with traditional mathematical morphology-based

methods, learning-based ones have achieved impressive results.

In practice, however, there remain several challenges for deep

learning-based methods. One salient problem is that deep learning

lacks generalization capability, resulting in models trained on data

from one site can not achieve good results on the data from other

sites. This is because the ultrasound images from different sites

show discrepancies in appearance and contrast due to different

imaging protocols, examination equipment and patient groups,

which is called domain shift. Due to the existence of domain shift,

the model obtained only through deep learning methods cannot be

adapted to different sites. In addition, since it is difficult to label

medical data, most medical centers still maintain a state where it is

difficult to use deep neural network algorithms.

Domain adaptation (13) is a valid approach to address the

domain shift problem. The core task of domain adaptation is to

tackle the differences in probability distribution between the source

domain and the target domain by learning robust knowledge.

Existing researches on domain adaptation for medical imaging

can be divided into two categories. The first category aims at

the feature transfer (14). It learns transferable and discriminative

features across different domains (15, 16). Specifically, it maps

features from source and target domains to the same distribution

via certain transforms (17). The second category aims at the

model transfer (17). It learns transferable models by fine-tuning

or other methods in the target domain (18, 19). One widely-used

example is transferring parameters from the pre-trained model on

ImageNet (20) to other tasks. Those two categories can greatly

improve the generalization capacity of deep learning-based model

by dealing with the domain heterogeneity. However, these methods

still suffer from certain limitations. First, many methods inevitably

require a few labeled target data for fine-tuning. This restricts their

performance to unsupervised scenarios. Meanwhile, medical image

annotations often require considerable efforts and time. Second, as

for model transfer, dataset bias (21) deteriorates the transferring

performance. Namely, when the source domain, e.g., ImageNet,

differs too much from the target domain, e.g., medical images, this

method achieves only average performance. Third, these methods

only perform monodirectional domain shift, namely, source to

target. Therefore, the image translation functions may lead to

undesirable distortions.

In this paper, we propose a domain adaptation framework

for medical image segmentation. Our architecture is composed

of image translation module and image segmentation module.

Medical images from different domains have different styles at

the pixel level, and the rule also applies to our source and target

domain. Inspired by Cyclegan (22), we use the image translation

module to realize the translation between the source domain

and the target domain, and guide the process with a pixel-level

adversarial loss. Apart from pixel-level alignment, the alignment of

semantic features also has a great impact on image segmentation

tasks. Therefore, we further unify the style of latent vectors drawn

from the segmentation network, and guide the process with a

feature-level adversarial loss. The domain gap is well bridged

through two-step alignment on both the pixel and feature level.

Our segmentation module is constructed into two symmetrical

parts to realize the task of segmentation in both the source and

target domain, respectively. In each branch, we utilize Efficientnet

(23), with strong feature extraction capabilities, to extract deep

semantic features and build an image segmentation network based

on the encoder-decoder structure. In order to enhance the feature

fusion ability and improve the segmentation performance, we use

the hybrid channel attention mechanism to concat the features

between the encoder and the decoder. Ultimately, considering that

the segmentation results from the two branches of the same image

should be consistent, we introduce the segmentation consistency

loss to further guide the unlabeled branch in an unsupervised

manner. In short, our main contributions and novelty of the paper

could be summarized as follows:

(1) We propose a domain adaptation framework for medical

image segmentation which can narrow the domain

gap between different data and effectively improve the

generalization ability.

(2) We apply multi-level domain adaptation to simultaneously

bridge the domain gap on both pixel-level and feature-level

through adversarial learning, and obtain better adaptation

results.

(3) Considering the invariance of the segmentation results

of the same target in the domain adaptation process,

we implement bidirectional symmetric awareness through

segmentation consistency loss to further improve the stability

and performance of our model.

1.1. Related works

1.1.1. Medical image segmentation
To tackle the medical image segmentation problem, traditional

segmentation methods focus on the contour, shape and region

properties of thyroid nodules (24–28), while mainstream

researchers now focus more on deep learning-based methods.

