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Background: Lung cancer remains a major health problem world-wide. 
Environmental exposure to lung cancer carcinogens can affect lung cancer 
incidence. We investigated the association between lung cancer incidence and an 
air toxics hazard score of environmental carcinogen exposures derived previously 
under the exposome concept.

Methods: Lung cancer cases diagnosed in Philadelphia and the surrounding 
counties between 2008 and 2017 were identified from the Pennsylvania Cancer 
Registry. Age-adjusted incidence rates at the ZIP code level were calculated based 
on the residential address at diagnosis. The air toxics hazard score, an aggregate 
measure for lung cancer carcinogen exposures, was derived using the criteria 
of toxicity, persistence, and occurrence. Areas with high incidence or hazard 
score were identified. Spatial autoregressive models were fitted to evaluate the 
association, with and without adjusting for confounders. Stratified analysis by 
smoking prevalence was performed to examine potential interactions.

Results: We observed significantly higher age-adjusted incidence rates in ZIP codes 
that had higher air toxics hazard score values after controlling for demographic 
variables, smoking prevalence, and proximity to major highways. Analyzes 
stratified by smoking prevalence suggested that exposure to environmental lung 
carcinogens had a larger effect on cancer incidence in  locations with higher 
smoking prevalence.

Conclusion: The positive association between the multi-criteria derived air 
toxics hazard score and lung cancer incidence provides the initial evidence to 
validate the hazard score as an aggregate measure of carcinogenic exposures in 
the environment. The hazard score can be used to supplement the existing risk 
factors in identifying high risk individuals. Communities with higher incidence/
hazard score may benefit from greater awareness of lung cancer risk factors and 
targeted screening programs.
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1. Introduction

Lung cancer results in the greatest number of deaths from cancer 
with the National Cancer Institute’s Surveillance, Epidemiology, and 
End Results Program (SEER) and American Cancer Society estimating 
127,070 deaths due to lung cancer in 2023 (1, 2). Further, the estimated 
number of new cases in 2023 is expected to be 238,340, suggesting that 
lung cancer remains an ongoing major health problem (2). The 
age-adjusted incidence for cancer of the lung has been reported to 
be 62 per 100,000 in Pennsylvania (PA) in 2022, which is greater than 
the national incidence rate of 57 (3). This incidence rate is even higher 
in the two counties with major cities in PA, namely Philadelphia 
county (70.6 per 100,000) and Allegheny county (64.6 per 100,000), 
which contains Pittsburgh (4, 5) based on data from 2015–2019. The 
five-year survival, defined to be the percent of subjects who are alive 
five years after a lung cancer diagnosis, is 27% for Pennsylvanians 
based on data from 2016–2021. This percentage is slightly but 
significantly higher than the national five-year survival of 25% (3, 6). 
Research to advance lung cancer survival including improvements in 
screening, diagnosis, and treatment are still in urgent need.

Tobacco use through cigarette smoking is a principal risk factor 
for lung cancer. The cancer risk associated with smoking focuses on 
the chemical constituents of smoke and the mechanisms through 
which they may lead to cancer development (7). Potentially 
carcinogenic compounds that are found in tobacco smoke such as 
polycyclic aromatic hydrocarbons (PAHs), aromatic amines, benzene, 
vinyl chloride, butadiene, arsenic, and cadmium are also found in the 
environment as components of air pollution. Air pollutants also 
include components of diesel fuel combustion, e.g., nitro-arenes 
which have cancer causing potential (8–10). These exposures may 
contribute to lung cancer incidence and deaths in people who have 
never smoked–up to 20% of lung cancer deaths in the United States 
occur in never smokers (11). The role of outdoor air pollution in 
cancer risk is further supported by the International Agency for 
Research on Cancer (IARC)‘s designation of air pollution as a Group 1 
carcinogen as an agent known to be carcinogenic to humans (12). Air 
pollution has also been shown to be a lung tumor promoter where 
exposure to PM2.5 leading to inflammation is the culprit (13). 
However, few studies have considered carcinogen emissions in 
their totality.

Inspiring by the exposome concept proposed by Christopher Wild 
in 2005 (14), which considers all exposures to an individual in his or 
her lifetime and relates them to health outcomes, McKeon et  al. 
proposed a methodology to construct a hazard index to measure the 
combined effects of chemical compounds that may lead to higher lung 
cancer incidence (15). Using a Multi-Step Multi-Criteria Decision 
Analysis (MMCDA) risk assessment framework, the air toxics hazard 
index is designed to summarize the relative impact of many chemicals 
in a particular study area using a point system. This point system 
quantifies chemicals in terms of their toxicity based on IARC 
classifications and literature-based evidence that they possess the 
characteristics of chemical carcinogens, persistence as indicated by 
status as a volatile organic compound (VOC), and occurrence in terms 
of the amount and frequency of emission in the study area. In their 
report, they utilized more than 30 years of data from US EPA’s Toxic 
Release Inventory (TRI) for chemicals that potentially cause lung 
cancer beyond the ones found in air pollution and computed the 
hazard index for Philadelphia and surrounding counties. Although it 

is understandable that their proposed air toxics hazard index still does 
not fully capture the complexity of the exposome in its strict definition, 
the consideration of multiple criteria including toxicity (based on 
characteristics of carcinogens that are agnostic and independent of 
organ site), persistence, and occurrence which has both a temporal 
and geospatial component still provides a means for mirroring many 
of the key concepts of exposome components.

The objective of this study was to investigate the association 
between lung cancer incidence and this hazard index now referred to 
as air toxics hazard score to prevent confusion with a classical 
definition of hazard index. Using cases derived from the Pennsylvania 
Cancer Registry, we  conducted ZIP code level spatial regression 
analyzes to examine this association for Philadelphia and surrounding 
counties while controlling for relevant demographics and other 
covariates including smoking prevalence. Geospatial analyzes 
including the use of maps and various cluster detection and regression 
techniques are useful to investigate geographic patterns in a health-
related outcome such as cancer incidence and explore risk factors 
including socio-, behavioral or environmental factors (16–18). A 
significant association between lung cancer incidence and the air 
toxics hazard score would support the validity of this hazard score as 
an aggregate measure of carcinogenic exposures in the environment 
and the use of the air toxics hazard score as a risk stratification tool to 
supplement the existing risk factors in identifying high-
risk individuals.

