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Background: Electronic health records (EHR) is the longitudinal data generated

by patients in medical institutions and recorded by electronic medical information

systems in the form of digital, which is also the most widespread application of

big data in medicine. The purpose of this study was to explore the application of

electronic health records in the field of nursing and determine the current research

status and hotspots.

Methods: A bibliometric analysis of electronic health records in nursing was

undertaken from 2000 to 2020. The literature comes from Web of Science Core

Collection database. We used CiteSpace (version 5.7 R5; Drexel University), which

is a Java-based software that especially visualized collaborative networks and

research topics.

Results: A total of 2616 publications were included in the study. We found that

publications increased year by year. The Journal of American Medical Informatics

Association (n = 921) is the most cited. The United States (n = 1,738) has the most

publications in this field. University Penn (n = 63) is the institution with the most

publications. There is no influential cooperation network among the authors, of

which Bates, David W (n = 12) have the largest number of publications. The relevant

publications also focus on the fields of health care science and services, and medical

informatics. In keywords, EHR, long-term care, mobile application, inpatient falls, and

advance care planning has been researching hotspots in recent years.

Conclusion: With the popularization of information systems, the publications of EHR

in the nursing field have increased year by year. This study provides the basic structure,

potential cooperation, and research trends of EHR in the field of nursing from 2000 to

2020, and provides a reference for nurses to e�ectively use EHR to help clinical work

or scientific researchers explore the potential significances of EHR.
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1. Introduction

With the popularization ofmedical information systems, the inadequacy of paper records has

been exposed, Electronic Health Records (EHR), as a carrier of clinical information, have played

an important role in medical information systems (1). Although EHR has been standardized and

defined, they lack consistency due to different countries and organizations (2). Adler-Milstein,

Holmgren, etc. show that demographics, doctor notes, nursing assessment, patient problem lists,

patient medication lists, discharge summary, radiology reports, laboratory reports, diagnostic

results, and order entry are hospitals with a basic EHR system that should include (3). EHR

can make it easier for researchers to access and aggregate clinical data. The application of EHR

in clinical nursing can reduce medication errors, improve patient medication compliance, and
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reduce nurses’ work burden (2, 4). In addition, researchers are

paying more and more attention to the potential of EHR. With the

development of artificial intelligence, researchers are using machine

learning algorithms to analyze EHR to predict disease progression,

complications and mortality, and for early diagnosis, self-care,

preventive care, clinical decision support and so on (5, 6). During

the coronavirus disease 2019 (COVID-19) pandemic, Tortolero et al.

leveraged an EHR system to share data to coordinate patient care

(7), and Satterfield et al. used it for disease surveillance and contact

tracing (8). The COVID-19 pandemic has more clearly demonstrated

the need for global data sharing, even though the sharing of disparate

COVID-19 data (e.g., genetic sequences, epidemiology, etc.) has been

allowed, but beyond that the accurate collection and reuse of EHRs

still difficult (9). The use of EHRs has increased rapidly over the

past few decades, and there is a growing need for nursing to gain

new insights from data to provide evidence-based care. However,

the research topics and trends of EHR in the field of nursing are

unclear. Therefore, as an important member of the medical team,

nurses are also the input and executor of EHR, and determining the

future development direction of EHR in nursing is an important task

from which they can benefit (10).

Bibliometrics provides a tool for analyzing a large number of

publications to more conveniently analyze the development trend,

including countries, institutions, authors, citations and so on. There

are many studies using bibliometrics to analyze research trends,

especially during the wide epidemic period of COVID-19. Ahmad

used bibliometrics to analyze the research trends of SARS-CoV-

2 and COVID-19 in the previous 2 years (11), and Zhang et al.

analyzed the global research trend of COVID-19 nursing (12). In

addition, bibliometrics is also used in vaccine development (13),

clinical intervention (such as diabetes) (14) and any other fields.

However, at present, there is no research on EHR in the nursing field

in the way of bibliometrics. Therefore, to fill this gap, the purpose of

this study was to use a bibliometrics approach to analyze the literature

related to EHR in the field of nursing from 2000 to 2020 to identify

research trends in this area in order to gain more insight.