Wang et al. (6) apply multi-instance learning and attention

mechanism to automatically detect thyroid nodules in three stages,

the feature extraction network, the iterative selection algorithm,

and the attention-based feature aggregation network. Peng et al.

(7) propose an architecture that combines low-level and high-level

features to generate new features with richer information for

improving the performance of medical image segmentation. Zhang

et al. (8) propose a multiscale mask region-based network to detect

lung tumors, which trains multiple models and acquires the final

results through weighted voting. Tong et al. (9) propose a novel

generative adversarial network-based architecture to segment

head and neck cancer. This method uses the shape representation

loss and 3D convolutional autoencoder to strengthen the shape

consistency of predictions of the segmentation network. Similarly,

Trullo et al. (10) propose to use distance-aware adversarial

networks to segment multiple organs. This method leverages the

global localization information of each organ along with the spatial

relationship between them to conduct the task. Li et al. (11) utilize

the widely-anticipated transformer to process the medical image.
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This method applies squeezed and expanded attention blocks to

encode and decode features extracted from CNN. Also, inspired by

transformer, Cao et al. (12) propose to conduct image segmentation

using a modified transformer-based architecture to improve the

performance by combining global branch and local one.

1.1.2. Domain adaptation for medical image
analysis

As a promising solution to tackle domain heterogeneity

among multi-site medical imaging datasets, domain adaptation has

attracted adequate attention in the field. He et al. (29) propose

to conduct the domain shift procedure using adversarial network.

This method uses a label predictor and a domain discriminator

to draw the domain distance closer. Li et al. (18) propose a

modified subspace alignment method to diminish the disparity

among different datasets, which aligns the sample points from

separate feature spaces into the same subspace. Zhang et al. (30)

propose the task driven generative adversarial networks to transfer

CT images to X-ray images by leveraging a modified cycle-GAN

sub-structure with add-on segmentation supervisions to learn the

transferable knowledge. Chen et al. (31) propose an unsupervised

domain adaptation framework, utilizing synergistic learning-based

method to conduct domain translation from MR to CT. Ahn et

al. (32) propose an unsupervised feature augmentation method. In

this method, image features extracted from a pre-trained CNN are

augmented by proportionally combining the feature representation

of other similar images. Yoon et al. (33) propose to mitigate

dataset bias by extending the classification and contrastive semantic

alignment (CCSA) loss that aims to learn domain-invariant

features. Dou et al. (34) propose to tackle the domain shift by

aligning the feature spaces of source and target domains by utilizing

the plug-and-play adaptation mechanism and adversarial learning.

Perone et al. (35) propose to conduct domain adaptation in

semi-supervised scenarios. Containing teacher models and student

models, this method leverages the self-ensembling mechanism to

improve the generalization of the models. Gao et al. (36) propose

a lesion scale matching approach to use latent space search for

bounding box size to resize the source domain images and then

match the lesion scales between the two disease domains by

utilizing the Monte Carlo Expectation Maximization algorithm.

Kang et al. (37) propose intra- and inter-task consistent learning,

where task inconsistency is restricted, to have a better performance

on all tasks like thyroid nodule segmentation and classification.

Gong et al. (38) design a thyroid region prior guided feature

enhancement network (TRFEplus) for the purpose of utilizing

prior knowledge of thyroid gland segmentation to improve the

performance of thyroid nodule segmentation.

2. Materials and methods

2.1. Data acquisition

Our ultrasound thyroid nodule datasets consist of three domain

data collected from different patients in different medical centers

with different ultrasound systems. The first two datasets are private

datasets, which contain 936 and 740 images, respectively, while the

third dataset is the public dataset DDTI (39) containing 637 images.