2. Methods

2.1. Data sources

Our study area consisted of 212 ZIP codes in five counties located 
in southeastern Pennsylvania: Bucks, Chester, Delaware, Montgomery, 
and Philadelphia, which comprise the major metropolitan area of 
Philadelphia and the surrounding suburbs. Such geographic area is 
typically used for similar research studies because these areas are 
highly susceptible to toxic environmental exposure due to considerable 
human activities and often with higher cancer incidence because of 
the large population size. Case data were identified to include all 
patients diagnosed with lung and bronchus cancer between 2008 and 
2017 who resided in the five above-mentioned counties at the time of 
diagnosis using the Pennsylvania Cancer Registry using the following 
ICD 10 diagnosis codes: C340 (main bronchus), C341 (upper lobe, 
bronchus or lung), C342 (middle lobe, bronchus or lung), C343 (lower 
lobe, bronchus or lung), C348 (overlapping sites of bronchus and 
lung), and C349 (unspecified part of bronchus or lung). Cases were 
excluded if they involved in situ and non-carcinoma histology, were 
not uniquely matched with a census tract ID, or their age at diagnosis 
belonged to an age group with zero population size as estimated by US 
Census Bureau indicating a possible data error for the registry. 
Complete details regarding the selection of the study population and 
determination of geographical location were previously published in 
Zhu et al. (19). We used 10-year incident rates to avoid the noise from 
the yearly variations in the incidence rates and to increase the 
statistical precision for the incidence rate estimates by including more 
cases. The final sample size for analysis was comprised of 30,165 cases.

The population size for each ZIP code was obtained from the US 
Census Bureau (20). We chose to use ZIP code as the geographical 
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unit of interest in the current analyzes because of its familiarity in 
communications with health care providers and the general 
population. Although there are merits of using other geographical 
units such as census tract, we believe proper covariate adjustment can 
remove some sensitivity of ZIP code level analysis due to varying 
population size. Many published reports have also demonstrated that 
findings from ZIP code level analysis have similar utility to those that 
used census tracts as the unit of analysis (21–23).

For demographic covariates, median age, percentages of male, 
white race, Hispanic ethnicity, high school education or less, below 
poverty level, median household income, and population density in 
each ZIP code were obtained using 2010–2014 American Community 
Survey (ACS) 5-year estimates. The 2010–2014 ACS survey data were 
selected because the years coincided with the halfway point of the 
study period. The distance to highway was calculated in ESRI’s 
ArcMap to represent the number of meters from the centroid of a ZIP 
code to the nearest Class 1 or Class 2 highway as shown in the PA ZIP 
codes and the major highways shape files (24, 25). Estimates of 
smoking prevalence at the ZIP code level were obtained from the 
Centers for Disease Control and Prevention’s (CDC) PLACES 2020 
release as derived from the 2017/2018 Behavioral Risk Factor 
Surveillance System (BRFSS) survey (26, 27). Data from 2017/2018 
were used because ZIP code level smoking prevalence from earlier 
years were not available for our study area. While there is a slow 
decline in smoking prevalence observed over the years in Pennsylvania 
(28, 29), it was reasonable to assume that the relationship between 
smoking and lung cancer incidence remained consistent over the 
study period and the longitudinal patterns in smoking prevalence 
were similar across the ZIP codes. Data from the U.S. Environmental 
Protection Agency (EPA)‘s Toxic Release Inventory (TRI) program, 
which collects information on the management and emission of toxic 
chemicals into the environment, were obtained from EPA’s Data Mart 
website (30).

2.2. Air toxics hazard scores

For each ZIP code, we calculate the air toxics hazard score using 
the MMCDA approach as described previously in McKeon et al. based 
on TRI data between 1987 and 2007 (15). We choose 1987 because it 
is the first year for which TRI data became available, and the year 2007 
is chosen to maintain the temporal order of the exposures and the 
years for which the lung cancer cases were included (29). Furthermore, 
using a wider time frame would also avoid the results to be sensitive 
to the uncertainty regarding the length of the latency period. Multi-
criteria decision analysis (MCDA) is an established framework for 
several decades to guide decision that requires consideration of 
multiple domains (31). MCDA has been implemented in many 
application areas and is widely used by US EPA for different 
investigations including exposure research (32–34) and risk 
assessment (35, 36). In our previous work (15), we developed the air 
toxics hazard score by modifying the MCDA that was originally 
applied to hydraulic fracturing fluids (37, 38) to consider the domains 
of toxicity, persistence, and release amounts in which the release 
amounts was used as a weighting domain. TRI records the amounts 
of chemical emissions (in pounds) released into the air (both fugitive 
and stack emissions) by industrial and federal facilities that 
manufacture, process, or use toxic chemicals each year with one data 

entry per emission per chemical per facility. Specifically, chemicals 
reported in TRI data are included in the current evaluation if they 
meet one of the following five exposome features: (i) they are classified 
as an IARC group 1 to 3 carcinogen, (ii) are one of the EPA 16 priority 
PAHs, (iii) found in diesel exhaust, (iv) are deemed a VOC by the EPA, 
and/or (v) are shown to contribute to lung carcinogenesis based on 
the literature that they possess the characteristics of chemical 
carcinogens (8, 12, 39–41). Although IARC classifications are in 
general carcinogen specific and not necessarily specific to lung cancer, 
the inclusion of chemicals per IARC designation aims to capture a 
complex mixture of man-made chemicals related to outdoor air 
pollution which is considered to be Group 1 carcinogen by IARC (12). 
We  believe that it would be  incorrect to dismiss the known 
carcinogenicity of these compounds even though they may not 
be lung carcinogens per se since it is not possible to prove a negative. 
These selected chemicals are then scored according to the criteria of 
toxicity, persistence, and occurrence with a point system. The raw 
scores for these chemicals are calculated based on their chemical 
toxicity and persistence and then rescaled so that they are between 0 
and 1. A chemical’s risk score Srisk  is the sum of the rescaled toxicity 
and persistence scores with higher values indicating greater risk. 
Lastly, the occurrence score Soccurrence  considers the amount of a 
chemical released in a ZIP code relative to the total emission amount 
of that chemical in the entire study area. The final air toxics hazard 
score for each ZIP code i, HSi , is calculated over all the selected 
chemicals indexed by j using the equation shown below. A higher 
hazard score indicates higher level of exposure to the chemicals 
considered in the derivation.

 
HS S Si

j
j
occurrence

j
risk� ��

For 209 chemicals reported in TRI between 1987 and 2007, 109 of 
them met at least one of the five exposome features: 80 were classified 
as IARC group 1 to 3 carcinogen, 5 were one of the EPA 16 priority 
PAHs, 6 were found in diesel exhaust, 44 were deemed a VOC by the 
EPA, and 9 were shown to contribute to lung carcinogenesis based on 
the literature that they possess the characteristics of chemical 
carcinogens. The selected chemicals are provided in Supplementary 
Table S1 by McKeon et al. (15).