2. Methods

2.1. Bibliographic search

The data used in the current study was downloaded from theWeb

of Science Core Collection (WoSCC) database and was published

between 2000 and 2020. We use advanced search methods, search #1

AND #2, where #1 representing EHR, #2 denoting nursing. In detail,

#1 is TS= (“Computerized Medical Records” OR “electronic medical

record” OR “EMR” OR “electronic patient record” OR “electronic

medical records” OR “electronic health record” OR “EHR” OR

“electronic health records” OR “EHRs” OR “EMRs” OR “electronic

patient records”). #2 is TS=(nurs∗). A total of 3,065 literature data

were collected.

2.2. Data processing

The search time was January 18, 2021, and a total of 3065 records

were retrieved from theWoSCC. After screening the publication type

as review and article, 2619 publications were derived from WoSCC,

and the contents of the publications were full records and cited

references. The deduplication function of CiteSpace was used to

output 2,616 unique records (Figure 1).

2.3. Visualization analyses

For the analysis, we used CiteSpace (version 5.7 R5; Drexel

University) developed by Dr. Chen based on Java software (15).

This is software that allows analysis of collaboration networks in

specific fields and visualization of research topics and presents the

structure, law and distribution of scientific knowledge through visual

means. It is easy to learn and the latest scientific trends and mapping

technologies are mostly from CiteSpace. In our opinion, it has

two advantages: First, CiteSpace can conduct co-citation analysis in

addition to basic analysis and clustering. Second, it is aesthetically

scientific from a visual perspective, and the timeline is a feature of it.

The time slices are set to January 2000 to December 2020,

and the year of each slice is set to 1 year. Set up different nodes

according to the analysis content. For example, select the “author”

node when analyzing the author cooperation network, select the

“keyword” node when analyzing the keyword co-occurrence network,

and select references to describe the collaborative network and cluster

analysis. Then, in different types of visual calculation results, a node

can represent the above-mentioned different node meanings. Any

node with a centrality value ≥0.1 is considered significant. Purple

nodes represent milestones for that node. The meaning of the red

circle is that it is heavily cited in the short term. The link between

two nodes is an edge, which represents a cooperative network.

Understanding these will help us analyze the results to determine

important directions and hotspots in the retrieval field (15, 16).

2.4. Ethics statement

As this study was conducted without any human or animal

subjects, ethical consideration was not required.

3. Results

3.1. Annual trends in publications and
citations

From 2000 to 2020, WoSCC database retrieved a total of 2,616

papers, with a total h-index of 70 and an average of 12.42 citations.

The number of co-cited papers is on the rise (Figure 2). Publications

were published in 237 journals, and 688 authors from 293 institutions

in 44 countries were included these publications received 32479

citations. The most published and cited years are 2020, 388, and 5,890

respectively (Table 1).

3.2. Top 10 leading countries, authors and
institutions

From a regional perspective, as shown in Figure 3 and Table 2,

the 10 countries with the highest number of publications are

the United States, Australia, Canada, the United Kingdom, the
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FIGURE 1

Articles selection flow chart.

FIGURE 2

Publication and citation trends of papers in WoSCC database.

Netherlands, South Korea, Sweden, Spain, Finland, and Norway,

represented by the node size. Among them, the four countries of

the United States, Australia, Sweden, and the United Kingdom have

a centrality >0.1, which is shown in purple in the figure, which

means that they have an important influence on pioneering research

in the EHR global nursing field cooperation. The color of the circle

corresponds to the color of the ribbon above the picture, from 2000

to 2020.
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TABLE 1 Year of publications and citations.

Publications year Number of published papers Percentage Citations Percentage

2000 9 0.34% 0 0.00%

2001 8 0.31% 11 0.03%

2002 10 0.38% 17 0.05%

2003 16 0.61% 41 0.13%

2004 14 0.54% 72 0.22%

2005 30 1.15% 107 0.33%

2006 29 1.11% 185 0.57%

2007 41 1.57% 303 0.93%

2008 45 1.72% 451 1.39%

2009 59 2.26% 608 1.87%

2010 76 2.91% 830 2.56%

2011 116 4.43% 1164 3.58%

2012 128 4.89% 1362 4.19%

2013 148 5.66% 1708 5.26%

2014 168 6.42% 2059 6.34%

2015 194 7.42% 2617 8.06%

2016 237 9.06% 2909 8.96%

2017 269 10.28% 3408 10.49%

2018 292 11.16% 3765 11.59%

2019 339 12.96% 4972 15.31%

2020 388 14.83% 5890 18.13%

FIGURE 3

Regional collaborative networks.
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TABLE 2 Top 10 leading countries, institutions and authors of EHR research in the field of nursing.