2.2. Method overview

In this work, we aim to build a segmentation network with

remarkable cross-domain generalization ability. Specifically, given

a labeled dataset XS = {xs}
NS
s=1 in source domain and an unlabeled

dataset XT = {xt}
NT
r=1 in target domain, where NS and NT

denote the number of images, we assume that they obey the

marginal distributions PS(xs) and PT(xt). The domain adaptation

problem can be defined as mapping XS and XT to corresponding

latent spaces via FEncS :XS → ZS, F
Enc
T

:XT → ZT , respectively.

The representations ZS and ZT are desired to obey the same

distribution, so that ZS ≈ ZT . Consequently, we present a novel

bidirectional symmetric segmentation framework, as is shown in

Figure 1. Designed to close the domain gap on both the pixel level

and feature level, our framework is divided into one bidirectional

image translation module and two symmetric image segmentation

modules. At the pixel level, we introduce the image translation

module, i.e., GS→T and GT→S, where GS→T translates images

from source domain to target domain while GT→S performs

image translation inversely. Considering of the fact that semantic

information has a more profound impact on image segmentation,

we propose to unify the style of latent vectors drawn from the

segmentation network on the feature level. Given xt and xs→t ,

the segmentation module is utilized to encode them into latent

codes zt and zs→t . And an adversarial discriminator is utilized

to close their domain gap, encouraging them to obey the same

distribution. Consistent with the bidirectional translation module,

we introduce two symmetrical segmentation branches, i.e., FS
and FT , to respectively achieve segmentation in the source and

target images. In each branch, the Efficientnet (23) and the hybrid

channel attentionmechanism are introduced to enhance the feature

extraction and fusion capability of our segmentation modules.

Besides, the segmentation results of xt and xt→s should be the

same because they represent the same content information. The

rule also applies to the relationship between xs and xs→t . Therefore,

we introduce the segmentation consistency loss to further guide

the network.

2.3. Network architecture

2.3.1. Translation module
The image translation modules are designed to close the

domain gap on both the pixel and feature level. Each module

consists of one encoder network and the corresponding decoder

network. As is shown in Figure 2, the source image is first fed

into the encoder to generate the latent codes, which is then

decoded into generated image by the decoder. The process also

applies to the translation of target image. Besides, the 8-layer

residual blocks are utilized to improve the network’s learning

ability. The encoder consists of one convolution block mapping

image to high-dimension space, two downsampling convolution

blocks with stride 2 and residual blocks. In terms of the decoder, we
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FIGURE 1

Illustration of our network architecture. We design a bidirectional translation module to respectively generate xt→s and xs→t. We introduce adversarial

loss to unify the style of translated and target domain on both the pixel and feature level. Then we utilize two symmetrical segmentation modules,

i.e., FS and FT , to respectively achieve segmentation in two domains. SoftDice loss and segmentation consistency loss are proposed to further

conduct the network.

FIGURE 2

Illustration of one translation module architecture. The input is the image x of source or target domain and the output is the translated image. Conv:

convolution layer, Deconv: deconvolution layer, Tanh: Hyperbolic Tangent.

utilize two trainable deconvolution layers instead of the traditional

upsampling blocks to improve the translation performance.

2.3.2. Segmentation module
Based on the image segmentation framework UNet, our

segmentation modules adopt the EfficientNet-B0 as feature

extraction network, also the hybrid attention mechanism to

enhance the expression ability of fusion feature and further

improve the segmentation performance. The architecture of our

segmentation modules is shown in Figure 3. We construct the

modules with an encoder-decoder architecture, where the encoder

is utilized to extract multi-scale feature maps while the decoder

translates the low-resolution feature maps back into images

of original size. The EfficientNet-B0 module in the encoder

mainly uses the Mobile Inverted Bottleneck convolution layer

to extract features related to the target, and alternately uses

the MBConv modules with different convolution kernel sizes

to expand the receptive field. To make full use of the location

information contained in the shallow features, we integrate the

skip connection mechanism into the encoder-decoder architecture

to fuse the shallow features from encoder and the deep features

from decoder. After that, we feed the fusion feature into the

channel attention module and the spatial attention module,

respectively, to obtain the feature maps whose channel and

spatial semantic information are calibrated. By adding the two

calibrated feature maps, new features with global dependence come

into being.