2.3. Descriptive analysis and spatial 
autocorrelations

Descriptive statistics including mean, standard deviation (SD), 
median, minimum, maximum, frequency, and percentage were 
computed for ZIP code level study variables. Our primary outcome 
was the age-adjusted lung cancer incidence in the 10-year interval, 
2008–2017, and the main independent variable of interest was the air 
toxics hazard score based on TRI emission data from 1987 to 2007 to 
allow for the latency period between exposure and disease occurrence. 
We used age-adjusted incidence rates via the adjustment of crude 
incidence rates according to the 2000  U.S. Standard Million 
Population, which is the most recent standard population available, to 
account for differences in cancer incidence in different age groups. 
This adjustment procedure assumed a total population of 1,000,000 
people and allocated the population into 13 age groups (0–4, 5–9, 
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10–14, 15–19, 20–24, 25–34, 35–44, 45–54, 55–59, 60–64, 65–74, 
75–84, 85, and above) (42). The outcome variable, age-adjusted 
incidence rate, was assumed to follow a normal distribution after 
examining the distribution using a histogram.

We created maps for the incidence rates and hazard score values 
by ZIP code to assess the spatial distributions descriptively over the 
study region. To assess the spatial autocorrelation, a Moran’s I statistic 
was computed using queen contiguity spatial weight matrix such that 
ZIP codes sharing a side or corner are given a spatial weight of 1 and 
others have a spatial weight of 0 (43, 44). The significance of Moran’s 
I was tested with a permutation test. A positive Moran’s I (i.e., positive 
spatial autocorrelation) would indicate that the observed values of the 
same variable (e.g., incidence rate) from two different locations that 
are near one another are more similar than those that are more distant 
(45, 46).

Because almost half of the ZIP codes had a hazard score of 0, 
we created a 3-level categorical hazard score groups by applying the 
Jenks natural breaks algorithm for the ZIP codes with hazard score 
greater than 0. The Jenks natural breaks algorithm is a commonly used 
approach to obtain the best arrangement of values into several 
categories such that the variance within categories is minimized and 
the variance between categories is maximized (47). The frequencies 
for the three hazard score categories were: Category “0” with 103 ZIP 
codes (48.6%), Category “low” with 89 ZIP codes (41.5%) for positive 
hazard score up to 1, and Category “high” with 21 ZIP codes (9.9%) 
for hazard score above 1. The correlations between the age-adjusted 
incidence rates, the hazard score as both the continuous and 
categorical versions, and the demographic variables were computed 
using Pearson’s correlation coefficient. Boxplots of the age-adjusted 
incidence rates by the 3-level hazard score groups were created and 
tested for any between-group difference using one-way ANOVA, 
followed by a Jonckheere-Terpstra (JT) test to test for trend (48).

2.4. Spatial autoregressive regression 
models

To test the central hypothesis that our proposed air toxics hazard 
score are associated with lung cancer incidence rates, we considered 
three spatial autoregressive regression models: spatial error model 
(SEM), spatial lag X (SLX) model, and spatial Durbin error model 
(SDEM) (49, 50). These three models reflect different assumptions 
about the relationship between independent variables X and outcome 
Y and about the way X and spatial neighbors of Y affect Y. The SEM 
model is given by y X u u Wu e� � � �� �, , where e I~ 0

2
,�� � with 

X  is the set of covariates, β  is the associated regression coefficient 
vector, u  is a vector of spatial random effects, W  is the queen contiguity 
matrix, and λ represents the average extent of spatial correlation 
among the errors. Next, the SLX model, given by y WX X e� � �� �
, where 𝑒~𝑁(0, 𝜎2𝐼), includes 𝑊X as a matrix of spatially lagged 
independent variables and θ  as a vector of lagged effect estimates that 
account for the effects of X  from neighboring locations. The SDEM 
model combines features of SEM and SLX such that 
y WX X u u Wu e� � � � �� � �,  with e N I~ ,0� � . These models are 
classified as local models because they do not allow endogenous 
feedback effects (i.e., events in one location lead to a reaction in its 
neighbors; that reaction, in turn, produces a feedback response in the 
original location as well as other nearby locations) (51). We fitted 

these local models in the current study instead of the alternative global 
models because we  expect effects of exposure to be  restricted to 
affecting incidence rates in surrounding areas with relatively local 
spatial autocorrelation as is often appropriate for most applications. 
Conditional autoregressive model (CAR), another commonly used 
approach for spatially distributed data, was not employed here because 
it often produces results similar to the spatial autoregressive 
regression models.

After including the 3-level hazard score categorical variable as the 
main independent variable in the model, the model building process 
proceeded in a stepwise fashion by adding or removing covariates 
(demographics variables, smoking prevalence, and distance to 
highway) that were correlated with the incidence rate at the 0.1 
significance level in the univariate analysis one at a time. Inclusion is 
based on AIC, and the process continues until the model reaches the 
smallest AIC. For the variable of distance to highway, we observed the 
functional form of a linear spline at knot = 5 km to have the best fit 
with the observed pattern after examining the residual plots from a 
model that included it as a continuous variable. We only considered 
the categorical version of the hazard score for the regression analysis 
because the skewness of the distribution and for the ease of the 
interpretation in the regression coefficients. The collinearity of the 
fitted models was examined using variance inflation factors. The final 
multivariable SEM, SLX, and SDEM models were derived separately 
and compared using the likelihood ratio and Lagrange multiplier tests 
(52). We only presented the results from the final SEM model because 
it has a significantly better fit than the SDEM and SLX models (all 
comparisons had p-values<0.05) as well as the largest R-squared value 
and smallest AIC value. The value and the significance of Moran’s 
I statistic for the presented model were computed using the residuals 
of the corresponding model. The lagsarlm and errorsarlm functions in 
the sp. package in R were used to fit the spatial models (44).

2.5. Stratified analysis by smoking 
prevalence

To further examine the role of smoking, we performed a stratified 
analysis by which two spatial SEM regression models were fit 
separately for ZIP codes with low smoking prevalence and those with 
high smoking prevalence; the levels were split at the median of 16% 
which is similar to the 2019 national average of 14%. Only covariates 
selected in the final SEM model were included.

All analyzes were conducted in R version 4.1.2.

