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Data-based modeling for
hypoglycemia prediction:
Importance, trends, and
implications for clinical practice
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of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South

University, Changsha, China

Background and objective: Hypoglycemia is a key barrier to achieving optimal

glycemic control in people with diabetes, which has been proven to cause a

set of deleterious outcomes, such as impaired cognition, increased cardiovascular

disease, and mortality. Hypoglycemia prediction has come to play a role in diabetes

management as big data analysis andmachine learning (ML) approaches have become

increasingly prevalent in recent years. As a result, a review is needed to summarize

the existing prediction algorithms and models to guide better clinical practice in

hypoglycemia prevention.

Materials and methods: PubMed, EMBASE, and the Cochrane Library were searched

for relevant studies published between 1 January 2015 and 8 December 2022. Five

hypoglycemia prediction aspects were covered: real-time hypoglycemia, mild and

severe hypoglycemia, nocturnal hypoglycemia, inpatient hypoglycemia, and other

hypoglycemia (postprandial, exercise-related).

Results: From the 5,042 records retrieved, we included 79 studies in our analysis.

Two major categories of prediction models are identified by an overview of the

chosen studies: simple or logistic regression models based on clinical data and

data-basedMLmodels (continuous glucosemonitoring data ismost commonly used).

Models utilizing clinical data have identified a variety of risk factors that can lead to

hypoglycemic events. Data-drivenmodels based on various techniques such as neural

networks, autoregressive, ensemble learning, supervised learning, and mathematical

formulas have also revealed suggestive features in cases of hypoglycemia prediction.

Conclusion: In this study, we looked deep into the currently established

hypoglycemia prediction models and identified hypoglycemia risk factors from

various perspectives, whichmay provide readers with a better understanding of future

trends in this topic.

KEYWORDS

diabetes mellitus, hypoglycemia, prediction, data-based algorithms or models, machine

learning

1. Introduction

Diabetes mellitus is a chronic disease characterized by high blood glucose caused by

the inability to produce or effectively use insulin. Maintaining blood glucose within the

normal range may help prevent or delay the development of diabetic microvascular or

macrovascular complications (1–4). However, intensive glycemic control increases the frequency

of hypoglycemia while decreasing the risk of long-term complications (5). Hypoglycemia is

usually defined as a blood glucose concentration of <70 mg/dL. Counterregulatory response
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and impaired cognitive function are two physical changes brought on

by hypoglycemia (6–8). In addition to impaired behavioral functions

such as fear of hypoglycemia (9), depression (10), and dyskinesia (11,

12), hypoglycemia can also result in fatal cardiovascular events (13).

Clinically, hypoglycemia can be classified as mild (MH) or

severe (SH) depending on whether third-party assistance is required

during hypoglycemia episodes or if there is a loss of consciousness

(14). The frequencies of MH and SH episodes in patients with

type 1 diabetes (T1D) have been estimated to be 1.6 and 0.029

episodes per person-week, respectively (15), and the incidence of SH

was approximately 0.44 episodes per person-year in insulin-treated

patients with type 2 diabetes (T2D) (16). Furthermore, hypoglycemia

is more common in patients with diabetes who are hospitalized

(17, 18). SH is extremely dangerous and is more likely to occur

in patients on long-term insulin therapy (5). The counterregulatory

response is critical in preventing MH from progressing to SH.

However, in individuals with recurrent hypoglycemia, the frequency

of hypoglycemic warning symptoms tends to decrease gradually,

leading to impaired awareness of hypoglycemia (IAH) and the

occurrence of asymptomatic hypoglycemia (19, 20), and IAH, in

turn, increases the risk of SH (21, 22), eventually forming a

vicious cycle.

Clinical attention is also given to nocturnal hypoglycemia,

exercise-related hypoglycemia, and inpatient hypoglycemia. In

T1D patients known as “fragile diabetes”, nocturnal hypoglycemia

(NH) accounted for 55% of hypoglycemia when a blood glucose

concentration <54 mg/dL (23–25), and this proportion increased

to 75% in pediatric patients (26). Patients may be unable to detect

episodes of NH in time while sleeping, which may predispose

them to IAH in the long run or even result in “dead-in-bed

syndrome”. Aside from the benefits of physical activity, such as

improving cardiopulmonary adaptability, blood lipid levels, and

lowering the risk of long-term cardiovascular events in patients

with diabetes (27–29), it may also cause post-exercise hypoglycemia

due to increased insulin sensitivity in the short term (30),

resulting in avoidance of exercise due to fear of hypoglycemia.

Furthermore, symptoms of early hypoglycemia in T1D patients

may be masked by physical activity, which may increase the

frequency of SH in this population (31). The frequent occurrence

of iatrogenic hypoglycemia in hospitalized patients is also not

negligible. A systematic review has shown that intensive glucose

control increases the risk of inpatient hypoglycemia (32). It was

estimated that patients hospitalized for diabetes or hyperglycemia

experience an average of two hypoglycemic events per week,

with the majority occurring during the night (33). Worse still,

inpatient hypoglycemia was associated with a variety of negative

outcomes, including increased mortality and serious cardiovascular

events (13).

Hypoglycemia prediction is crucial in clinical practice. Many

studies have emerged in the last decade that used conventional

approaches based on physiological and clinical parameters to predict

hypoglycemia (34). These approaches were typically trained using

retrospectively collected demographic data, laboratory test results,

glucose-lowering agents, and other indicators that may be associated

with hypoglycemia obtained from electronic health records in a

certain period (35, 36). And the most commonly used statistics were

linear regression, logistic regression, Cox hazards regression, and

other operations tailored to the problem at hand.

Machine learning (ML) advances, on the other hand, and the

need for more accurate hypoglycemia prediction has resulted in data-

driven predictive models. Benefiting from the rapid development of

continuous glucose monitoring (CGM), the risk of hypoglycemia

could be simply predicted by specific parameter calculations such

as low blood glucose index (LBGI) (37, 38). Complex CGM-based

hypoglycemia predictions were used to develop and improve the

artificial pancreas (AP) algorithm, which alerts users when blood

glucose levels drop or hypoglycemia is imminent (39). Data-driven

algorithms and ML models improve hypoglycemia prediction (40).

CGM glucose data are frequently used for ML model establishment

due to their continuity and bulkiness.

According to the prediction horizon (PH), such models can be

divided into short-term (<180min), mid-term (180min to 24 h), and

long-term (several days, months, or even years). Undoubtedly, the

prediction efficiency of CGM-based models would decrease with the

extension of PH. Since glucose autocorrelation usually disappears

after 30min (41), and 30min is the minimum time interval for

effective patient intervention to prevent accidents, current CGM-

based hypoglycemia prediction models set PH at 30min or above.

In brief, current hypoglycemia prediction models are mostly based

on clinical parameters, CGM data, or a combination of both. The

predictive accuracy varied with the study population, outcome

definition, PH definition, modeling technique and model training

and validation approaches (42). As for clinical data-based models,

large sample size and sufficient data processing are frequently

required to ensure the accuracy and reliability. Such models typically

collect clinical hypoglycemic events for risk stratifying and further

hypoglycemia-associated feature selection, followed by internal or

external validation of model generalizability. The PH of such models

tends to be broad, ranging from predicting short-term hypoglycemic

events like inpatient hypoglycemia to long-term hypoglycemic events

like SH events months later. It is important to note that a shorter

PH may be more useful for prompt clinician intervention, whereas

a larger PH increases the prevalence of an outcome and consequently

model performance, but may be less useful as a decision support

tool (42).

Felizardo et al. (34) conducted a systematic review of data-

based algorithms and models in blood glucose prediction, which

could be considered an extension of the work of Oviedo et al.

(43). They only looked at ML approaches to prediction, and the

relevant literature was from before June 2020. Nonetheless, no

study comparing conventional and data-based hypoglycemia risk

prediction has been discussed and compared from a more holistic

clinical perspective to our knowledge. In this study, we investigated

the currently established hypoglycemia prediction models and

identified hypoglycemia risk factors from various perspectives, which

may provide patients and clinicians with a better understanding

of future trends in this topic. Our review will be discussed

from three perspectives: (1) an overview of currently established

hypoglycemia prediction models; (2) dividing the selected studies

into five hypoglycemia prediction parts: real-time hypoglycemia,

MH/SH, NH, inpatient hypoglycemia, and other hypoglycemia

(postprandial, exercise-related), explored hypoglycemia risk factors

and illustrated prediction approaches from clinical and ML

perspectives, respectively; (3) a comprehensive evaluation and

comparison of current hypoglycemia prediction models, with clinical

implications and insights into future trends.

Frontiers in PublicHealth 02 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1044059
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2023.1044059

FIGURE 1

Flow diagram of the selection process.

2. Methods

2.1. Search strategy

We searched the PubMed, EMBASE, and Cochrane Library

databases for relevant literature from 1 January 2015 to 8 December

2022. The search keywords were “diabetes”, “hypoglycemia

prediction”, “hypoglycemia warning”, “hypoglycemia detection” and

“hypoglycemia estimation”. A total of 5,042 records were found, with

61 of them being relevant to our topic. In addition, we manually

added 18 records related to the included records after full-text

reading and reference tracking. Figure 1 depicts the flow diagram of

detailed literature inclusion.

2.2. Inclusion and exclusion criteria

To include as many relevant records as possible to increase the

reliability of our review, we included the records which met the

following conditions: (1) the study population were patients with

abnormal glucose tolerance or diagnosed with diabetes, regardless of

the age of the patients and the type of diabetes; (2) the original data

used for the analysis of factors related to hypoglycemia in the records

and the establishment of predictive algorithms or models were the

patient basic data, medication regimen, laboratory test results and

blood glucose measurement results (self-monitoring of blood glucose

[SMBG] or CGM results) or other indices retrieved from the real-

world studies, clinical trials or cohort studies; (3) the main results

of the record were detailed and were exact correlations, algorithms

or models related to hypoglycemia prediction. We excluded the

following types of records: (1) the research topic was the algorithm

proposal or improvement of hypoglycemia warning in AP or

CGM products; (2) NCT protocols; (3) abstract/short papers; (4)

reviews; (5) blood glucose concentration predictions only but not

hypoglycemic events; (6) comments; (7) in silico study.

2.3. Data extraction and quality assessment

Data were extracted from the full text and supplementary

information of eligible records according to pre-established literature

classification criteria. For each study, the following data were

carefully extracted: first author, year of publication, use of

database features (study population, sample size, type of input

clinical data for modeling, source of input glucose data for

modeling, modeling approach), type of hypoglycemia prediction

(real-time hypoglycemia, MH/SH, NH, inpatient hypoglycemia,

other hypoglycemia [postprandial, exercise-related]). Then, the

algorithms or models used, the performance, as well as the

significance of model performance metrics were tabulated in detail

according to the type of hypoglycemia prediction.