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1055815
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ma et al. 10.3389/fpubh.2023.1055815

FIGURE 3

Illustration of the segmentation module architecture. The input is the original images or the ones translated by image translation module, and the

output is the segmentation result. The encoder adopts E�cientNet-B0 as the feature extraction skeleton. In the decoder we incorporate the hybrid

attention mechanism and skip connection mechanism.

2.4. Loss functions

2.4.1. Image translation loss
As is discussed above, we utilize the image translation

modules to bridge the domain gap on both the pixel and feature

level. The discriminators incorporated denote two feature-level

discriminators (D
feat
S and D

feat
T ), and two pixel-level discriminators

(D
pix
S and D

pix
T ). Take the source domain discriminators for

example, theD
feat
S is adopted to narrow the gap between the feature

map of the source image xs and the translated image xt→s, while the

D
pix
S is adopted to close the gap on the pixel level. The adversarial

losses of source domain are shown as follows.

L
adv
S = E

[

− log
(

1− Dfeat
S (xt→s)

)]

+ E

[

− log
(

Dfeat
S (xs)

)]

+ E

[

− log
(

1− D
pix
S (xt→s)

)]

+ E

[

− log
(

D
pix
S (xs)

)]

.

(1)

Similar to the source domain adversarial losses, the adversarial

losses of target domain are shown as follows.

L
adv
T = E

[

− log
(

1− Dfeat
T (xs→t)

)]

+ E

[

− log
(

Dfeat
T (xt)

)]

+ E

[

− log
(

1− D
pix
T (xs→t)

)]

+ E

[

− log
(

D
pix
T (xt)

)]

.

(2)

Besides, we introduce the cycle-consistency loss (22) to further

conduct the translation module. Explicitly, if we feed the image xs
to GS→T and then to GT→S, the result obtained should be the same

as the original image xs. The rule also applies to the image xt . The

cycle-consistency loss is shown as follows.

L
cycle = E [‖GT→S (xs→t) − xs‖1]+ E [‖GS→T (xt→s) − xt‖1] .

(3)

Moreover, we also adopt an identity mapping loss (22) to

prevent the generators from producing undesired results. For

instance, the result of feeding the image xs to GT→S should be

indistinguishable from the original input xs. The loss is shown as

follows.

L
iden = E [‖GT→S (xs) − xs‖1]+ E [‖GS→T (xt) − xt‖1] . (4)

2.4.2. Segmentation loss
The segmentation modules are divided into two parts to

realize image segmentation in the source and target domain,

respectively. Since the source domain image xs is labeled, we train

the segmentation process of xs and xs→t in a supervised manner.

We utilize Dice loss as the supervised loss, which is defined as

follows.

L
seg = LDICE (FS (xs) , GT) + LDICE (FT (GS→T (xs)) , GT) . (5)

In terms of the target domain image xt which is unlabeled,

we train its segmentation process in an unsupervised manner and

propose a consistency loss, which is shown as follows.

L
consis = LDICE (FT (xt) ,FS (GT→S (xt))) . (6)

Our consistency loss aims at guide the unlabeled branch with

the supervised networks in labeled branch.

The overall loss function is defined as follows:

L = λadv

(

L
adv
S + L

adv
T

)

+ λcycle L
cycle + λiden L

iden + λseg L
seg

+λconsis L
consis , (7)

Where the hyper-parameters λadv, λcycle, λiden, λseg , λconsis
denote the weight of each term.
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2.5. Metrics

In the task of medical image segmentation, each pixel in

the image can be divided into Positive, which means that exact

area belongs to Thyroid Nodule, and Negative with the opposite

meaning. For any image segmentation method, there would

be TruePositive, TrueNegative, FalsePositive and FalseNegative

representing 4 types of relationship between the result and the

ground truth, denoted by TP, TN, FP, FN. To verify how well our

method can tackle the medical image segmentation problem, the

following evaluating metrics are utilized.