3. Results

3.1. Sample characteristics

Characteristics of 212 ZIP codes in the study areas are presented 
in Table 1. Approximately half of the ZIP codes had a median age of 
40 years old, but the range was wide. Although half of the ZIP codes 
contained a population that was composed of White and non-Hispanic 
individuals, had over 60% of residents with more than a high school 
education, contained a small percentage below the poverty line, and 
had a median annual household income of USD 34,900, the values 
across ZIP codes varied significantly. Half of the ZIP codes had a 
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smoking prevalence above 16.2%, but this prevalence ranged from 4.5 
to 29.6% across the area of interest.

3.2. Mapping of air toxics hazard score and 
age-adjusted lung cancer incidence

The mean and median age-adjusted lung cancer incidence rate 
across 212 ZIP codes were 62.1 (SD 24.5) and 60.4 (range 125) per 
100,000, respectively. The mean air toxics hazard score was 0.42 for the 
study area while the median was close to zero, suggesting that most 
areas have relatively low exposure, but there are certain locations with 

much larger hazard score values (range 9.63). Figure 1 shows (a) the 
age-adjusted incidence rates for lung cancer and (b) the air toxics hazard 
score for lung cancer in the study area. We observed that ZIP codes with 
high incidence rates lie along the southeastern border of our study area. 
In some instances, the incidence rate was twice as high as the mean or 
median values. The Moran’s I  statistics for the incidence rates and 
hazard score were 0.41 and 0.13 (all p-values<0.001), respectively, which 
suggested a significant positive spatial autocorrelation, so that spatial 
autocorrelation regression models may be required.

3.3. Association between air toxics hazard 
score and age-adjusted incidences

A boxplot of age-adjusted incidences by the categories of the 
hazard score indicated a positive relationship as shown in Figure 2. 
The difference in the age-adjusted incidences between hazard score 
groups was statistically different from zero (one-way ANOVA, value 
of p<0.001). Specifically, the average differences in incidence between 
the ZIP codes in the low and high hazard score categories versus that 
of the ZIP codes in the zero (0) hazard score group (i.e., reference 
category) was estimated to be 13.19 (95% CI: 6.58–19.80) and 24.93 
(95% CI: 14.02–35.84) per 100,000, respectively. The increase in the 
age-adjusted incidence rates as the hazard score increases suggested a 
significant dose–response relationship (JT test for trend, value of 
p<0.001). That is, the incidence of lung cancer appeared to be larger 
for ZIP codes that have greater exposure to toxic chemicals.

3.4. Spatial autocorrelation regression of 
the multivariable model

Table 2 shows the correlations between the age-adjusted incidence 
rates, air toxics hazard score, and demographic characteristics. 
We observed significant correlations between the age-adjusted incidence 

TABLE 1 Characteristics of 212 ZIP codes in the study area.

Overall (N = 212)

Mean (SD) Median [Min, 
Max]

Median age (years) 40.0 (7.31) 40.5 [20.2, 83.4]

Female sex (%) 51.1 (6.71) 51.4 [0, 86.5]

White race (%) 77.4 (25.0) 87.7 [2.30, 100]

Hispanic (%) 5.85 (8.85) 3.30 [0, 65.3]

High school education or less (%) 39.5 (17.6) 39.9 [6.30, 100]

Poverty (%) 10.5 (10.5) 6.45 [0, 57.8]

Median income (10,000 USD) 3.49 (1.42) 3.37 [0.406, 16.3]

Population density (10 people per 

sq. mile)
501 (630)

230 [4.22, 3,360]

Smoking prevalence (%) 16.7 (4.72) 16.2 [4.50, 29.6]

Smoking categories

High 111 (52.4%)

Low 101 (47.6%)

Distance to major highway (km) 2.08 (2.19) 1.25 [0.00509, 10.5]

FIGURE 1

(A) Distribution of age-adjusted lung cancer incidence rates per 100,000 people for ZIP codes in the study area. (B) Distribution of the air toxics hazard 
scores for ZIP codes in the study area.
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rates with both the continuous and the categorical hazard score with a 
correlation coefficient of 0.253 and 0.344, respectively (all value of 
ps<0.01). Age-adjusted incidence rates were also significantly correlated 
(all value of p<0.05) with all demographic variables examined except for 
sex with the magnitude of the correlation coefficients ranging from 
0.554 for smoking prevalence to 0.127 for the percentages of Hispanics.

Table 3 presents the regression coefficient from the fitted SEM with 
and without adjusting for demographics and smoking prevalence along 
with the corresponding 95% CIs and p-values. The model specified that 

5
5

_  7.49 11.42
0.42 0.28

_0.06 1.5
3.82
0.59 0.32

= +
+ +
+
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where W is a queen contiguity matrix and u is a vector of spatial random 
effects. Based on the SEM model, higher hazard score categories were 
associated with increases in age-adjusted incidence after adjusting for 
covariates in the model and spatial autocorrelations supports the study 

hypothesis that higher values of air toxics hazard score are associated 
with increased lung cancer incidence. ZIP codes that fall within the low 
and high hazard score categories were associated with an average 
increase of 7.5 (95% CI: 2.2–12.8) and 11.4 (95% CI: 2.4–20.5) per 
100,000 in the age-adjusted incidence rates, respectively, as compared 
to ZIP codes with hazard score of 0. The adjusted differences were 
statistically different from 0 with value of ps of 0.006 and 0.013, 
respectively. The spatial effects coefficient, λ, was also significant with 
value of p of 0.004, indicating that there were significant correlations 
among the ZIP codes, and the use of a spatial model to account for these 
was warranted. Lower percentage of Hispanics individuals, higher 
percentage of residents with high school education or less, higher 
population density, higher smoking prevalence, and closer proximity to 
major highways within 5 km were also associated with higher incidence 
rates in the study area. Estimates of the main effects of smoking 
prevalence were significant, indicating its importance in disease risk. 
The values of the variance inflation factor (VIF) did not suggest issues 
with collinearity (all VIFs<5). Significance of the spatial autocorrelation 
among the residuals from the multivariable SEM model was not 
detected (value of p>0.05) based on a Moran’s I test suggesting spatial 
autocorrelation had been adequately captured by the final SEM model.