2.4. Research emphasis

1) An overview of the currently established prediction model

of hypoglycemia;

2) divided the selected studies into five hypoglycemia prediction

parts: real-time hypoglycemia, MH/SH, NH, inpatient

hypoglycemia, and other hypoglycemia (postprandial, exercise-

related), explored the risk factors of hypoglycemia and

illustrated prediction approaches from the perspective of

clinical and machine learning, respectively;

3) a comprehensive evaluation and comparison of current

hypoglycemia prediction models, extraction of clinical

implications, and insights into the future trends in this topic.

3. Results

3.1. Eligible studies

Of the 5,042 records obtained after the initial search, 220 records

remained after the primary screening of titles and abstracts and were

assessed for eligibility, and 159 records were excluded after full-

text review, as follows: (1) 69 records were related to the validation

of algorithms in the AP or insulin pump; (2) 20 records were

without full text; (3) 15 records were protocols for randomized

controlled trials; (4) 22 records were reviews; (5) 28 records only

predicted blood glucose concentrations but not hypoglycemic events;

(6) three records were comment, and (7) two records were in

silico studies (Figure 1). Furthermore, we added 18 relevant studies

through reference tracking. As a result, the total number of studies

included was 79: 15 studies on real-time hypoglycemia prediction

(19.0%), 24 studies on MH/SH prediction (30.4%), 13 studies on NH

prediction (16.5%), 17 studies on inpatient hypoglycemia prediction

(21.5%), two studies on exercise-related hypoglycemia prediction

(2.5%), and three studies on postprandial hypoglycemia prediction
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FIGURE 2

The prediction type and proportion of selected studies.

(3.8%), three studies on real-time and NH prediction (3.8%), 1 study

on real-time and inpatient hypoglycemia prediction (1.3%) and 1

study on real-time, NH and postprandial hypoglycemia prediction

(1.3%) (Figure 2). Details of all included articles are summarized in

Table 1.

3.1.1. Study participants
Patients with T1D and T2D made up the majority of the

participants in the chosen studies, with 31 of them (39.2%) only

including T1D patients. The sample sizes of among studies varied

significantly: Six studies with a maximum of 10 participants

(7.6%), 22 studies with 11 to 100 participants (27.8%), 19

studies with 101 to 1,000 participants (24.1%), 16 studies with

1,001–10,000 participants (20.3%), 13 studies with 10,001–

100,000 participants (16.5%) and two studies more than 100,000

participants (2.5%) (Figure 3). The study subjects were from all

age groups.

3.1.2. Inputs
One of the most important strategies for successful hypoglycemia

prediction is the selection of appropriate inputs. Thirty-eight

of the 79 included studies (48.1%) used CGM data or CGM-

derived indices to predict hypoglycemia. Demographics information,

insulin use, laboratory tests results, comorbidities, and a history

of hypoglycemia were all widely included in clinical hypoglycemia

prediction models. Furthermore, other blood glucose-related factors

such as carbohydrate intake or meal information (13/79, 16.5%)

and physical activity or exercise (7/79, 8.9%) were also included.

In addition to the aforementioned factors, 12 studies (15.2%) used

physiological parameters such as heart rate, near-infrared light,

skin impedance, skin temperature, sweating, and sleep to develop

hypoglycemia prediction models (Table 2, Figure 4).

3.1.3. Prediction horizon (PH)
PH is the time period that the model has to forecast the

outcome in the future. Prediction windows ranging from 15min

to hours, days, or even months have been reported. It is natural

to anticipate a decrease in prediction power as the PH increases

due to the limited number of available confounding factors in

the data used to train the model. A shorter PH may be more

useful for prompt clinician intervention, whereas a larger PH

increases the prevalence of an outcome and consequently model

performance, but may be less useful as a decision support tool

(42). An increase in PH, on the other hand, improves clinical

usability of prediction services by extending the time required to

take the necessary action during a critical situation, but at the

expense of clinical accuracy. According to the aforementioned PH

division, 21 studies were short-term forecasting (26.6%), 21 studies

were mid-term forecasting (26.6%) and 19 studies were long-term

forecasting (24.1%).

3.1.4. Modeling approaches
Various classes of ML techniques have been used in general

dynamic system modeling, regression, and prediction services.

However, for hypoglycemia prediction in the present study,

logistic regression (LR) were the most used techniques (28/79,

35.4%), as shown in Figure 5. Random forest (RF), one of

the tree-based models, was the second most used approach

(14/79, 17.7%). Support vector machines (SVM) was the third

most used algorithm (10/79, 12.7%). Autoregressive and neural

networks in various forms ranked as the fourth most used

techniques (8/79, 10.1%). XGBoost and support vector regression

(SVR) ranked as the fifth (6/79, 7.6%) and sixth most used

technique (5/79, 6.3%). Long-short-term memory (LSTM) (4/79,

5.1%), naïve Bayes (3/79, 3.8%), Adaboost (2/79, 2.5%), k-nearest

neighbors (k-nn) (2.5%) and other techniques were also used in

hypoglycemia prediction.
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TABLE 1 An integrated analysis of the selected studies.

References Diabetes Sample Clinical inputs Glucose
inputs

Algorithms PH Outcome
definition

Validation
approach

Model
performance

Prediction
type

Gerstein et al.

(44)

IFG/IGT, T2D 12,537

participants, ≥

50 years

Demographics, Lab data,

GLA, comorbidities

Cox regression Hypoglycemia≤

54 mg/dL, ≤ 36

mg/dL

MH/SH

Bordier et al.

(45)

T2D 987 participants,

≥ 70 years

Demographics, Lab data,

GLA, comorbidities,

COM, mental

questionnaires results

LR Hypoglycemia <

60 mg/dL

MH/SH

Cariou et al. (46) T1D, T2D 4,424

participants, ≥

18 years

Demographics, Lab data,

GLA, comorbidities,

COM, previous HYPO

episodes

SMBG LR Hypoglycemia <

70 mg/dL

MH/SH

Cichosz et al.

(47)

T1D 21 participants,

58 years

Heart rate variability CGM Pattern

classification

20min One single SG <

70 mg/dL

(5min)

10-fold cross

validation

AUC= 0.96, Se= 100%,

Sp= 91%

Real-time

Ganz et al. (48) T2D 7,235

participants, ≥

18 years

Demographics, GLA,

previous

SH/healthcare/medication

LR Hypoglycemia≤

40 mg/dL

MH/SH

Inzucchi et al.

(49)

T2D 1,699

participants, 59.4

years

CGM parameters CGM Correlation MH/SH

Samuel et al. (50) T2D NR GLA, HbA1c, diabetes

duration, GFR, BMI

Mathematical

model

Hypoglycemia <

70 mg/dL, 50

mg/dL

External MH/SH

Sonoda et al.

(51)

T1D, T2D 123 participants,

65.9 years

Social factors, lifestyle

factors, Lab data, GLA

LR Hypoglycemia <

70 mg/dL, ≤ 49

mg/dL

MH/SH

Sudharsan et al.

(52)

T2D 163 participants,

52.8 years

Medication SMBG RF, SVM, k-nn,

naïve Bayes

24 h, the 8th day Hypoglycemia <

70 mg/dL

Cross

validation

24 h: Se= 91.7%, Sp

= 69.5% 8th day: Se=

90.4%, Sp= 91.1%

MH/SH

Ling et al. (53) T1D 16 participants,

14.6 years

ECG SMBG ELM-based NN 3min Hypoglycemia <

60 mg/dL

Random

subsampling

Se= 78.0%, Sp= 60.0% NH

Sampath et al.

(54)

T1D 34 participants,

18–65 years

CGM parameters CGM Aggregating

ranking

Nighttime Hypoglycemia <

70 mg/dL

External Se= 77.0%, Sp= 83.4% NH

Tkachenko et al.

(55)

T1D 34 participants,

18–65 years

CGM raw data and

parameters

CGM Aggregating

ranking

Nighttime Hypoglycemia <

70 mg/dL

Random

subsampling

Se= 73.4%, Sp= 87.8% NH

Klimontov et al.

(56)

T2D 83 participants,

65–80 years

CGM parameters CGM LR Nighttime Hypoglycemia≤

70 mg/dL

Acc= 75.6%, Se=

84.0%, Sp= 62.1%

NH

(Continued)
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TABLE 1 (Continued)

References Diabetes Sample Clinical inputs Glucose
inputs

Algorithms PH Outcome
definition

Validation
approach

Model
performance

Prediction
type

Karter et al. (57) T2D 206,435

participants, ≥

21 years

Demographics, insulin/

SU use, history of

HYPO-related

utilization, prior year ED

use

Recursive

partitioning

1 year Hypoglycemia-

related ED or

hospital use

Internal,

external

Internal validation:

c-statistic= 0.83,

external validation 1/2:

c-statistic= 0.81/0.79

MH/SH

Schroeder et al.

(58)

T1D, T2D 70,438

participants, 59.8

years

Demographics, diabetes

type, Lab data, GLA,

comorbidities, COM,

previous HYPO events

Cox regression 6 months Hypoglycemia <

70 mg/dL

External External validation 1/2:

c-statistic= 0.80/0.84

MH/SH

Stuart et al. (59) T1D, T2D 9,584

participants, >

16 years

Demographics, Lab data,

comorbidity score, GLA,

previous type of

admission

LR Hospital stay Hypoglycemia <

70 mg/dL

Bootstrapping AUC= 0.733 Inpatient

Ena et al. (60) DM 1,400

participants

Demographics, Lab data,

comorbidities, GLA

LR Hospital stay Hypoglycemia <

70 mg/dL

External Validation: AUC= 0.71 Inpatient

Sakurai et al.

(61)

T2D 50 participants,

64 years

Demographics, Lab data SMBG, CGM Mathematical

formula

Lowest

nocturnal blood

glucose

R2
= 0.90 NH

Chow et al. (62) T2D 10,251

participants, 62.8

years

Demographics, GLA,

comorbidities, previous

HYPO events, other

medication

Cox regression 5 years Hypoglycemia≤

50 mg/dL

5-fold cross

validation

Validation: c-statistic=

0.782

MH/SH

Torimoto et al.