Pixel Accuracy(PA): The most commonly utilized metric in

image segmentation task. It can be seen as the accuracy in pixel

level, defined as the percentage of the correctly predicted pixels in

total pixels. Formally, PA is defined as follows.

PA =
TP + TN

TP + FP + FN + TN
. (8)

Dice Similarity Coefficient(DSC) (40): Another wildly utilized

metric in image segmentation problems. It can be used to evaluate

the similarity of two groups, which represent predict result and

ground truth in this situation. Formally, DSC is defined as follows.

DSC =
2TP

FP + 2TP + FN
. (9)

True Positive Rate(TPR): Defined as the percentage of the

correctly predicted pixels of positives in total positive pixels given

by ground truth. In this case it can represent the ability of detecting

positive area, thus known as Sensitivity. Formally, TPR is defined as

follows.

TPR =
TP

TP + FN
. (10)

True Negative Rate(TNR): Defined as the percentage of the

correctly predicted pixels of negatives in total negative pixels given

by ground truth. In this case it can represent the ability of not being

confused by negative area, thus known as Specificity. Formally,

TNR is defined as follows.

TNR =
TN

TN + FP
. (11)

3. Experimental results and discussion

3.1. Implementation

3.1.1. Data processing
Considering that each image frame contains unnecessary text

which would affect the image segmentation performance, we

only preserve the part with content information and remove the

remaining. After that, we unify the size of the cropped image to

400*400. From each dataset, we randomly choose 200 images as the

test set, others as the train set.

3.1.2. Training details
During the training process, in order to ensure that our

network can work effectively, we optimize our network step by step.

The whole process is divided into three steps. Firstly, the image

translation module is trained with adversarial loss to get optimized

GS→T and GT→S. Then given the inputs xs and GS→T(xs), we

train source domain segmentation network FS and target domain

segmentation network FT , respectively in a supervised manner.

Finally, under the constraint of the total loss L, we carry out a more

refined optimization of the whole network. In the training process,

we set λadv = λcycle = λiden = 1, λseg = 10, λconsis = 2. The whole

experiment is carried out with four 1080Ti.

3.1.3. Comparison methods
We compare our network with the following state-of-the-art

methods: DeepLabV3 (41), PSPNet (42), FPN, PAN (43), and

TRFEplus (38).

3.2. Ultrasound thyroid nodule
segmentation

We carry out the experiment of ultrasound thyroid nodule

segmentation to evaluate our proposed method. Three ultrasound

thyroid nodule datasets with annotations are labeled as domain1,

domain2, and domain3, respectively. Each time we select two

of them, one of which is used as the source domain and the

other is used as the target domain, then 6 sets of experiments

are conducted.

We compare our method with several state-of-the-art

methods using the four evaluating metrics above to compare

the performance. For all the compared methods, we carry out

comprehensive data augmentation to improve their generalization

ability. Besides the commonly used geometric transformations,

we also introduce noise, blur, occlusion, etc. to improve their

performance as much as possible. Meanwhile, we exclude any

data augmentation strategy in our method and only employ the

domain adaptation architecture. For our method, we conduct two

sets of experiment, one of which is applying data augmentation

to our segmentation module only (namely SegM+AUG), and the

other is our proposed domain adaptation framework. It should

be noted that we exclude the data augmentation strategy from

the latter scheme because the data augmentation will change

the style of images and thus influence the translation process on

pixel level.