3.5. Stratified analysis by smoking 
prevalence

For the stratified analysis by smoking prevalence levels (“high” 
>16% versus “low” ≤16%), Figure 3 indicates that the differences in 
incidence rates among air toxics hazard score categories were less 
prominent in the ZIP codes with low smoking prevalence while a 
much clearer dose–response pattern was observed at high smoking 
prevalence. Specifically, higher hazard score categories were 
associated with higher incidence rates in the ZIP codes with a high 
smoking prevalence level (one-way ANOVA, p < 0.001; JT test for 
trend, value of p<0.001); the average differences in ZIP code level 
incidences between low and high hazard score categories versus the 

FIGURE 2

Age-adjusted incidence rates by air toxics hazard score category. JT: 
Jonckheere-Terpstra test for trend.

TABLE 2 Correlations between age-adjusted incidence rates, air toxics hazard scores, and demographic characteristics.

Incidence Air Toxics Hazard Scores

Overall Continuous Categorical

Hazard (continuous) 0.253***

Hazard (categorical) 0.344***

Median age (year) −0.268*** −0.111 −0.177***

Female (%) 0.094 −0.006 −0.063

White (%) −0.343*** −0.047 −0.115*

Hispanic (%) 0.127* 0.114* 0.145**

High School or less (%) 0.488*** 0.227*** 0.245***

Median income (10,000 USD) −0.334*** −0.145** −0.179***

Poverty (%) 0.436*** 0.181*** 0.230***

Population density (10 people per sq. mile) 0.390*** −0.014 0.001

Distance to major highway (km) −0.343*** −0.145** −0.209***

Smoking prevalence (%) 0.554*** 0.261*** 0.3056***

*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.  
The statistical significance of the correlation coefficients is indicated by asterisks.
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incidences for ZIP codes with zero (0) hazard score were estimated 
to be 13.81 (95% CI: 3.79–23.83) and 29.24 (95% CI: 14.23–4.26) per 
100,000, respectively. For ZIP codes with low smoking prevalence, 
there is a statistically significant difference and ordered trend in the 
incidence rates (one-way ANOVA, p = 0.034; JT test for trend, value 
of p = 0.003) but the differences were smaller; the average differences 
comparing low and zero hazard score groups were estimated to 
be 8.56 (95% CI: 1.98–15.13) per 100,000, and 7.02 (95% CI: −5.52-
19.55) per 100,000 comparing high and zero hazard score groups 
which was not statistically significant different from 0 at 0.05 
significance level given that the value 0 was contained in 95% CI.

Table 4 provides the regression estimates stratified by high and 
low smoking prevalence from the SEM regression after adjusting for 
demographic covariates and the distance to major highway variable. 
Estimates confirmed the observation presented in Figure 3 that even 
after adjusting for covariates, the hazard score categories were 
significantly associated with incidence rates for locations with high 
smoking prevalence such that ZIP codes with higher hazard score 
categories also had higher age-adjusted incidence rates. Similarly, the 
patterns for the ZIP codes with low smoking prevalence were different 
such that the high hazard score category compared to a hazard score 
of 0 was associated with an average increase in lung cancer incidence 
of 18.8 (95% CI: 6.1–31.5) per 100,000 (value of p = 0.004) for the high 
smoking prevalence stratum after adjusting for other covariates in the 
model but not for the ZIP codes with low smoking prevalence (value 
of p>0.05).

4. Discussion

In this report, we  assessed the association between the 
age-adjusted lung cancer incidence and the air toxics hazard score, an 
aggregate measure of various environmental carcinogen exposures 
known to be  related to lung cancer development, using spatial 
regression analysis. Using more than 30 years of data from U.S. EPA’s 
TRI, the air toxics hazard score for a geographic area was derived as a 
single value for each geographic unit that was based on the exposome 
concept as described by Christopher Wild (14). Although the air 
toxics hazard score used in the current analysis is far from perfect to 
fully capture the complexity and evolving definition of the exposome, 

FIGURE 3

Age-adjusted incidence rates within combinations of the air toxics 
hazard score categories and high and low smoking prevalence 
levels.

TABLE 3 Spatial error regression model adjusting for demographic covariates and continuous smoking prevalence.

SEM

Univariate Stepwise

Est (95% CI) P-value Est (95% CI) P-value

Air Toxics Hazard Score

[0] Ref -- Ref --

Low, [0–1] 12.09 (6.56, 17.62) <0.001 7.49 (2.19, 12.79) 0.006

High, [1–10] 17.89 (8.65, 27.14) <0.001 11.42 (2.36, 20.47) 0.013

Hispanic (%) −0.42 (−0.76, −0.08) 0.016

High school or less (%) 0.28 (0.01, 0.54) 0.043

Population density (100 ppL per sq. 

mile) 0.06 (−0.00, 0.11) 0.050

Smoking prevalence (%) 1.50 (0.41, 2.59) 0.007

Distance to major highway (km)

≤5 km −3.82 (−5.78, −1.86) <0.001

>5 km 0.59 (−3.55, 4.72) 0.781

Lambda 0.62 (0.49, 0.75) <0.001 0.32 (0.11, 0.47) 0.004

Model Statistics

Log likelihood −932.72 −907.72

R-squared 0.350 0.487

AIC 1875.4 1835.4

Moran’s Index −0.054 0.868 −0.017 0.613

Est, regression coefficient estimates; ppl, people. P-values < 0.05 were bolded.
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we  believe the score still provides a means for combining these 
different exposome components and can be useful in advancing the 
field of exposome research. The air toxics hazard scores used in the 
current study considered more than 200 chemicals with respect to 
aspects of their toxicity, persistence, and frequency of the occurrence 
through a MMCDA framework (15). We observed that areas with 
high incidence rates were concentrated in the southeastern region of 
Pennsylvania along its border with New Jersey, which also contained 
regions of high hazard scores. After adjusting for ZIP code level 
demographic characteristics and the distance to highway as a surrogate 
for traffic volume, our analyzes showed an overall pattern that 
reflected a dose–response relationship in that areas with higher air 
toxics hazard scores were associated with higher lung cancer 
incidence. However, this relationship differed by the smoking 
prevalence in the area such that a higher hazard score had a more 
pronounced effects in an area with high smoking prevalence. Our 
analysis demonstrated the value of the air toxics hazard score as a valid 
tool for capturing the exposome to predict lung cancer incidence.