(63)

T2D 294 participants,

62.2 years

Demographics, COM,

Lab data, GLA, CGM

parameters

CGM LR One single SG <

70 mg/dL

(5min)

MH/SH

Han et al. (64) T2D 1,676,885

participants, 57.9

years

Demographics, GLA,

current smoking,

exercise, insulin,

comorbidities, fasting

glucose levels, previous

HYPO events

Cox regression 1 year SH events

identified by

ICD-10 codes

Bootstrapping Validation: c-statistic=

0.866, Se= 80.2%, Sp=

79.7%

MH/SH

Elvebakk et al.

(65)

T1D 20 participants,

41.1 years

Sweating, skin

temperature, ECG,

counter-regulatory

hormones, symptoms of

HYPO

ROC analysis MH/SH

Winterstein et al.

(66)

DM 21,840

participants, >

18 years

Demographics, GLA,

Lab data, oral intake

related, service location

related, comorbidities

SMBG LR 24 h Hypoglycemia <

50 mg/dL not

followed by

glucose value >

80 mg/dL within

10min

Bootstrapping On day 3–5: c-statistic=

0.877

Inpatient

(Continued)
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TABLE 1 (Continued)

References Diabetes Sample Clinical inputs Glucose
inputs

Algorithms PH Outcome
definition

Validation
approach

Model
performance

Prediction
type

Mathioudakis

et al. (67)

DM 19,262

participants, 61.3

years

Demographics,

diagnoses, insulin,

comorbidities, Lab data,

medications, diet order,

steroid use, BG readings

LR 24 h Hypoglycemia≤

70 mg/dL, < 54

mg/dL

Internal ≤ 70 mg/dL: c-statistic=

0.77; < 54 mg/dL:

c-statistic= 0.80

Inpatient

Cichosz et al.

(68)

T1D 56 participants,

68.7 years

Heart rate variability CGM Pattern

classification

20min One single SG <

70 mg/dL

(5min)

Internal AUC= 0.95 Real-time

Elvebakk et al.

(69)

T1D 20 participants,

41.1 years

ECG, near-infrared and

bioimpedance

spectroscopy

SMBG Probabilistic

model

MH/SH

Jaggers et al. (70) T1D 10 participants,

13–17 years

Physical activity intensity CGM LR Two consecutive

SG < 70 mg/dL

(10min)

NH

Li et al. (71) DM 38,780

participants, 57

years

Demographics, Lab data,

previous HYPO events,

GLA, comorbidities,

COM, insurance

LR, CART, RF 2 years Hypoglycemia <

70 mg/dL

10-fold cross

validation

AUC= 0.89 for LR

model, AUC= 0.88 for

CART model, AUC=

0/90 for RF model

MH/SH

Oviedo et al. (72) T1D 10 participants,

41 years

Insulin, carbohydrate

intake, BG level at

mealtime

CGM naive Bayes,

AdaBoost, SVM,

ANN

6h Three

consecutive SG

< 70 or 54

mg/dL (15min)

5-fold cross

validation

< 70 mg/dL: Se= 49.0%,

Sp= 74.0%; < 54 mg/dL:

Se= 51.0%, Sp= 74.0%

Postprandial

Oviedo et al. (73) T1D 10 participants,

41 years

Insulin, carbohydrate

intake

CGM SVM 6h Three

consecutive SG

< 70 or 54

mg/dL (15min)

5-fold cross

validation

< 70 mg/dL: Se= 71.0%,

Sp= 79.0%; < 54 mg/dL:

Se= 77.0%, Sp= 81.0%

Postprandial

Shah et al. (74) DM 585 participants,

69.9 years

Demographics, previous

HYPO events, Lab data,

GLA, CKD status

LR Hospital stay Hypoglycemia

≤70 mg/dL

External Validation: c-statistic =

0.642, Se = 77.0%, Sp =

28.0%

Inpatient

Tronstad et al.

(75)

T1D 20 participants,

18-60 years

Near-infrared,

bioimpedance, skin

temperature

PLS, ANN Hypoglycemia <

72 mg/dL

MH/SH

Vu et al. (76) T1D 9,800

participants, 45.3

years

CGM RF 3 h, 6 h Three

consecutive SG

< 70 mg/dL

(15min)

10-fold cross

validation

3h: AUC= 0.90; 6 h:

AUC= 0.84

NH

Reddy et al. (77) T1D 43 participants,

33 years

Demographics, exercise,

glucose, hormone

features

DT, RF During exercise Hypoglycemia <

70 mg/dL

10-fold cross

validaton

Acc= 86.67%, Se=

86.21%, Sp= 86.89%

During exercise

Yang et al. (78) T1D, T2D 100 participants,

44.8 years

CGM ARIMA 30min Three

consecutive SG

≤ 70 mg/dL

(9min)

Se T1D/T2D =

100.0/100.0%; FPR

T1D/T2D = 10.7/8.0%

Real-time

Gadaleta et al.

(79)

T1D 89 participants CGM SVR 30min Hypoglycemia≤

70 mg/dL

Leave-one-out

validation

Se= 75.0%, PPV=

51.0%

Real-time
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TABLE 1 (Continued)

References Diabetes Sample Clinical inputs Glucose
inputs

Algorithms PH Outcome
definition

Validation
approach

Model
performance

Prediction
type

Seo et al. (80) T1D, T2D 104 participants,

> 18 years

CGM RF, SVM, k-nn,

LR

30min One single SG ≤

70 mg/dL

(5min)

5-fold cross

validation

Se= 89.6%, Sp= 91.3% Postprandial

Choi et al. (81) DM 487 participants,

51.8 years

Demographics, GLA,

Lab data, previous BG

control

Description Inpatient

Bertachi et al.

(82)

T1D 10 participants,

> 18 years

CGM raw data, meals,

insulin, heart rate signal,

steps, calories burned,

sleep period

SMBG, CGM MLP, SVM Nighttime One single SG <

70 mg/dL

(15min)

5-fold cross

validation

MLP: Acc= 77.38%, Se

= 69.52%, Sp= 78.98%;

Acc= 80.77%, Se=

78.75%, Sp= 82.15%

Real-time, NH

Elhadd et al. (83) T2D 13 participants,

51 years

Demographics, Lab data,

physical activity,

medication

CGM LR, RF,

XGBoost, SVM

During

Ramadan

Acc= 27.9% MH/SH

Hu et al. (84) T2D 257 participants Demographics, Lab data,

COM, comorbidities

LR Hospital stay Hypoglycemia≤

70 mg/dL

Bootstrapping AUC= 0.664 Inpatient

Jensen et al. (85) T1D 463 participants,

43 years

Demographics, meal,

insulin

CGM LDA Nighttime Three

consecutive SG

≤ 54 mg/dL

(15min)

5-fold cross

validation

AUC= 0.79, Se= 75.0%,

Sp= 70.0%

NH

Khanimov et al.

(86)

DM 1,342

participants, 75

years

Nutrition risk screening

2002, admission serum

albumin

Cox regression Hospital stay Hypoglycemia≤

70 mg/dL

Acc= 49.0%, Se=

70.0%, Sp= 46.0%

Inpatient

Khanimov et al.

(87)

DM 7,718

participants, 71.8

years

Admission serum

albumin, blood

osmolarity, Charlson

Comorbidity Index

Cox regression Hospital stay Hypoglycemia≤

70 mg/dL

Inpatient

Li et al. (88) T1D, T2D 1,921

participants, 59

years

CGM LR, SVM, RF,

LSTM

30min Three

consecutive SG

≤ 70 mg/dL

(15min)

Internal Se= 92.05%, FPR=

7.69%

Real-time, NH

Ma et al. (89) T2D 10,251

participants, 62.2

years

Demographics, Lab data,

medications, physical

exam findings, mental

health results

MMTOP Hypoglycemia <

50 mg/dL

10-fold cross

validation

C-statistic= 0.77 MH/SH

Marcus et al.

(90)

T1D 11 participants,

18-39 years

CGM KRR 30min Hypoglycemia <

70 mg/dL

Hold-out

validation

Se= 64.0%, FPR= 4.0% Real-time

Misra-Hebert

et al. (91)

T2D 1,876

participants, 64.7

years

Demographics, Lab data,

comorbidities, GLA,

previous HYPO events

LR 3 months SH events

identified by

diagnosis code

Bootstrapping AUC= 0.89, Se= 82.0%,

Sp= 79.0%

MH/SH
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TABLE 1 (Continued)

References Diabetes Sample Clinical inputs Glucose
inputs

Algorithms PH Outcome
definition

Validation
approach

Model
performance

Prediction
type

Misra-Hebert

et al. (92)

T2D 47,280

participants, 61.4

years

Demographics, Lab data,

comorbidities, GLA,

previous HYPO events,

insurance type

Cox regression SH events

identified by

diagnosis code

MH/SH

Mosquera-Lopez

et al. (93)

T1D 124 (31 years),

10 (34 years)

participants

Insulin, carbohydrate

intake

CGM SVR Nighttime One single SG <

70 mg/dL

External AUC= 0.86, Se= 94.1%,

Sp= 72.0%

NH

Tran-Duy et al.

(94)

T1D 27,841

participants, 37.0

years

Demographics, Lab data,

COM

Cox regression,

LR

MH/SH

Vehí et al. (95) T1D 10 (41 years), 6

(40–60 years)

participants

Insulin, carbohydrate

intake, meals, physical

activity, CGM

parameters

CGM GE, SVM, ANN 4h for

postprandial, 6 h

for NH

Three

consecutive SG

< 70 or 54

mg/dL (15min)

k-fold cross

validation

Postprandial: Se= 69%,

Sp= 80% (70 mg/dL): Se

= 75.0%, Sp= 81.0% (54

mg/dL); NH: Se=

44.0%, Sp= 85.9%

Real-time, NH,

Postprandial

Weiner et al.

(96)

DM 6,745

participants, 55

years

Demographics, Lab data,

GLA, COM,

comorbidities, previous

HYPO events, insurance

LR Hypoglycemia <

70 mg/dL

MH/SH

Calhoun et al.

(97)

T1D 127 participants Demographics, Lab data,

insulin, exercise

intensity, daytime

hypoglycemia

CGM RF Nighttime Six consecutive

SG ≤ 60 mg/dL

(30min)

5-fold cross

validation

AUC= 0.622 NH

Ruan et al. (36) DM 17,658

participants, 66

years

Demographics,

medications, vital signs,

Lab data, hospitalization

procedure, previous

HYPO events

XGBoost Hospital stay Hypoglycemia <

72 mg/dL, 54

mg/dL

10-fold cross

validation

< 72 mg/dL: AUC=

0.96, Se= 70.0%, PPV=

88%; < 54 mg/dL: AUC

= 0.96, Se= 67%, PPV

= 97%

Inpatient

Elbaz et al. (98) DM 3,605 (71 years),

6,060 (72.9

years)

participants

Demographics, smoking,

use of alcohol,

comorbidities, Lab data,

GLA, other medication

LR First week of

admission

Hypoglycemia≤

70 mg/dL

Internal,

external

Validation set 1/2: AUC

= 0.72/0.71

Inpatient

Wang et al. (99) T1D 12 participants,

25.6 years

Insulin, carbohydrate

absorption

CGM Ruan model,

Hovorka model

30min One single SG ≤

70 mg/dL

(15min)

External Validation: Acc=

95.97%, PPV= 91.77%,

Se= 95.60%

Real-time, NH

Jermendy et al.