Top Frequent Centrality Countries Frequent Centrality Institutions Frequent Centrality Authors

1 1738 0.74 The

United States

63 0.12 University Penn 12 0 Bates, David W

2 127 0.26 Australia 55 0.1 University

Minnesota

12 0 Monsen, Karen A

3 106 0.02 Canada 53 0.05 University

Colorado

10 0 Hypponen,

Hannele

4 93 0.12 England 51 0.18 University

Michigan

10 0 Keenan, Gail M

5 74 0.06 Netherlands 50 0.11 Duke University 10 0 Stifter, Janet

6 69 0 South Korea 49 0.18 Harvard Medical

School

10 0 Wilkie, Diana J

7 52 0.14 Sweden 47 0.08 Brigham and

Women’s

Hospital

9 0 Bowles, Kathryn

H

8 49 0.03 Spain 40 0.1 Columbia

University

9 0 Saranto, Kaija

9 48 0 Finland 40 0.09 Ohio State

University

9 0 Yao, Yingwei

10 44 0.02 Norway 39 0.05 University

Wisconsin

8 0 Bakken, Suzanne

FIGURE 4

Institutions collaborative networks.

From the perspective of the author, there are no authors with

centrality >0.1, so we only provide the top 10 authors in Table 2 by

the number of publications.

From the perspective of the author’s institution, there are

a total of six universities with centrality ≥0.1 (Figure 4).

Additionally, Figure 4 shows collaborations among the top ten

institutions, identified by different colors. They are University

Michigan, University Minnesota, Harvard Medical School,

University Penn, Duke University, University Minnesota,

Columbia University. The details of the top 10 countries and

institutions are shown in Table 2. All institutions are in the

United States.
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FIGURE 5

Journals collaborations of EHR in the nursing field.

3.3. Top 10 leading cited journals

Figure 5 below shows the top 10 cited journals, in descending

order: Journal of American Medical Informatics Association (921),

JAMA-Journal of the American Medical Association (864), New

England Journal of Medicine (748), International Journal of Medical

Informatics (666), Annals of Internal Medicine (551), Health Affairs

(496), Journal of advanced nursing (444), CIN-Computers Informatics

Nursing (439), Journal of General Internal Medicine (436) and

Archives of Internal Medicine (413). Besides, four nodes whose

centrality is >0.1 are purple, and the corresponding journals are

Research in Nursing & Health, Journal of Advanced Nursing, AMIA

Annual Symposium Proceedings, and Annals of Internal Medicine.

3.4. Discipline-specific trends

The analysis is shown in Figure 6 that health care science and

services (n = 672), medical informatics (n = 606), and computer

science (n = 402) reported the highest number of publications. The

font size and thickness represent the frequency, the larger the word,

the more frequency. The following 19 disciplines have a centrality

value >0.1, resulting in the collaborative impact of important

innovations, in descending order: respiratory system, neurosciences

and neurology, cardiac and cardiovascular systems, neurosciences,

health policy and services, critical care medicine, general and internal

medicine, psychiatry, public environmental and occupational health,

psychology, allergy, engineering, oncology, pediatrics, surgery, health

care sciences and services, obstetrics and gynecology, medicine,

research and experimental and nursing (Figure 6).

3.5. Keyword analysis

A total of 227 research keywords were identified, revealing the

most-researched topics (Figure 7). Set the co-occurrence frequency

threshold to filter out these keywords with low co-occurrence

frequency for better analysis. The figure shows co-occurrence when

thresholds were set to 20, including 74 keywords. From 2000 to 2020,

there seem to be citation outbursts on 25 keywords, showing the

largest research activity in the field of nursing EHR (Figure 8). The

time interval is plotted on the blue line, and the period of the outbreak

keyword is highlighted in red. Sort by the start time of the emergency.

3.6. References-based co-citation analysis

A total of 2616 qualified records were cited by 32,479 references.

The network is divided into 24 co-citation clusters. The cluster

analysis produced a simple clustering network (Figure 9) and

timeline view (Figure 10), using a log-likelihood ratio (LLR) text

mining method to name each cluster. It can be seen from the figure

that Jha (17), Poissant (18), and Blumenthal (19), these three articles

are very important because the high frequency of citations shows that

they are of great significance in this field.