The spatial patterns in the air toxics hazard score and lung cancer 
incidence suggested the importance of geographical location and the 
spatial autocorrelation among ZIP codes in studying lung cancer 
epidemiology. The significance of the spatial term in our fitted spatial 
regression model indicated that residuals among neighboring ZIP 
codes may be correlated and that our spatial approach was appropriate 
to account for unexplained variation of a parameter not included in 
the model. In addition to the use of a spatial model to control spatial 
autocorrelations, our findings were also strengthened by making 
adjustment for possible confounding by demographic variables. Our 
results suggested that ethnicity, education, population density, and 
smoking prevalence in a ZIP code are important variables that may 
be associated with lung cancer incidences, reinforcing findings from 
previous studies (53, 54). Further, an increase in distance from a major 

highway up to 5 km is associated with reduction in incidence, 
suggesting that the proximity to air pollution resulting from vehicle 
traffic is a risk factor. Adjusting for these covariates, ZIP codes with 
low and high score categories still had significantly higher incidence 
rates of lung cancer than those of ZIP codes with a hazard score of 0.

As smoking is considered a primary risk factor, both the adjusted 
analyzes and the stratified analysis in the current report provided a 
better understanding of its effect in the context of environmental 
exposures. In particular, our stratified analyzes indicated that exposure 
to environmental lung carcinogens tends to lead to a greater difference 
in lung cancer incidence in  locations with a higher prevalence of 
smoking. It may be likely that smoking and environmental pollutants 
interact to further increase lung cancer risk. Although we did not 
investigate the mechanism of exposure in the current study, because 
the air toxics hazard score we  used only considers carcinogenic 
chemical exposures for the air emissions recorded in the EPA’s TRI 
data, the likely exposure mechanism was through inhalation. These 
observations warrant consideration of both individual smoking habits 
and environmental exposures to lung cancer carcinogens in 
identifying individuals who may be at higher risk of developing lung 
cancer in the future. These findings also indicate a potential to use the 
residential address as a risk stratification tool or as a part of the 
eligibility criteria for lung cancer screening together with other 
individual (e.g., age, smoking history) and environmental risk factors 
(55, 56). That is, we can expand screening to include individuals living 
in ZIP codes with high air toxics hazard scores.

We note a few limitations of our study. Data on smoking 
prevalence are recent, so expected temporality could not be assessed. 
Our decision to utilize these data was based on the observation that 
changes in smoking prevalence over the years were small and would 
be similar across the ZIP codes. The individual smoking status was 
also not available. Another issue regarding temporality is that the 

TABLE 4 Spatial error regression model estimates for low and high levels of smoking prevalence.

SEM Low smoking (n = 101) High Smoking (n = 111)

Est (95% CI) P-value Est (95% CI) P-value

Air toxics hazard score

[0] Ref -- Ref --

Low, [0–1] 7.26 (1.84, 12.67) 0.009 7.78 (−0.37, 15.92) 0.061

High, [1–10] 1.63 (−9.44, 12.70) 0.773 18.79 (6.10, 31.49) 0.004

Hispanic (%) 0.29 (−0.65. 1.24) 0.545 −0.46 (−0.88, −0.05) 0.028

High school or less (%) 0.53 (0.29, 0.78) <0.001 0.29 (−0.07, 0.65) 0.113

Population density (100 ppL per sq. mile) 0.07 (0.01, 0.13) 0.023 0.08 (−0.00, 0.15) 0.061

Distance to major highway (km)

≤5 km −2.66 (−4.60, −0.72) 0.007 −5.88 (−9.16, −2.59) <0.001

>5 km 4.36 (0.15, 8.58) 0.043 −2.41 (−8.31, 3.49) 0.423

Lambda 0.24 (−0.01, 0.49) 0.110 0.30 (0.09, 0.50) 0.015

Model statistics

Log likelihood −400.84 −486.05

R-squared 0.365 0.467

AIC 821.7 992.1

Moran’s index 0.014 0.363 −0.011 0.510

Est, regression coefficient estimates; ppl, people. P-values < 0.05 were bolded.
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latency period for lung cancer may be longer than what was studied 
based on the available TRI data. Because we  used an aggregate 
measure of environmental exposures rather than individual chemicals 
or toxicants, our data provided an estimate of the combined effects of 
this exposome without consideration of the mode of action of this 
complex mixture. The current study considered newly diagnosed lung 
cancer cases with all stages and histology subtypes combined so that 
the associations of air toxics hazard score with certain stage or 
histology subtypes were not examined. Additionally, we  used the 
residential address at the time of the diagnosis, and we did not capture 
the day-to-day movement patterns of the individuals such as travel to 
work or school, and the degree of the resulting exposure 
misclassification is unknown. Other unmeasured variables, including 
exposure to other environmental hazards such as radon, asbestos, and 
secondhand smoke, as well as a family history of or genetic 
predisposition to lung cancer were not available from the cancer 
registry, thus we cannot control them in the current analysis. Lastly, 
the study area was limited and, thus, the current findings may not 
be generalizable to other geographic areas.

Future work will consider a larger study area so that we  may 
substantiate the relationships we  observed in our current study. 
Moreover, a longer study period may be beneficial for capturing the 
temporal relationship between exposure and lung cancer development. 
The possible mechanisms of exposure associated with the air toxics 
hazard score are also warranted further investigation. The appeal of 
the air toxics hazard score used is that the same framework can 
be extended easily to a different geographical area or unit, different 
time frame, or even a different cancer outcome. Furthermore, because 
the study area covers the catchment area for Abramson Cancer Center 
located in Philadelphia, our goal is for the proposed framework to 
serve as a transferable model for other cancer catchment areas 
interested in better understanding exposures or risks to the 
populations within catchment areas. More attention should be paid to 
smokers who reside in areas with higher hazard scores and to 
non-smokers who have lived in these areas for an extended period of 
time. These individuals living in potentially more hazardous locations 
may derive the most benefit from greater uptake of public health 
interventions such as screening and educational programs. 
Furthermore, the current study also showed that locations of these 
high incidence and/or high air toxics hazard scores were also matched 
with those for environmental justice (EJ) areas (57), which are socially 
and economically disadvantaged and often disproportionally exposed 
to adverse environmental impacts and higher disease burden beyond 
just cancer. In recent years, PA state agencies have developed and 
deployed EJ Screening tools to address the needs of EJ and serve as a 
valuable resource for the public to better understand the potential 
environmental impacts of policies, projects, or health interventions. 
The findings of the current study provide preliminary evidence that 
the air toxics hazard score or the framework we used to derive and 
evaluate the hazard score can be part of the EJ toolbox.

Our analyzes demonstrated a positive association between the air 
toxics hazard score and lung cancer incidence, and the patterns of 
association varied by the smoking prevalence of the area. These 
findings support the air toxics hazard score as an useful measure for 
aggregating carcinogenic exposures in the environment and as a 
predictor of lung cancer incidence. Further validation of the air toxics 
hazard score are warranted. Individuals living in the communities 
with higher air toxics hazard scores, either with or without other risk 

factors, may benefit from greater awareness of lung cancer and 
targeted screening programs.