(100)

DM 8,190

participants

Age, type of diabetes,

GLA

SMBG Description Hypoglycemia≤

70 mg/dL

NH

Kyi et al. (101) T2D 594 participants,

72 years

Demographics, GLA,

hospital treatment

factors, Lab data,

comorbidities,

observed-days

LR Hospital stay At least 2 days

with capillary

glucose < 72

mg/dL

Internal AUC= 0.806, Se=

84.0%, Sp= 66.0%, PPV

= 53.0%

Inpatient
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TABLE 1 (Continued)

References Diabetes Sample Clinical inputs Glucose
inputs

Algorithms PH Outcome
definition

Validation
approach

Model
performance

Prediction
type

Li et al. (102) T1D, T2D 240 participants,

48.2 years

CGM ARMA, RLS 30min Hypoglycemia≤

70 mg/dL

5-fold cross

validation

Se= 95.72% Real-time

Dave et al. (103) DM 112 participants Demographics, HbA1c,

insulin, carbohydrate

intake

CGM LR, RF 30min, 60min Hypoglycemia <

70 mg/dL

Hold-out

validation

30 min: Se= 97.04%, Sp

= 95.23%; 60 min: Se=

96.21%, Sp= 95.73%

Real-time

Yu et al. (104) T2D 200 participants CGM Prefix Span 30min Hypoglycemia≤

54 mg/dL, ≤ 70

mg/dL, ≤ 79

mg/dL

Cross

validation

≤ 54 mg/dL: Se= 85.9%;

≤ 70 mg/dL: Se=

80.36%; ≤ 79 mg/dL: Se

= 78.07%

Real-time

Prendin et al.

(105)

T1D 141 participants,

> 18 years

CGM AR, ARMA,

ARIMA, SVR,

RF, fNN, LSTM

30min One single SG <

70 mg/dL

(5min)

Random

subsampling

Se= 82.0%, PPV=

64.0%

Real-time

Wenbo et al.

(106)

DM 60 (44.8 years),

30 (24.4 years)

participants

CGM VMD, Kernel

ELM, AdaBoost

60min Three

consecutive SG

< 70 mg/dL

(15min)

10-fold cross

validation

Se= 94.8%, FPR= 7.7% Real-time

Mathioudakis

et al. (35)

DM 35,147

participants, 66

years

Demographics,

diagnoses, insulin,

hospitalization

procedures, Lab data,

medications, BG

readings, heart rate

LR, RF, naïve

Bayes, SGB

24 h after each

glucose

measurement

Hypoglycemia≤

70 mg/dL

Internal,

external

Internal validation:

c-statistic= 0.90;

external validation:

c-statistic: 0.86–0.88

Inpatient

Han et al. (107) T2D 1,410

participants, 62.0

years

Demographics,

medications, glycemic

variability, Lab data

SMBG LR Perioperative

period

Hypoglycemia <

70 mg/dL

Bootstrapping AUC= 0.715 Inpatient

Witte et al. (108) DM 38,250

participants, 64.3

years

Demographics,

medications, Lab data

XGBoost 7 h Hypoglycemia <

70 mg/dL

5-fold cross

validation

Se= 59.0%. Sp= 98.8%,

PPV= 71.8%

Inpatient

Yang et al. (109) T2D 29,843

participants, 64.5

years

Demographics,

medications, Lab data

XGBoost Hospital stay Hypoglycemia <

70 mg/dL

10-fold cross

validation

AUC= 0.822, Acc=

0.93

Inpatient

Yun et al. (110) T2D 2,645

participants, 62.8

years

Demographics, smoking,

alcohol, physical activity,

insulin, comorbidities,

previous HYPO events,

fasting glucose

ROC analysis 1 year SH episodes

requiring

hospitalization

or medical care

Internal,

external

External validation:

c-statistic= 0.878, Se=

83.3%, Sp= 84.7%

MH/SH

Wright et al.

(111)

DM 6,279

participants, 57.0

years

Demographics,

comorbidities, Lab data,

vital signs,

hospitalization orders,

medications, glucose

results

LR, RF, XGBoost 24 h Hypoglycemia

<70 mg/dL

within 24 h after

insulin use

10-fold cross

validation

LR: AUC= 0.81, Se=

44.0%; RF: AUC= 0.80,

Se= 49.0%; XGBoost:

AUC= 0.79, Se= 32.0%

Inpatient
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TABLE 1 (Continued)

References Diabetes Sample Clinical inputs Glucose
inputs

Algorithms PH Outcome
definition

Validation
approach

Model
performance

Prediction
type

Berikov et al.

(112)

T1D 406 participants,

36.0 years

Demographics, previous

HYPO events, IAH,

insulin, CKD, COM,

comorbidities,

CGM-derived metrics

CGM RF, LogRLasso,

ANN

15min, 30min Three

consecutive SG

< 70 mg/dL

(15min)

10-fold cross

validation

15 min: AUC= 0.97, Se

= 94.5%, Sp= 91.4%; 30

min: AUC= 0.942, Se=

90.4%, Sp= 87.4%

Inpatient, NH

Parcerisas et al.

(113)

T1D 10 participants,

31.8 years

CGM raw data, meals,

insulin, heart rate signal,

steps, calories burned,

sleep period

SMBG, CGM SVM Nighttime Three

consecutive SG

< 70 mg/dL

(15min)

Leave-one-out

validation,

5-fold cross

validation

Population model: Se=

71%, Sp= 76% (include

PA), Se= 70%, Sp=

72% (exclude PA);

Individualized model: Se

= 77.5%, Sp= 64.5%

(include PA), Se= 73%,

Sp= 75% (exclude PA)

NH

Wang et al. (114) T2D 313 participants,

53.6 years

CGM-derived metrics,

SMBG-derived metrics

SMBG ROC analysis Nighttime Hypoglycemia <

70 mg/dL

AUC of predicting

hypoglycemia using

LAGE was 0.587, Se=

66.7%, Sp= 50%

NH

Tyler et al. (115) T1D 20 participants,

34.5 years

CGM data,

CGM-derived metrics,

insulin, meal, heart rate,

metabolic expenditure,

age, height, weight

SMBG, CGM MARS, LR, ARX During aerobic

exercise (4 h)

Hypoglycemia

<70 mg/dL

Hold-out

validation,

20-fold cross

validation

Population model: Se=

73%, Sp= 76%, Acc=

75% (Hold-out set); Se=

64%, Sp= 56%, Acc=

61% (20-fold CV);

Personalized model: Se

= 73%, Sp= 90%, Acc=

84% (Hold-out set); Se=

68%, Sp= 61%, Acc=

70% (20-fold CV)

During exercise

Duckworth et al.

(116)

T1D 153 participants,

17.5 years

CGM data,

CGM-derived metrics,

age, sex, prior use of

CGM, recent HbA1c

CGM Heuristic model,

LR, XGBoost

60min One single SG <

70 mg/dL

(5min)

5-fold cross

validation

AUC= 0.998, average

PPV= 95.3%

Real-time

Faccioli et al.

(117)

T1D 11 participants CGM data, insulin, meals CGM ARX 60min One single SG <

70 mg/dL

(5min)

Hold-out

validation

PPV= 65%, Se= 88% Real-time

Park et al. (118) T1D 9 participants CGM data, heart rate

variability

CGM SVM 10min, 20min,

30min

Hypoglycemia

<70 mg/dL

Hold-out

validation

Validation set: Se=

89.7%, Sp= 85.8%, Acc

= 87.8% (10min); Se=

88.0%, Sp= 84.3%, Acc

= 86.2% (20min); Se=

80.1%, Sp= 83.3%, Acc

= 81.7% (30min);

Real-time

Zhu et al. (119) T1D 49 participants,

>18 years

CGM data,

carbohydrate, bolus

insulin

CGM FCNN, CRNN,

LSTM, ARIMA,

SVR, RF

30min, 60min One single SG <

70 mg/dL

(5min)

Hold-out

validation

FCNNmodel: Se=

84.09%, Sp= 65.60%

(30min); Se= 68.58%,

Sp= 60.64% (60min)

Real-time
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3.1.5. Model validation
Model validation is crucial for algorithm development and

performance estimation. External validation is important since

internal validation may overestimate model performance on a future

cohort of patients (121). There are 12 studies utilizing external

validation in the present study (15.2%). Internal validation strategies

include re-substitution validation, hold-out validation, k-fold

cross-validation, leave-one-out cross-validation, and repeated k-fold

cross-validation (122). The most commonly used strategies in the

reviewed articles are various forms of k-fold cross-validation (22/79,

27.8%). The K-fold cross-validation strategy involves randomly

partitioning the datasets into k equal subsets and using one set

as a validation set and the rest for training, repeating the process

for each subset. Moreover, random subsampling, bootstrapping,

hold-out validation, leave-one-out validation approaches are

also used.

3.1.6. Performance metrics
As model evaluation performance measures, the majority of

studies used sensitivity, specificity, and area under the curve

(AUC). For prediction models based on clinical data, correlation

coefficients and c-statistics were also frequently used. In addition,

accuracy, positive predictive value (PPV) and false positive rate (FPR)

were used as evaluation parameters. Each metric was defined in

Supplementary Table S1.

3.2. Real-time hypoglycemia prediction

The CGM system can detect the glucose concentration in

the interstitial fluid continuously and comprehensively, laying the

groundwork for modern glucose monitoring and the emergence

of AP. A CGM system, an insulin pump, and a dosing algorithm

comprise AP (123). Algorithms are used to implement individual-

based accurate blood glucose prediction. The proposal and

improvement of dosing algorithms have gradually evolved into

a bottleneck of AP development with the increasing maturity of

CGM systems. Accurate prediction of impending hypoglycemia is

difficult due to large intra- and inter-subject variability, as well as

numerous exogenous factors such as diet, exercise, hypoglycemic

drugs, and mood changes that can affect blood glucose levels

(124). Following a review of the literature, it was discovered that

the current impending hypoglycemia prediction primarily includes

physiological models, data-based models, and hybrid models (43).