It can be seen from Figure 10 that the research fields are

different in different periods. There are 4 clusters (#1 long-term care,

#17 mobile application, #19 inpatient falls, and #24 advance care

planning) that are the main research areas with most publications

dated around 2015, shown in red. In descending order of size, the top

four clusters are #0 electronic documentation, #1 long-term care, #2

decision support system, and #3 change. More detailed information

about some clusters is presented as follows.
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FIGURE 6

Categories collaborative networks.

FIGURE 7

Research keywords visual analysis.

3.7. Top 10 leading highly cited articles

Highly cited articles can be used to identify the key knowledge

base of each research field (20). The top 10 most cited publications

are shown in Table 3 (18, 21–29). These articles mainly focus on the

application of EHR in primary health care, as well as the views of

medical staff and the impact on patients.

4. Discussion

Academic work in this area has shifted from focusing

on the popularization of EHR to the current stage of

application. The efficient and safe use and development

of EHR are also regarded as an important direction in the

nursing field.
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FIGURE 8

Keywords with the citation bursts of research from 2000 to 2020.

Our research shows that the number of EHR publications in

nursing research has continued to grow in recent years. This trend

may be inseparable from the widespread application of hospital

information management. The use of EHR in health facilities is

already a rule rather than an option (30), and nursing staff is also

exploring knowledge using EHR. In addition to the wider use of EHR

in hospitals, many articles explore the pros and cons of using EHR in

other institutions such as nursing homes (31, 32).

Collaborative networks reveal collaborative links between

institutions and countries. The adoption of the Health Information

Technology Adoption Act in the United States in 2009 resulted in

high penetration of EHR (33). Analysis of subject categories and

journals can help understand research directions for a particular

subject. There are also more and more articles published in

nursing journals, indicating that EHR is also valued by nurses

and will better address clinical nursing problems. The co-speech

category shows that healthcare science and services, medical

informatics, and computer science are the three most active

subject categories. It can be seen that with the popularization of

EHR, medical informatization and the combination of medicine
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FIGURE 9

Cluster visual analysis of EHR research in the field of nursing.

FIGURE 10

Cluster timeline visual analysis of EHR research in the field of nursing.

and computing have become research hotspots. Brom et al. used

machine learning methods to identify patients with potential

readmission in a hospital in EHR for better allocation of care

resources (34). Lin et al. applying a “Practical Informatics” Strategy

During COVID-19 Using EHR to Meet Demands Created by

Mass Influx into Health Systems (35). Lopez et al. also identified

electronic health record completion as an outcome measure for

pressure ulcers, falls, and social vulnerability risk during the

COVID-19 epidemic, although this may also increase the physical

and mental burden on health care workers during the pandemic

(36, 37).

As can be seen from the keyword co-occurrence analysis and

citation burst, EHR is in the stage of a continuous validation and

overcoming obstacles. Cluster #1 “long-term care”: This cluster

mainly discussed the problem faced by seniors and vulnerable

populations that require 24-hour nursing care. Patients in need

of long-term care have more and more opportunities to enter

nursing homes, some of which are best described by HER (38, 39).
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TABLE 3 Top 10 most cited articles in research.

Rank Citation
counts

References Time Title Abbreviations of
journals

1 891 Bakitas M et al. (21) AUG 19 2009 Effects of a Palliative Care Intervention on Clinical

Outcomes in Patients With Advanced Cancer The Project

ENABLE II Randomized Controlled Trial

JAMA

2 579 Hayrinen K et al. (22) MAY 2008 Definition, structure, content, use, and impacts of electronic

health records: A review of the research literature

Int J Med Inform

3 479 Poissant L et al. (18) SEP-OCT 2005 The impact of electronic health records on time efficiency of

physicians and nurses: A systematic review

J Am Med Inform Assn

4 304 Clegg A et al. (23) MAY 2016 Development and validation of an electronic frailty index

using routine primary care electronic health record data

Age Aging

5 262 Bolton-Moore C et al. (24) OCT 24 2007 Clinical outcomes and CD4 cell response in children

receiving antiretroviral therapy at primary health care

facilities in Zambia

Jama

6 231 Hobbs FDR et al. (25) JUN 4 2016 The clinical workload in UK primary care: a retrospective

analysis of 100 million consultations in England, 2007-14

Lancet

7 227 Stellefson M et al. (26) FEB 2013 The Chronic Care Model and Diabetes Management in US