Data availability statement

The data analyzed in this study is subject to the following licenses/
restrictions: We  conducted the present analysis under a data use 
agreement with the Pennsylvania Department of Health (PA-DOH). 
The original data from the PA-DOH Pennsylvania Cancer Registry are 
not available for redistribution. Requests to access these datasets 
should be directed to wealdinger@pa.gov.

Ethics statement

The studies involving human participants were reviewed and 
approved by University of Pennsylvania Institutional Review Board 
(IRB number 831671). Written informed consent from the 
participants’ legal guardian/next of kin was not required to participate 
in this study in accordance with the national legislation and the 
institutional requirements.

Author contributions

AZ, TP, and W-TH: study conceptualization. AZ, TLM, and 
W-TH: study design and statistical analysis. AZ, TLM, TPM, AV, TP, 
and W-TH: data acquisition and manuscript review and editing. TLM 
and TPM: table and figure preparation. AZ and W-TH: draft initial 
manuscript. All the authors read and approved the final manuscript.

Funding

This study was supported in part by the National Institutes of 
Health Cancer Center Support Core Grant (P30-CA16520), and the 
National Institute of Environmental Health Sciences grants (P30-
ES013508 and R01-ES029294 awarded to TMP). The funding sources 
had no involvement in conducting and reporting the study.

Acknowledgments

The authors thank Xiaoyan Han for her efforts to conduct quality 
check for PA cancer registry data and Vicky Tam for her guidance in 
geocoding of PA cancer registry data.

Conflict of interest

AV reports personal fees as a scientific advisor to the Lung Cancer 
Initiative at Johnson & Johnson and grants to his institution from 
MagArray, Inc. and Precyte, Inc. outside of the submitted work. AV is 
an advisory board member of the Lungevity Foundation (unpaid).

The remaining authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

https://doi.org/10.3389/fpubh.2023.1002597
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
mailto:wealdinger@pa.gov


Zhu et al. 10.3389/fpubh.2023.1002597

Frontiers in Public Health 10 frontiersin.org

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
 1. Lung Cancer Statistics. How common is Lung Cancer? (2023). Available at: 

https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html (Accessed Apr 
2, 2023).

 2. Cancer of the Lung and Bronchus. Cancer stat facts. SEER. (2023). Available at: 
https://seer.cancer.gov/statfacts/html/lungb.html (Accessed Apr 2, 2023).

 3. State of Lung Cancer. Pennsylvania. (2023). Available at: https://www.lung.org/
research/state-of-lung-cancer/states/pennsylvania (Accessed Apr 2, 2023).

 4. State Cancer Profiles. (2023). Available at: https://statecancerprofiles.cancer.gov/
quick-profiles/index.php?statename=pennsylvania (Accessed Apr 2, 2023).

 5. Interactive Maps. (2023). Available at: https://statecancerprofiles.cancer.gov/map/
map.withimage.php?42&county&001&047&00&0&01&0&1&5&0#results (Accessed 
Apr 2, 2023).

 6. Summary. Net Cancer survival in Pennsylvania [internet]. Pennsylvania Department 
of Health. (2023). Available at: https://www.health.pa.gov/topics/HealthStatistics/
CancerStatistics/net-survival/Documents/current/Documents/summary.aspx (Accessed 
Apr 2, 2023).

 7. Malhotra J, Malvezzi M, Negri E, La Vecchia C, Boffetta P. Risk factors for lung 
cancer worldwide. Eur Respir J. (2016) 48:889–902. doi: 10.1183/13993003.00359-2016

 8. Benbrahim-Tallaa L, Baan RA, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard 
V, et al. Carcinogenicity of diesel-engine and gasoline-engine exhausts and some 
nitroarenes. Lancet Oncol. (2012) 13:663–4. doi: 10.1016/S1470-2045(12)70280-2

 9. Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-
Tallaa L, et al. The carcinogenicity of outdoor air pollution. Lancet Oncol. (2013) 
14:1262–3. doi: 10.1016/S1470-2045(13)70487-X

 10. Diesel and Gasoline Exhausts and Some Nitroarenes. World Health Organization: 
International Agency for Research on Cancer; (IARC monographs on the evaluation of 
carcinogenic risks to humans). Report no.: 105. (2018). Available at: https://monographs.
iarc.who.int/wp-content/uploads/2018/06/mono105.pdf.

 11. Lung SS. Cancer in nonsmokers. Yale medicine. (2022). Available at: https://www.
yalemedicine.org/conditions/lung-cancer-in-nonsmokers (Accessed May 2, 2022).

 12. IARC. International agency for research on cancer. (n.d.). Available at: https://www.
iarc.fr/.

 13. Hill W, Lim EL, Weeden CE, Lee C, Augustine M, Chen K, et al. Lung 
adenocarcinoma promotion by air pollutants. Nature. (2023) 616:159–67. doi: 10.1038/
s41586-023-05874-3

 14. Wild CP. Complementing the genome with an exposome: the outstanding 
challenge of environmental exposure measurement in molecular epidemiology. Cancer 
Epidemiol Biomark Prev. (2005) 14:1847–50. doi: 10.1158/1055-9965.EPI-05-0456

 15. McKeon TP, Hwang WT, Ding Z, Tam V, Wileyto P, Glanz K, et al. Environmental 
exposomics and lung cancer risk assessment in the Philadelphia metropolitan area using 
ZIP code–level hazard indices. Environ Sci Pollut Res. (2021) 28:31758–69. doi: 10.1007/
s11356-021-12884-z

 16. Sahar L, Foster SL, Sherman RL, Henry KA, Goldberg DW, Stinchcomb DG, et al. 
GIScience and cancer: state of the art and trends for cancer surveillance and 
epidemiology. Cancer. (2019) 125:2544–60. doi: 10.1002/cncr.32052

 17. Kerner JF, Andrews H, Zauber A, Struening E. Geographically-based cancer 
control: methods for targeting and evaluating the impact of screening interventions on 
defined populations. J Clin Epidemiol. (1988) 41:543–53. doi: 
10.1016/0895-4356(88)90058-3

 18. Scott LC, Kuo TM, Il’yasova D, Mobley LR. Geospatial analysis of multiple cancers 
in the individuals in the US, 2004-2015. Ann Cancer Epidemiol. (2021) 5:2. doi: 
10.21037/ace-19-40