Simply put, the development of physiological models is dependent on

an understanding of glucose metabolism in the body. These models,

which are often compartment models, simulate glucose metabolism

and can be used to study glucose-regulated physiological processes.

Data-driven models, on the other hand, rely primarily on CGM

data and occasionally on additional signals to simulate the patient’s

physiological response without involving physiological variables.

Hybrid models typically combine a physiological model with a

data-driven model. Such models incorporate dietary information

and insulin absorption via physiological models, as well as

massive CGM data, to improve the overall prediction accuracy of

this model.
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FIGURE 3

The sample size of participants and proportion of selected studies.

TABLE 2 Clinical and glucose inputs for model training.

Input type References

Demographics data (35, 36, 44–46, 48, 50, 57–67, 71, 72, 74, 77, 81, 83–85,

89, 91, 92, 94, 96–98, 100, 101, 103, 107–112, 115, 116)

CGM data and

parameters

(43, 47, 49, 54–56, 61, 63, 68, 70, 73, 76, 78–80, 82, 83,

85, 88, 90, 93, 95, 97, 99, 102–106, 112–120)

GLA and other

medication

(35, 36, 44–46, 48, 50–52, 58–60, 62–64, 66, 67, 71, 74,

81, 83, 89, 91, 92, 96, 98, 100, 101, 107–109, 111)

Laboratory data (35, 36, 44–46, 51, 58–61, 63, 66, 67, 71, 74, 81, 83, 84,

89, 91, 92, 94, 96–98, 101, 107–109, 111)

Insulin use (35, 57, 64, 67, 71–73, 82, 85, 92, 93, 95–97, 99, 103, 110,

112, 113, 115, 117, 119, 120)

Comorbidities (44–46, 58–60, 62, 64, 66, 67, 71, 84, 87, 91, 92, 96, 98,

101, 110–112)

Previous HYPO events (36, 46, 48, 58, 59, 62, 64, 71, 74, 81, 91, 92, 96, 110, 112)

Carbohydrate intake,

meals

(72, 73, 82, 85, 93, 95, 99, 103, 113, 115, 117, 119, 120)

SMBG data and

parameters

(35, 46, 52, 53, 61, 66, 67, 69, 82, 100, 107, 113–115)

Physiological signals (35, 47, 53, 65, 68, 69, 75, 82, 113, 115, 118, 120)

Exercise, physical activity (64, 70, 77, 83, 95, 97, 110)

Smoking/alcohol

consumption

(64, 98, 110)

Mental health condition (45, 89)

CGM, continuous glucose monitoring; GLA, glucose-lowering agents; HYPO, hypoglycemia;

SMBG, self-monitoring of blood glucose.

3.2.1. Only CGM data as inputs for real-time
hypoglycemia prediction

This section presents the most recent research on data-based

and hybrid hypoglycemia prediction models that only use CGM data

as inputs (78, 79, 90, 102, 104–106). AR models were commonly

used. Yang et al. (78) proposed an AR integrated moving average

(ARIMA) model with an adaptive recognition algorithm. After

training with CGM data from 100 subjects (50 T1D + 50 T2D), it

was discovered that this model had 100.0% sensitivity in predicting

hypoglycemic events, a 9.4% FPR, and an early alert with an

average 25.5min treatment time window to avoid hypoglycemia

deterioration. Gadaleta et al. (79) used CGM data from 89 T1D

patients to compare current common ML models (static and

dynamic) and discovered that the SVRmodel performed best in terms

of prediction accuracy as well as the speed of hypoglycemia detection,

with sensitivity and PPV of 75.0 and 51.0%, respectively. Another

study comparing linear and nonlinear models laterally found that

at a PH of 30min, the individualized ARIMA model outperformed

all linear models in terms of hypoglycemic event detection and

prediction accuracy (105). Furthermore, Marcus et al. (90) used

a novel patient-specific supervised machine learning (SML) model

for hypoglycemia prediction after 30min and discovered that when

the best-fit model was selected for each patient, the hypoglycemia

sensitivity was 64.0%, and FPR was 4.0%. Even when only CGM

glucose data below 70 mg/dL were included, similar results were

obtained. Li (102) and Yu et al. (104) used the model of change

detectionmethod and theWinsorizationmethod in conjunction with

the autoregressive moving average (ARMA) model and the recursive

least squares (RLS)method, respectively. The sensitivity of the former

was 95.72%, and the sensitivities of the latter were 85.90, 80.36,

and 78.07% when the threshold of hypoglycemia was set at 54, 70,

and 79 mg/dL, respectively. Wenbo et al. (106) achieved 94.80%

sensitivity for hypoglycemic event prediction at a PH of 60min using

the variational mode decomposition (VMD)-kernel extreme learning

machine (KELM)-AdaBoost algorithm. As for sensitivity, the authors

of (78) achieved the highest sensitivity at a PH of 30min (Table 3).

3.2.2. Combining CGM data, insulin, dietary intake
and physical activity as inputs

In addition to using CGM data and insulin to predict,

carbohydrate intake was also used in models (Table 3). Dave et al.
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FIGURE 4

The type and number of input parameters used to train the models.

FIGURE 5

Classes of machine learning techniques used in the modeling of

hypoglycemia prediction.

(103) confirmed the benefits of including blood glucose-affecting

physiological factors in the model by demonstrating satisfactory

sensitivity and specificity in hypoglycemia prediction. A recent study

indicated a promising predictive efficacy of physiologically-based

kinetic model (PKM) which integrated CGM data, carbohydrate

intake and insulin usage (120). Additionally, one of the significant

factors affecting blood glucose is physical activity (exercise) (125).

However, the effect of physical activity (exercise) on blood glucose

varies considerably based onmany factors, such as the type of activity,

amount and intensity of activity, and duration. When compared

to studies that only used CGM data as inputs, the contribution of

features (meal, insulin, and exercise) other than CGM glucose data

is lower but not insignificant; their significance rises for predictions

with PH of 60min (103). Hence, adding clinical factors other than

CGM data may allow for improved predictive efficacy, even though

overall model performance had not improved to a satisfactory degree.

3.2.3. Non-invasive sensors in hypoglycemia
prediction

Aside from CGM data, some researchers have also used non-

invasive methods to predict hypoglycemia. Cichosz et al. (47, 68)

used CGM and electrocardiograph (ECG) data to predict short-

term hypoglycemia events, achieving an AUC of more than 0.96

and a sensitivity of 100% when the PH was set at 20min. However,

the sensitivity and specificity of another NN model for predicting

hypoglycemia based solely on ECG signals were only 78.0 and

60.0%, respectively, which could be explained in part by the limited

glucose data used in modeling (53). Furthermore, Elvebakk et al.

(69) collected physiological parameters such as ECG signals, near-

infrared light (NIR), and skin impedance from 20 T1D patients with

IAH undergoing hypoglycemic clamp, and they demonstrated that a

probability model based on the physiological signals described above

could identify 88% of hypoglycemia. Similarly, Tronstad et al. (75)

compared the accuracy of partial least squares (PLS) and artificial

NN (ANN) in predicting hypoglycemia using NIR signals, skin

impedance, and skin temperature data from the same patient source.

Their findings showed that the ANN model that combined NIR,

skin temperature, and skin impedance outperformed. However, in

general, NIR and bioimpedance-based hypoglycemia detection was

not very accurate, but it could provide blood glucose trends to

some extent.

In summary, current studies aimed at predicting real-time

hypoglycemia were mostly short-term. As the PH increased, the

prediction accuracy inevitably decreased. Hence, accurate long-

term hypoglycemia prediction is extremely urgent. Furthermore,

hypoglycemia prediction is gradually shifting from a single signal

to a combination of signals to more accurately simulate real-life

glucose changes. As shown in Table 3, there was no single technique

that could be identified as the most popular model in terms of

algorithms. The ML approaches trend revealed that researchers were

still experimenting with a diverse set of ML techniques. It can be

concluded that there have been some promising results in the field

of real-time hypoglycemia prediction, but there is still much room

for advancement.

3.3. Mild and severe hypoglycemia prediction

3.3.1. Clinical predictors of hypoglycemia and
prediction models based on clinical parameters

Prior to the booming of ML in hypoglycemia prediction, simple

predictions based on massive clinical data emerged in this field of

study (Table 4). Long duration of diabetes, alcohol consumption,
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TABLE 3 Machine learning approaches for real-time hypoglycemia prediction and best results performed.

References Participants,
type

Inputs PH (min) Algorithm Threshold Validation Performance

Gadaleta et al. (79) 89, T1D CGM 30 SVR ≤ 70 mg/dL Leave-one-out validation Se= 75.0%, PPV= 51.0%

Li et al. (102) 240, T1D+ T2D CGM 30 ARMA, RLS ≤ 70 mg/dL 5-fold cross validation Se= 95.72%

Marcus et al. (90) 11, T1D CGM 30 KRR < 70 mg/dL Hold-out validation Se= 64.0%, FPR= 4.0%

Prendin et al. (105) 141, T1D CGM 30 Individualized

ARIMA

< 70 mg/dL Random subsampling Se= 82.0%, PPV= 64.0%

Yang et al. (78) 100, T1D+ T2D CGM 30 ARIMA ≤ 70 mg/dL Se T1D/T2D = 100.0/100.0%; FPR T1D/T2D = 10.7/8.0%

Yu et al. (104) 200, T2D CGM 30 Prefix Span ≤ 54 mg/dL, ≤ 70

mg/dL, ≤ 79 mg/dL

Cross validation ≤ 54 mg/dL: Se= 85.9%; ≤ 70 mg/dL: Se= 80.36%; ≤ 79

mg/dL: Se= 78.07%

Wenbo et al. (106) 60, DM CGM 60 VMD-KELM-

AdaBoost

< 70 mg/dL External Se= 94.8%, FPR= 7.7%

Cichosz et al. (47) 21, T1D CGM, HRV 20 Pattern

classification

< 70 mg/dL 10-fold cross validation AUC= 0.96, Se= 100%, Sp= 91%

Cichosz et al. (68) 56, T1D CGM, HRV 20 Pattern

classification

≤ 70 mg/dL Internal AUC= 0.95

Park et al. (118) 9, T1D CGM, HRV 30 SVM <70 mg/dL Hold-out validation Se= 80.1%, Sp= 83.3%, Acc= 81.7%

Dave et al. (103) 112, DM CGM, INS, CHO 30, 60 LR, RF < 70 mg/dL Hold-out validation Se= 97.04%, Sp= 95.23% (30min); Se= 96.21%, Sp=

95.73% (60min)

Faccioli et al. (117) 11, T1D CGM, INS, CHO 60 ARX <70 mg/dL Hold-out validation PPV= 65%, Se= 88%

Zhu et al. (119) 49, T1D CGM, INS, CHO 30, 60 FCNN <70 mg/dL Hold-out validation Se= 84.09%, Sp= 65.60% (30min); Se= 68.58%, Sp=

60.64% (60min)

Zhu et al. (120) 12, T1D CGM, INS, CHO 60 PKM <70 mg/dL Leave-one-out validation Acc= 87.20%, Se= 86.62%, Sp= 82.59%

Duckworth et al. (116) 153, T1D CGM, age, sex,

HbA1c

60 XGBoost <70 mg/dL 5-fold cross validation AUC= 0.998, average PPV= 95.3%

T1D, type 1 diabetes; T2D, type 2 diabetes; DM, diabetes; CGM, continuous glucose monitoring; HRV, heart rate variability; CHO, carbohydrate intake; INS, insulin.
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TABLE 4 Clinical predictors of mild/severe hypoglycemia.