Primary Care Settings: A Systematic Review

Prev Chronic Dis

8 202 Coiera EW et al. (27) MAY 6 2002 Communication loads on clinical staff in the emergency

department

Med J Australia

9 201 Pronovost P et al. (28) DEC 2003 Medication reconciliation: A practical tool to reduce the risk

of medication errors

Crit Care

10 161 Hewitt ME et al. (29) JUN 1 2007 Perspectives on post-treatment cancer care: Qualitative

research with survivors, nurses, and physicians

J Clin Oncol

During these transitions, communication must be carried out on

multiple levels to ensure a smooth transition between the patient

and the receiving organization, the smooth transfer of records

between organizations, the maximization of results, the minimization

of hospital stays, and where possible To reduce the possibility of

rehospitalization (38).

Cluster #17 “mobile application”: The literature in this cluster

describes that there has been a shift from implementing EHR

to optimizing these systems, and the long-term issue of patient

data operability is becoming more and more important. People

are increasingly interested in obtaining medical information from

hospital records and databases and providing portable records for

convenient patient control (40).

Cluster #19 “inpatient falls”: This clustering literature covers

adverse events, such as inpatient falls. This research topic has been

a long-standing research hotspot. An inpatient fall is a preventable

adverse event that can be managed more effectively and efficiently

through a data-driven predictive approach (41). Nakatani et al.

implemented a new approach and explored its effects in neurologic

inpatient units. The results suggest that integrating an automatic

fall prediction system with the EMR system could reduce inpatient

falls (42).

Cluster #24 “advance care planning”: It mainly refers to the

application of EHR. Advance care planning can ensure that care

meets the wishes and needs of the patient. However, due to the

failure to allow patients to participate in the planning in advance,

the inability to obtain previous documents, or the poor quality of

the documents, there is often a lack of advance care planning in

actual clinical work. The standardized use of EHR helps to solve this

problem. Kruse et al. used intervention tools in EHR to address these

obstacles (38).

Difficulties remain in the application of EHR: EHR are not simply

the transfer of paper content to an electronic information system.

Some studies have compared the electronic health record and the

paper version. There is notmuch difference in content, and the record

format and terminology are not uniform, which weakens the original

advantages (30, 43). In addition, may it take longer for nurses who

are too old or new to the profession to learn how to use it, which

also increases the workload of nurses in their daily work (44–46).

What needs to be done in the future is to add plug-ins or tools to

the electronic health record to assist the medical staff to understand

the patient’s condition, so that the electronic health record is not only

a function of recording, but it is the most important to discover the

function behind it and apply it to clinical work. It is also necessary

to enhance the adaptability of nurses to EHR and improve computer-

quality education to promote and innovate electronic health record

systems that better meet the needs of clinical work (47).

5. Limitations

This study still has certain limitations. Firstly, a single database

(WoSCC) was utilized. Future research can be extended to other

databases. Secondly, since EHR does not have a unified definition

in different countries and regions, there may be omissions in

the retrieval process. Future research can increase the scope of

EHR retrieval or hope that the standardized terminology of EHR

will be unified. The search was limited to the English language.

Therefore, a large number of articles in other languages may not be

included. Finally, the peak period of cited references is 2–3 years,

many studies have shown that EHR provides an effective guide

for COVID-19 patients to diagnose problems, plan and implement
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appropriate interventions (48), or predict mortality and complication

(49). However, due to the low frequency of citations that are not

displayed in the visual view, there may also be similar problems

other than COVID-19. In the future, this field should be explored at

reasonable intervals.

6. Conclusion

Between 2000 and 2020, research related to EHR in the field

of nursing increased year by year. Network map of countries and

institutions showing strong collaboration between four countries

and six institutions. The United States is the most influential

country, University Penn in the United States is the most productive

institution. The Journal of American Medical Informatics Association

is the most cited. This study also reveals key aspects of EHR research

and changes over time through co-occurrence, burst keyword

analysis, and cluster analysis, but in the future, more research on EHR

in the field of nursing is still needed.
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