Utilizing the metrics mentioned in Section 2.5, the results are

presented in Tables 1–7. As can be seen from the tables, our method

performs more favorably against other methods, especially in the

most representative metric DSC, which confirms the feasibility of

our domain adaptation method. Specifically, our method increases

the average PA by 0.99%, the averageDSC by 3.64% and the average

TNR by 0.24%. It is worth noting that if the confusing pixels are

judged as negative ones mostly, the FP will be greatly reduced, and

the FN will be greatly increased as a cost. That is to say, this strategy

improves the TPR by sacrificing TNR, which makes the results of

TRFEplus (38) in Table 5 close to ours on TNR but far behind ours

on TPR. From Tables 6, 7, we can see that the performance of the

network applied domain adaptation is better than the one with data

augmentation strategy.

Frontiers in PublicHealth 06 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1055815
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ma et al. 10.3389/fpubh.2023.1055815

TABLE 1 Results on ultrasound thyroid nodule datasets with DeepLabV3

(41) +AUG.

Source Target PA DSC TPR TNR

Domain1 Domain2 0.9505 0.8461 0.9186 0.9531

Domain1 Domain3 0.9494 0.8579 0.9450 0.9477

Domain2 Domain1 0.8348 0.6991 0.9962 0.8003

Domain2 Domain3 0.7858 0.5444 0.9910 0.7596

Domain3 Domain1 0.9681 0.9071 0.8638 0.9939

Domain3 Domain2 0.9669 0.8623 0.8298 0.9892

Average 0.9093 0.7862 0.9241 0.9073

Bold values mean that the value is the best among all the comparison methods and our

method.

TABLE 2 Results on ultrasound thyroid nodule datasets with PSPNet (42)

+AUG.

Source Target PA DSC TPR TNR

Domain1 Domain2 0.8581 0.6287 0.9336 0.8474

Domain1 Domain3 0.7955 0.5766 0.9220 0.7801

Domain2 Domain1 0.7835 0.6215 0.9610 0.7460

Domain2 Domain3 0.7263 0.4673 0.9582 0.6974

Domain3 Domain1 0.8740 0.9249 0.8903 0.9942

Domain3 Domain2 0.8902 0.3878 0.3037 0.9952

Average 0.8213 0.5678 0.8281 0.8434

TABLE 3 Results on ultrasound thyroid nodule datasets with FPN +AUG.

Source Target PA DSC TPR TNR

Domain1 Domain2 0.9434 0.8190 0.8910 0.9512

Domain1 Domain3 0.9641 0.8993 0.9611 0.9607

Domain2 Domain1 0.8645 0.7425 0.9958 0.8360

Domain2 Domain3 0.8256 0.5947 0.9923 0.8047

Domain3 Domain1 0.9740 0.9249 0.8903 0.9942

Domain3 Domain2 0.9670 0.8582 0.7972 0.9942

Average 0.9231 0.8064 0.9213 0.9235

We further show the qualitative comparison of the methods in

Figure 4. As can be seen, while other methods either fail to segment

the nodules or over-segment a large portion of nodules, ourmethod

generates more accurate segmentation results.

3.3. Ablation study

To verify the advancement of our medical image translation

module and the effectiveness of the consistency loss, we carry

out a series of ablation experiments as follows: (a) w/o

translation module: disabling the whole image translation module

during training. (b) w/o feature-level GAN: disabling feature-

level adversarial loss during training. (c) w/o consistency loss:

TABLE 4 Results on ultrasound thyroid nodule datasets with PAN (43)

+AUG.

Source Target PA DSC TPR TNR

Domain1 Domain2 0.9270 0.8136 0.9463 0.9219

Domain1 Domain3 0.9449 0.8557 0.9663 0.9382

Domain2 Domain1 0.8915 0.7720 0.9931 0.8692

Domain2 Domain3 0.8378 0.6156 0.9900 0.8189

Domain3 Domain1 0.9691 0.9076 0.8661 0.9939

Domain3 Domain2 0.9618 0.8341 0.7633 0.9946

Average 0.9220 0.7998 0.9209 0.9228

TABLE 5 Results on ultrasound thyroid nodule datasets with TRFEplus

(38) + AUG.