Category of
predictors

Predictors of hypoglycemia Predictors of SH

Demographics • BMI < 30 kg/m2 (46), lower BMI (44)

• Younger age (44)

• Drinking (51, 96)

• Longer diabetes duration (63)

• Black race (96)

• Eating disorder (96)

• Black race (91, 92)

• Older age (44, 64, 110)

• Female (64)

• Current smoker (64)

• Drinking (64, 92)

• Longer diabetes duration (64, 110)

• lower BMI (64, 110)

GLA • Insulin use > 10 years (46), insulin (96)

• 2 injections/day (46)

• SU use with antibiotics (96)

• Insulin use (62, 64, 91), intensive glucose control (51, 62)

• Multiple OHA use (64)

• SU use (91)

CGM parameters • Higher SD, MAG, MAGE, CV (49, 63), low MBG, higher LBGI (63)

Other • Diabetic retinopathy (45), diabetic neuropathy (96)

• Low LDL-c level (45)

• Altered mini-Geriatric Depression Scale (45)

• Previous hypoglycemia (46, 96)

• Infection within 30 days (96)

• Chronic heart failure (96)

• Dementia or falls (96)

• HbA1c ≤ 6.5% (96)

• Previous SH events (48, 64, 91, 92)

• Lack of exercise (64)

• Presence of hypertension (44, 64), antihypertensive medication use

(62)

• CKD (64, 92)

• High Charlson score (64)

• HbA1c < 7% (91)

• High serum creatinine level (44)

• Low cognitive function (44)

• Depression or other psychiatric disorders (92)

• Medicaid insurance (92)

• History of CVD (92)

• Lower eGFR (110)

• Higher albuminuria (110)

SH, severe hypoglycemia; GLA, glucose-lowering agents; OHA, oral hypoglycemic agents; SU, sulfonylurea; CGM, continuous glucose monitoring; SD, standard deviation of glucose; MAG, mean

absolute glucose; MAGE, mean amplitude of glucose excursions; CV, coefficient of variance; MBG, mean blood glucose; LBGI, low blood glucose index; CKD, chronic kidney disease; CVD,

cardiovascular disease.

eating disorders, low BMI, insulin use, low LDL levels, combined

diabetic retinopathy (DR) or diabetic peripheral neuropathy (DPN),

depression or dementia, great glycemic variability, infection, and

heart failure were identified as risk factors for overall hypoglycemic

events (44–46, 49, 51, 63, 96). A long-term SH risk prediction study

based on clinical parameters in 1,676, 885 adult T2D patients found

that old age, female gender, smoking, alcohol abuse, low BMI, lack of

exercise, history of SH, use of insulin or multiple oral hypoglycemic

agents, combined hypertension and chronic kidney disease (CKD),

long duration of diabetes, and a high Charlson comorbidity index

were all important risk factors for the development of SH (64). Several

studies have shown an association between insulin use, intensive

insulin therapy, previous history of SH, and SH (44, 48, 51, 62, 91).

Furthermore, black race, sulfonylurea use, low HbA1c, low serum

creatinine levels, and poor cognitive function were also identified as

risk factors for SH (44, 91). Hu et al. (84) performed ROC analysis

on fasting insulin, fasting blood glucose, and total insulin treatment

time of 257 T2D patients receiving intensive therapy and reported

an AUC of 0.666 in hypoglycemia prediction. Karter et al. (57)

classified 165,148 patients into high, medium, and low-risk groups

for SH hospitalization by assessing six factors: number of previous

hypoglycemia hospitalizations, insulin use, sulfonylurea use, previous

emergency history, CKD stage, and age. Following model validation,

they concluded that the proposed SH risk assessment tool was

accurate and effective after 12 months of observation. Accordingly,

some researchers have used another 6-parameter model (age, type

of diabetes, HbA1c, eGFR and previous history of hypoglycemia) to

predict the 6-month SH risk (58).

A remarkable cohort study of 27,841 T1D patients followed for an

average of 7 years to model T1D health outcomes revealed that male

gender, Ln (HbA1c), HDL level, and smoking were risk factors for

hypoglycemia (HR = 1.32, 1.63, 1.14, and 1.40, respectively), while

Ln (eGFR) was a protective factor (HR = 0.77) (94). Another SH

predictive model study based on electronic health record data of 47,

280 T2D patients found that a history of previous hypoglycemia (HR

= 4.44), black race (HR = 1.81), Medicaid insurance (HR = 1.35),

previous history of cardiovascular disease (HR = 2.35), depression

(HR = 1.28), mental disorder other than depression (HR = 1.55),

alcohol consumption (HR = 1.55), and CKD (HR = 1.86) were risk

factors for SH, while the relationship between sulfonylureas and SH

changed with HbA1c: sulfonylurea use was a risk factor (HR = 1.61)

when HbA1c was 6%, but it became a protective factor (HR = 0.69)

when HbA1c was 9%. Furthermore, the effect of HbA1c levels on SH

varied at some extreme values: when the reference HbA1c was 6%,

the corresponding HR was 1.59 when an HbA1c level of 5%, however,

HR of HbA1c changed to 0.73 when at a level of 7%, and the HR for

HbA1c= 9% was 1.39 instead (92).

3.3.2. Application of machine learning to predict
hypoglycemia

In addition to clinical models, there were a number of studies

that used ML approaches to predict mild and severe hypoglycemia.

Ma et al. (89), for example, proposed a model to predict SH

that could handle missing data, and they finally included 48 risk

factors associated with SH such as demographic data (age, ethnicity,

education information), vital signs (diastolic blood pressure, DBP),

laboratory test results (creatinine, eGFR, urine protein, UACR)

and medication regimens (diuretics, potassium supplements, ACEI,

α-blockers, β-blockers, anticoagulants, sulfonylureas, biguanides,
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thiazolidinediones, insulin, etc.) after univariate analysis for relevant

variable screening and showed that the average c-statistic of their

proposed SH prediction model was 0.77. Predictive modeling also

made use of mathematical approaches. Samuel et al. (50) identified

four clinical factors associated with MH (BMI, diabetes duration,

HbA1c, and GFR) and proposed a mathematical formula for

calculating the incidence of MH incorporating these four parameters,

but its accuracy was highly uncertain in different populations of

patients with diabetes. However, the prediction efficiency of ML

was not always superior to that of traditional statistical methods.

Li et al. (71) used electronic health records data from 38,780

patients with diabetes to create a prediction model for hypoglycemia

and discovered that the ML method (RF) was only 1% more

effective than LR in predicting hypoglycemia. A robust recursive

partitioning algorithm based SH-related emergency department (ED)

use prediction model was proposed based on a large sample size and

external validation (57) (Table 5).

3.4. Nocturnal hypoglycemia (NH) prediction

3.4.1. Prediction of NH based on clinical
parameters

Age between 10.0 and 19.9 years, diagnosis of T1D, and initiation

of insulin therapy were found to be risk factors for NH events

(<54 mg/dL, 00:00–05:59) in a study using self-monitoring of blood

glucose (SMBG) values and clinical indicators from 8,190 patients

with diabetes (100). For NH prediction, CGM parameters had also

been adopted in addition to clinical parameters. Daytime (6:00-22:59)

mean absolute glucose (MAG) andmean pre-midnight blood glucose

levels had predictive value for NH events, according to a cross-

sectional study of 83 insulin-treated hospitalized T2D patients (56).

Sakurai et al. (61) developed an equation relating age, SMBG values,

and basal insulin dose to predict NH. Besides, strenuous physical

activity was found to be an important predictor of NH after adjusting

for age and gender (70) (Table 6).

3.4.2. Application of ML to predict NH
ML approaches based on CGM data were widely used for NH

prediction in addition to clinical factors (Table 7). Tkachenko (55)

and Sampath et al. (54) proposed combining predictive risk factors of

NH based on CGM data, which both resulted in improved predictive

performance. Based on massive nocturnal CGM raw glucose data

derived from 9,800 T1D patients, a random forest (RF) model

demonstrated an overall NH predictive performance of AUC up to

0.84 (AUC = 0.90 during 00:00–03:00, and AUC = 0.75 during

03:00–06:00) (76). Furthermore, a novel CGM metric-gradient and

combining mean sensor glucose enabled the prediction of NH events

in patients with diabetes with a sensitivity of 92.05% and a false

positive rate of 7.69% (88).

Models that included blood glucose-affecting physiological

factors other than CGM data were also widely used in the field

of NH prediction. Jensen et al. (85), for example, performed ML

feature extraction and ROC curve analysis on basic demographic

data, dietary intake, and insulin use combined with CGM data

from 463 T1D patients and discovered that the combined extracted

CGM indices (linear regression slope of blood glucose during 21:00–

24:00, lowest blood glucose value, lowest blood glucose value on the T
A
B
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TABLE 6 Clinical predictors of nocturnal hypoglycemia.

Category of
predictors

Predictors

Demographics • Age (10.0–19.9 years) (100)

• Type 1 diabetes (100)

GLA • Insulin treatment (100)

CGM parameters • Daytime Mean Absolute Glucose (MAG)

(56)

• Pre-midnight mean glucose (56)

Other • Vigorous intensity physical activity (70)

GLA, glucose-lowering agents; CGM, continuous glucose monitoring.

previous night) and BMI could achieve an AUC of 0.79 for NH

prediction (sensitivity: 75%, specificity: 70%). Furthermore, Bertachi

et al. (82) confirmed the importance of combining physical activity

with CGMdata to predict NH events: the specificity of predicting NH

was significantly improved to 91.9% when additional information

such as heart rate, number of steps, calorie expenditure, and sleep

were added. Calhoun et al. (97) discovered an association between

NH and bedtime BG, exercise intensity, daytime hypoglycemia,

HbA1c, and active insulin (insulin on board, IOB). Vehi et al. (95)

established an ANN model that included CGM data, exercise and

sleep information from six T1D patients and had a 44.0% sensitivity

and an 85.9% specificity in predicting NH. Another study of NH

prediction using a SVR model based on CGM data found that blood

glucose values at bedtime, age, and mean blood glucose 1 h before

bedtime were related to the occurrence of NH, and the AUC of

this model to finally predict NH events was 0.86 (sensitivity: 94.1%,

specificity: 72.0%) (93).

It can be seen that the most popular approaches for NH

prediction in our reviewed articles were RF and SVM. The RF model

including CGM, demographics data, INS and other clinical indicators

of 406 T1D patients established by Berikov et al. (112) achieved

a better performance at a PH of 30min. Whereas a SVR model

taking CGM, insulin use and carbohydrate intake information into

consideration showed satisfactory AUC (0.86) and sensitivity (94.1%)

for a longer prediction window (93).

Seventy-five percent of hypoglycemic events associated with

coma or seizures occur at night, as warning autonomic symptoms

caused by hypoglycemia are frequently insufficient to awaken the

patient (126). Since NH events are urgent and harmful to patients,

current NH prevention focuses primarily on accurately predicting

upcoming NH events and alerting using modern glucose monitoring

technology and AP to urge medical staff or patients to take prompt

action. The findings of our literature review also highlight recent

significant advances in the field of NH prediction using ML, however,

these algorithms and models must still be validated in a large sample

and tested in real-world applications in the future.

3.5. Inpatient hypoglycemia prediction

A recent electronic health record-based risk prediction study

for iatrogenic hypoglycemic events included 35,147 hospitalized

patients (mean age, 66 years) who received at least 1U of insulin

and completed four finger stick records (35). Demographic data,

diagnostic information, inpatient procedure, laboratory test results,

finger blood results, and therapeutic drugs were among the 43

types of data extracted from electronic health records. They revealed

that basal insulin dose, CV of finger stick blood values, previous

hypoglycemic events, nadir glucose value, body weight, and mean

blood glucose in the first 24 h of hospitalization were the most

important predictors of hypoglycemia. The c-statistic was 0.90 of

internal validation and was 0.86–0.88 of external validation (35).

Stuart et al. (59) used multivariate LR to develop a prediction model

from hospital admissions of 9,584 patients with diabetes, finding

that ethnicity (black and Asian), older age (≥75 years), type of

admission (emergency), insulin and sulfonylurea use could all predict

the occurrence of hypoglycemia in hospitalized patients. A study of

9,665 patients with diabetes using modeling and validation revealed

that older age, nasogastric tube or gastrostomy tube feeding, a higher

Charlson comorbidity index, admission for vomiting, combined

acute renal failure, and insulin use were risk factors for inpatient

hypoglycemia (98). In addition to age and insulin, emergency

department history in the previous 6 months, oral hypoglycemic

agent use without inducing hypoglycemia, and severe CKD were all

associated with inpatient hypoglycemia (74). Furthermore, a study

of 21,840 adult patients with diabetes found that male patients were

more prone to hypoglycemia on the first day of hospitalization, while

glucose variability, low body weight, low creatinine clearance, insulin

and sulfonylurea use were common risk factors for hypoglycemia

(66). Frail patients treated with insulin or with insufficient nocturnal

glucose monitoring were predisposed to inpatient hypoglycemia (81).

Low serum albumin levels, in addition to the aforementioned risk

factors, were also identified (86, 87) (Table 8).

The use of ML approaches in inpatient hypoglycemia prediction

was summarized in Table 9. It can be seen that the most popular

approaches for inpatient hypoglycemia prediction in our reviewed

articles were LR and XGBoost. A study that used ML to mine

electronic health records data from 17,658 patients with diabetes

revealed the superiority of ML: when compared to the traditional LR

method (AUC = 0.75), the AUC of the XGBoost model could reach

0.96 in identifying hypoglycemic events (36). However, considering

of the sample size and model validation, the study carried out by

Mathioudakis et al. (35) using stochastic gradient boosting (SGB)

achieved the best performance in a narrow PH (24 h after each

glucose measurement).

3.6. Other hypoglycemia predictions

Prediction of postprandial and exercise-related hypoglycemia was

also included in our review. Oviedo et al. (73) used a SVM algorithm

to predict postprandial hypoglycemia within 240 minutes after meal

in 10 T1D patients receiving sensor-augmented pump (SAP) therapy,

and they found that the sensitivity and specificity for prediction of

mild hypoglycemia < 70 mg/dL were 71.0 and 79.0%, respectively,

and those for severe hypoglycemia < 54 mg/dL were 77.0 and 81.0%,

respectively. Seo et al. (80) compared four MLmodels and discovered

that the RF model had 89.6% sensitivity and 91.3% specificity in

predicting hypoglycemic events after 30min of meal absorption

(Table 10).

Meanwhile, our research focused on exercise-related

hypoglycemia. Prevention of hypoglycemia during exercise is a
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TABLE 7 Machine learning approaches for NH prediction and best results performed.

References Participants,
type

Inputs PH Algorithm Threshold Validation Performance

Sampath et al. (54) 34, T1D CGM raw data and parameters Nighttime Aggregating

ranking

< 70 mg/dL External Se= 77.0%, Sp= 83.4%

Tkachenko et al. (55) 34, T1D CGM raw data and parameters Nighttime Aggregating

ranking

< 70 mg/dL Random

subsampling

Se= 73.4%, Sp= 87.8%

Klimontov et al. (56) 83, T2D CGM raw data and parameters Nighttime LR ≤ 70 mg/dL Acc= 75.6%, Se= 84.0%, Sp= 62.1%

Vu et al. (76) 9,800 T1D CGM 3h, 6 h RF < 70 mg/dL 10-fold cross

validation

3h: AUC= 0.90; 6h: AUC= 0.84

Jensen et al. (85) 463, T1D CGM, demographics, INS, CHO Nighttime LDA ≤ 54 mg/dL 5-fold cross

validation

AUC= 0.79, Se= 75.0%, Sp= 70.0%

Mosquera-Lopez et al.

(93)

134, T1D CGM, INS, CHO Nighttime SVR < 70 mg/dL External AUC= 0.86, Se= 94.1%, Sp= 72.0%

Calhoun et al. (97) 127, T1D CGM, demographics, Lab data, INS, PA, daytime

HYPO

Nighttime RF ≤ 60 mg/dL 5-fold cross

validation

AUC= 0.622

Parcerisas et al. (113) 10, T1D CGM raw data, PA, CHO, INS, heart rate signal,

steps, calories burned, sleep period

Nighttime SVM < 70 mg/dL Leave-one-out,

5-fold cross

validation

Population model: Se/Sp= 71/76%

(include PA) Individualized model:

Se/Sp= 73/75% (exclude PA)

Bertachi et al. (82) 10, T1D CGM raw data, CHO, INS, heart rate signal, steps,

calories burned, sleep period

Nighttime SVM < 70 mg/dL 5-fold cross

validation

Acc= 80.77%, Se= 78.75%, Sp=

82.15%

Li et al. (88) 1,921, T1D+ T2D CGM Nighttime LSTM ≤ 70 mg/dL Internal Se= 92.05%, FPR= 7.69%

Vehí et al. (95) 16, T1D CGM, INS, CHO, PA 6 h ANN < 70 mg/dL k-fold cross

validation

Se= 44.0%, Sp= 85.9%

Wang et al. (99) 12, T1D CGM, INS, CHO 30min GIM ≤ 70 mg/dL External Validation: Acc= 95.97%, PPV=

91.77%, Se= 95.60%

Berikov et al. (112) 406, T1D CGM, demographics, previous HYPO, IAH, INS,

CKD, COM, comorbidities

15min,; 30min RF < 70 mg/dL 10-fold cross

validation

15 min: AUC= 0.97, Se= 94.5%, Sp=

91.4%; 30 min: AUC= 0.942, Se=

90.4%, Sp= 87.4%

T1D, type 1 diabetes; T2D, type 2 diabetes; CGM, continuous glucose monitoring; INS, insulin; CHO, carbohydrate intake; PA, physical activity; HYPO, hypoglycemia; IAH, impaired awareness of hypoglycemia; CKD, chronic kidney disease; COM, diabetic complications;

Lab, laboratory; GIM, glucose-insulin mixture model.
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TABLE 8 Clinical predictors of inpatient hypoglycemia.

Category of
predictors

Predictors

Demographics • Advanced age (59, 74, 98)

• Ethnicity (Black and Asian) (59)

• Low body weight (66)

GLA • Insulin (35, 59, 60, 66, 74, 98, 101)

• SU (59, 66, 101)

Other • CV of blood glucose (35, 66)

• Any previous hypoglycemia (35, 60)

• Hospital day number (35)

• Nadir blood glucose level admission (35)

• Type of admission (Emergency) (59)

• Feeding with nasogastric or percutaneous gastrostomy

tube (98)

• High Charlson comorbidity score (98, 101)

• Vomiting as a cause of admission (98)

• Acute renal failure (98), severe chronic kidney disease

(60, 74)

• Emergency department visit 6 months prior (74)

• Number of hospitalization days (60, 101)

• Low creatinine clearance (66)

• Frailty (81)

• Low serum albumin (86, 87)

GLA, glucose-lowering agents; SU, sulfonylurea.

major challenge in diabetes. Providing predictions of glycemic

changes during and following exercise can help people with

diabetes avoid hypoglycemia. Reddy et al. (77) pointed out the

most important features in the RF model for exercise-related

hypoglycemia prediction: an average heart rate above 121 beats/min

in the first 5min of exercise, an increase in energy expenditure

and a blood glucose value below 182 mg/dL at the beginning of

exercise tended to increase the likelihood of hypoglycemia. Another

unique dataset representing 320 days and 50,000 + time points

of glycemic measurements collecting in adults with T1D who

participated in a 4-arm crossover study evaluating insulin-pump

therapies was used to develop adaptive, personalized ML algorithms

to predict exercise-related glucose changes (115). Their personalized

algorithms based on LR algorithm achieved high accuracy (84%) and

specificity (90%) in predicting hypoglycemia during and following

4-h exercise sessions.