Source Target PA DSC TPR TNR

Domain1 Domain2 0.9597 0.8633 0.9451 0.9602

Domain1 Domain3 0.9637 0.8609 0.8588 0.9783

Domain2 Domain1 0.9473 0.8408 0.7743 0.9855

Domain2 Domain3 0.9431 0.7641 0.7242 0.9779

Domain3 Domain1 0.9570 0.8756 0.8304 0.9874

Domain3 Domain2 0.9430 0.8007 0.8580 0.9611

Average 0.9523 0.8342 0.8318 0.9750

TABLE 6 esults on ultrasound thyroid nodule datasets with SegM + AUG.

Source Target PA DSC TPR TNR

Domain1 Domain2 0.9518 0.8443 0.9109 0.9566

Domain1 Domain3 0.9749 0.9105 0.9482 0.9773

Domain2 Domain1 0.8747 0.7548 0.9939 0.8486

Domain2 Domain3 0.8260 0.5932 0.9921 0.8054

Domain3 Domain1 0.9714 0.9155 0.8726 0.9955

Domain3 Domain2 0.9656 0.8548 0.8075 0.9910

Average 0.9274 0.8122 0.9209 0.9291

TABLE 7 Results on ultrasound thyroid nodule datasets with ours.

Source Target PA DSC TPR TNR

Domain1 Domain2 0.9730 0.8947 0.9147 0.9839

Domain1 Domain3 0.9744 0.9063 0.9573 0.9795

Domain2 Domain1 0.9676 0.9106 0.9558 0.9724

Domain2 Domain3 0.9394 0.7778 0.9691 0.9408

Domain3 Domain1 0.9614 0.8949 0.8243 0.9977

Domain3 Domain2 0.9576 0.8392 0.8132 0.9899

Average 0.9622 0.8706 0.9057 0.9774

Bold values mean that the value is the best among all the comparison methods and our

method.

disabling consistency loss during training; (d) w/o DA: only

segmentation module.
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FIGURE 4

Comparison of cross-domain segmentation results on target domain. From left to right: target image, DeepLabV3+AUG, PSPNet+AUG, FPN+AUG,

PAN+AUG, TRFEpuls+AUG, SegM+AUG, Ours, GT.

TABLE 8 Ablation study on various constraints.

Ablation (w/o) Translation module Feature-level GAN Consistency loss DA Ours

PA 0.9632 0.9644 0.9163 0.8613 0.9730

DSC 0.8488 0.8541 0.7069 0.6141 0.8947

Bold value means that the value is the best in the ablation study.

The results of our ablation experiments are demonstrated

in Table 8. From the results, we can summarize the following

conclusions. (a) In the absence of translation module and

feature-level GAN, DSC drops by 0.0459 and 0.0406, respectively,

which proves that they play a certain role in improving

the segmentation results and are of equal importance. (b)

In the absence of consistency loss, DSC drops sharply by

0.18, which indicates that the segmentation consistency

loss plays a decisive role in our network’s performance. (c)

When we only use our segmentation module to complete

cross-domain tasks, the effect is not satisfactory, namely

0.6141 in DSC. It illustrates the effectiveness of our domain

adaptation framework. In conclusion, our ablation experiments

indicate that the proposed medical image translation module,

the consistency loss and closing in the feature space are

helpful to close the domain gap between source data and

target data.

4. Conclusion

In this paper, we have presented a domain adaptation method

for medical image segmentation. In order to alleviate the domain

shift problem caused by the difference in data styles, we propose to

bridge the domain gap between multi-site medical data on both the

pixel and feature level. Meanwhile, we introduce two symmetrical

hybrid-attention segmentation modules to segment the source

domain data and target domain data, respectively. Besides, we

construct the segmentation consistency loss to guarantee the model

stability. Experimental results on Ultrasound Thyroid Nodules
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datasets show the remarkable generalization ability of our proposed

method.
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