4. Conclusions

Hypoglycemia is a huge obstacle to achieving optimal glucose

control in patients with diabetes, posing a great challenge to

the healthcare system while potentially harming the patient’s

cardiovascular system and brain. Prediction of hypoglycemia is

critical in clinical practice. In this study, we comprehensively

reviewed the literature on hypoglycemic risk factors or hypoglycemic

prediction that have been published in recent years and elaborated

on the research progress in the prediction of various types of

hypoglycemic events that aremost concerned in clinical practice from

various perspectives. Before the explosion of machine learning for

hypoglycemia prediction, simple prediction based on large sample-

sized clinical data proliferated due to clinical need over the last

decade. We concluded the summary table of risk factors for different

types of hypoglycemic events by extracting hypoglycemic risk factors

from various studies. As a result, we discovered that age, insulin

dose, sulfonylurea use, prior history of hypoglycemia, and combined

CKD were the main risk factors for hypoglycemic episodes in clinical

practice, but that under certain conditions, advanced age or younger

age, different levels of HbA1c, and sulfonylurea use had different

effects on hypoglycemia. This necessitates clinicians to assess the

patient’s condition before making an accurate judgment and decision.

The implementation of CGM systems, insulin pumps, and AP

in clinical practice provides technical support for the prevention of

hypoglycemic events. With the booming field of ML, hypoglycemic

prediction models incorporating several other major factors affecting

blood glucose such as insulin dose, carbohydrate intake, and physical

activity have sprung up based on themassive amount of blood glucose

information carried by CGM. However, the PH of current studies is

<240min. Furthermore, the predictive performance of hypoglycemia

varied with sample size, training data type, and ML method used.

Furthermore, any predictive model and prevention strategy must

be validated in a variety of clinical settings to determine whether

there will be subsequent hypoglycemia reductions and improvements

in clinical outcomes. In conclusion, while there have been some

promising results in the field of hypoglycemia prediction, there is still

much room for improvement.

Hypoglycemia in patients with diabetes is influenced by

multiple factors, such as insulin administration, carbohydrate intake,

physical activity, previous blood glucose readings, stress, age, BMI,

duration of diabetes, pancreatic islet function, comorbidities, alcohol

consumption, and smoking. To more accurately estimate the risk

of hypoglycemia, an ideal predictive model for hypoglycemia

should consider all pertinent confounding factors jointly. In this

review, demographics data and CGM readings were the main types

of model inputs used. CGM glucose values, for instance, were

the most frequently used feature when performing real-time and

nocturnal hypoglycemia predictions. Systems using ML can be

trained to forecast future hypoglycemic events based on a person’s

historical glucose levels. The majority of these models used time

series prediction techniques with glucose data that contains precise

timestamps corresponding to real glucose values. Additionally,

some models also considered the effects of insulin, carbohydrate

intake, and physical activity on hypoglycemia. In our study, patients

manually recorded their dietary information using paper diaries

or electronic diaries. This information included the frequency and

timing of each meal and was typically estimated as carbohydrate

(grams). Nevertheless, some researchers have attempted to automate

the process of dietary data recording. In most cases, ML model

integration was done directly using carbohydrate amounts (in

grams), figuring out how many calories were in food, or using

compartmental models to predict how much glucose is absorbed

from the gut into the blood. Besides, the type, quantity, and intensity

of physical activity, as well as its duration, all affect hypoglycemia

differently. Data on physical activity can be gathered manually or

automatically by wearable devices. A wide range of physical activity

data, including the intensity of activity, the total energy expended

over a specific period of time, a standard table of caloric use

during exercise, task metabolic equivalent (MET) were taken into

consideration. According to the current results, the most useful

features are still the information carried by CGM, such as the original

blood glucose value and hypoglycemia-related CGM parameters.

When compared to studies that only used CGM data as inputs,
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TABLE 9 Machine learning approaches for inpatient hypoglycemia prediction and best results performed.

References Participants,
type

Inputs PH Algorithm Outcome Validation Performance

Stuart et al. (59) 9,584, T1D+ T2D Demographics, Lab data, comorbidity score, GLA,

previous type of admission

Hospital stay LR Hypoglycemia < 72

mg/dL

Bootstrapping AUC= 0.733

Ena et al. (60) 1,400, DM Demographics, Lab data, comorbidities, GLA Hospital stay LR Hypoglycemia < 70

mg/dL

External Validation: AUC= 0.71

Winterstein et al.

(66)

21,840, DM SMBG, demographics, GLA, Lab data, oral intake

related, service location related, comorbidities

24 h LR Hypoglycemia < 50

mg/dL not followed

by glucose value >

80 mg/dL within

10min

Bootstrapping On day 3–5: c-statistic= 0.877

Mathioudakis et al.

(67)

19,262, DM Demographics, diagnoses, insulin, comorbidities, Lab

data, medications, diet order, steroid use, BG readings

24 h LR Hypoglycemia≤ 70

mg/dL, < 54 mg/dL

Internal ≤ 70 mg/dL: c-statistic= 0.77; < 54

mg/dL: c-statistic= 0.80

Shah et al. (74) 585, DM Demographics, previous HYPO events, Lab data, GLA,

CKD status

Hospital stay LR Hypoglycemia≤ 70

mg/dL

External Validation: c-statistic= 0.642, Se=

77.0%, Sp= 28.0%

Hu et al. (84) 257, T2D Demographics, Lab data, COM, comorbidities Hospital stay LR Hypoglycemia≤ 70

mg/dL

Bootstrapping AUC= 0.664

Ruan et al. (36) 17,658, DM Demographics, medications, vital signs, Lab data,

hospitalization procedure, previous HYPO events

Hospital stay XGBoost Hypoglycemia < 72

mg/dL, 54 mg/dL

10-fold cross

validation

AUC72/54 = 0.96/0.96, Se72/54 =

70.0%/67.0%, PPV72/54 = 88%/ 97%

Elbaz et al. (98) 9,665, DM Demographics, smoking, use of alcohol, comorbidities,

Lab data, GLA, other medication

First week of

admission

LR Hypoglycemia≤ 70

mg/dL

Internal, external Validation set 1/2: AUC= 0.72/0.71

Kyi et al. (101) 594, T2D Demographics, GLA, hospital treatment factors, Lab

data, comorbidities, observed-days

Hospital stay LR At least 2 days with

capillary glucose <

72 mg/dL

Internal AUC= 0.806, Se= 84.0%, Sp= 66.0%,

PPV= 53.0%

Mathioudakis et al.

(35)

35,147, DM Demographics, diagnoses, hospitalization procedures,

Lab data, medications, BG readings, insulin

24 h after each

glucose

measurement

SGB Hypoglycemia≤ 70

mg/dL

Internal, external Internal validation: c-statistic= 0.90;

external validation: c-statistic: 0.86–0.88

Han et al. (107) 1,410, T2D SMBG, demographics, medications, glycemic

variability, Lab data

Perioperative

period

LR Hypoglycemia < 70

mg/dL

Bootstrapping AUC= 0.715

Witte et al. (108) 38,250, DM Demographics, medications, Lab data 7 h XGBoost Hypoglycemia < 70

mg/dL

5-fold cross

validation

Se= 59.0%. Sp= 98.8%, PPV= 71.8%

Yang et al. (109) 29,843, T2D Demographics, medications, Lab data Hospital stay XGBoost Hypoglycemia < 70

mg/dL

10-fold cross

validation

AUC= 0.822, Acc= 0.93

Wright et al. (111) 6,279, DM Demographics, Lab data, comorbidities, glucose results,

medications, hospitalization orders

24 h LR Hypoglycemia <70

mg/dL within 24 h

after insulin use

10-fold cross

validation

AUC= 0.81, Se= 44.0%;

T1D, type 1 diabetes; T2D, type 2 diabetes; DM, diabetes; Lab, laboratory; GLA, glucose-lowering agents; SMBG, self-monitoring of blood glucose; INS, insulin; HYPO, hypoglycemia; CKD, chronic kidney disease; COM, diabetic complications.
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the contribution of features (meal, insulin, and exercise) other than

CGM glucose data was lower but not insignificant. In contrast to

real-time hypoglycemia prediction models, which primarily relied on

CGM blood glucose readings, MH/SH and inpatient hypoglycemia

predictions were primarily based on the occurrence of hypoglycemic

events collected from clinical datasets, and the included parameters

were mostly demographics, insulin use, HbA1c or fasting blood

glucose levels and previous hypoglycemic events. For such models,

the most useful characteristics were those that were clinically closely

related to the occurrence of hypoglycemia such as age, insulin, BMI,

renal function, previous hypoglycemic events, and comorbidities.

The most effective algorithm in this area is still up for debate,

despite the fact that many ML techniques have been widely used

for hypoglycemia prediction over the past 10 years. As was already

mentioned, the study population, PH, outcome definitions, modeling

techniques, and model validation strategies all affect the model

performance. Accordingly, it is essential to make sure that all

conditions are comparable in order to accurately determine which

algorithm outperforms for forecasting a particular hypoglycemic

event. The study population of almost every study, according to the

literature we reviewed for this study, is unique. Additionally, the

inputs used for model development vary from study to study, which

makes the horizontal comparison even more challenging. Although

comparing sample size and use of external validation under the same

PH and outcome under a specific hypoglycemia prediction scenario

can yield a relatively well-behaved algorithm, this comparison is

partially empirical and lacks direct comparisons of the performance

metrics. In light of the present findings of this review, it is challenging

to directly compare algorithms.

With the availability of large amounts of clinical data and

growing awareness of big data analysis tools, more andmore accurate

hypoglycemia prediction models can be developed and tested. Future

research should concentrate on the discovery of novel algorithms

or models to develop more medical devices or decision support

systems to prevent various types of hypoglycemic events and other

adverse outcomes. Clinical trials will be required before application

to assess the economic efficacy and long-term benefits to patients

with diabetes.

5. Future directions

The generation of automated and continuous personal data has

become possible with the proliferation of commercially available

CGM, wearable, and other glucose collection devices for self-

monitoring, opening up opportunities for better training ML models

withmore detailed data. Although integrating CGMwith clinical data

may improve model performance, widespread implementation of

CGM devices in patients with diabetes remains an unsolved problem

due to financial and human factor considerations (staff training,

time, resources, and other physiological measurement tools that most

patients do not have). Furthermore, despite increased research on

ML-based prediction models for hypoglycemia over the last decade,

achieving a generic model with accurate predictive efficacy under

real-world conditions remains difficult due to the complexity of blood

glucose dynamics. From the literature reviewed in this paper, most

of the study samples came from retrospective datasets and were

internally validated only. Thus, there are still great uncertainties in

the model’s accuracy and generalizability. Although advanced ML
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methods have been used to address these issues, the majority have yet

to be invoked and tested in real-world situations. Future prospective

external validation studies are urgently needed to confirm whether

these models improve glycemic outcomes.
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