 19. Zhu Y, McKeon TP, Tam V, Vachani A, Penning TM, Hwang WT. Geographic 
differences in Lung Cancer incidence: a study of a major metropolitan area within 
southeastern Pennsylvania. Int J Environ Res Public Health. (2020) 17:9498. doi: 10.3390/
ijerph17249498

 20. Bureau UC. Population. (2022). Available at: https://www.census.gov/topics/
population.html (Accessed May 2, 2022).

 21. Grubesic TH. Zip codes and spatial analysis: problems and prospects. Socio Econ 
Plan Sci. (2008) 42:129–49. doi: 10.1016/j.seps.2006.09.001

 22. Thomas AJ, Eberly LE, Davey Smith G, Neaton JD. ZIP-code-based versus tract-
based income measures as long-term risk-adjusted mortality predictors. Am J Epidemiol. 
(2006) 164:586–90. doi: 10.1093/aje/kwj234

 23. Holmes JR, Tootoo JL, Chosy EJ, Bowie AY, Starr RR. Peer reviewed: examining 
variation in life expectancy estimates by ZIP code tabulation area (ZCTA) in Hawaii’s 
four main counties, 2008–2012. Prev Chronic Dis. (2018) 15:E114. doi: 10.5888/
pcd15.180035

 24. ArcGIS. Environmental Systems Research Institute (Esri). Redlands, CA. (2018). 
Available at: https://desktop.arcgis.com/en/arcmap/10.6/get-started/main/get-started-
with-arcmap.htm.

 25. USA Major Highways. Overview. (2021). Available at: https://www.arcgis.com/
home/item.html?id=fc870766a3994111bce4a083413988e4 (Accessed Nov 23, 2021).

 26. CDC. PLACES: local data for better health [internet]. Centers for Disease Control 
and Prevention. (2021). Available at: https://www.cdc.gov/places/index.html (Accessed 
Mar 25, 2023).

 27. CDC. Unhealthy behaviors measure definitions [internet]. Centers for Disease 
Control and Prevention. (2020). Available at: https://www.cdc.gov/places/measure-
definitions/unhealthy-behaviors/index.html (Acessed Nov 21, 2021).

 28. Explore Smoking in Pennsylvania. Annual report. America’s Health Rankings. 
(2020). Available at: https://www.americashealthrankings.org/explore/annual/measure/
Smoking/state/PA (Acessed Nov 21, 2021).

 29. Pennsylvania Department of Health. Pennsylvania tobacco facts 2012-2016. 
Pennsylvania Department of Health. pp. 33–1. (2016). Available at: https://www.
h e a l t h . p a . g o v / t o p i c s / D o c u m e n t s / P r o g r a m s / To b a c c o / PA D O H _
TobaccoFacts_2012-2016.pdf.

 30. US EPAO. TRI basic data files: calendar years 1987-present. (2013). Available at: 
https://www.epa.gov/toxics-release-inventory-tri-program/tri-basic-data-files-calendar-
years-1987-present (Accessed May 2, 2022).

 31. Belton V, Stewart TJ. Multiple criteria decision analysis: an integrated approach. 
Boston: Netherlands, Kluwer Academic Publishers (2002).

 32. Huang IB, Keisler J, Linkov I. Multi-criteria decision analysis in environmental 
sciences: ten years of applications and trends. Sci Total Environ. (2011) 409:3578–94. doi: 
10.1016/j.scitotenv.2011.06.022

 33. Mitchell J, Pabon N, Collier ZA, Egeghy PP, Cohen-Hubal E, Linkov I, et al. A 
decision analytic approach to exposure-based chemical prioritization. PLoS One. (2013) 
8:e70911. doi: 10.1371/journal.pone.0070911

 34. Wood MD, Plourde K, Larkin S, Egeghy PP, Williams AJ, Zemba V, et al. Advances 
on a decision analytic approach to exposure-based chemical prioritization. Risk Anal. 
(2020) 40:83–96. doi: 10.1111/risa.13001

 35. Environmental Protection Agency. Human health risks assessment: strategic 
research action plan 2016-2019. (2023). Available at: https://www.epa.gov/sites/default/
files/2015-10/documents/strap_2016_hhra_508.pdf (Accessed March 29, 2023).

 36. Kiker GA, Bridges TS, Varghese A, Seager TP, Linkov I. Application of multicriteria 
decision analysis in environmental decision making. Integr Environ Assess Manage. 
(2005) 1:95–108. doi: 10.1897/IEAM_2004a-015.1

 37. Environmental Protection Agency. Assessment of the potential impacts of hydraulic 
fracturing for oil and gas on drinking water resources. (2023). Available at: https://www.
epa.gov/sites/default/files/2015-07/documents/hf_es_erd_jun2015.pdf (Accessed March 
29, 2023).

 38. Yost E, Stanek J, Burgoon L. A decision analysis framework for estimating the 
potential hazards for drinking water resources of chemicals used in hydraulic 
fracturing fluids. Sci Total Environ. (2017) 574:1544–58. doi: 10.1016/j.
scitotenv.2016.08.167

 39. Hussar E, Richards S, Lin ZQ, Dixon RP, Johnson KA. Human health risk assessment 
of 16 priority polycyclic aromatic hydrocarbons in soils of Chattanooga, Tennessee, USA. 
Water Air Soil Pollut. (2012) 223:5535–48. doi: 10.1007/s11270-012-1265-7

 40. Cogliano VJ, Baan R, Straif K, Grosse Y, Lauby-Secretan B, El Ghissassi F, et al. 
Preventable exposures associated with human cancers. J Natl Cancer Inst. (2011) 
103:1827–39. doi: 10.1093/jnci/djr483

 41. Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier CJ, Rusyn I, et al. Key 
characteristics of carcinogens as a basis for organizing data on mechanisms of 
carcinogenesis. Environ Health Perspect. (2016) 124:713–21. doi: 10.1289/ehp.1509912

 42. Standard Populations (Millions) for Age-Adjustment. SEER population datasets. 
SEER. Available at: https://seer.cancer.gov/stdpopulations/index.html (Accessed Apr 2, 
2023).

 43. Getis A. Spatial weights matrices. Geogr Anal. (2009) 41:404–10. doi: 10.1111/j.
1538-4632.2009.00768.x

https://doi.org/10.3389/fpubh.2023.1002597
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html
https://seer.cancer.gov/statfacts/html/lungb.html
https://www.lung.org/research/state-of-lung-cancer/states/pennsylvania
https://www.lung.org/research/state-of-lung-cancer/states/pennsylvania
https://statecancerprofiles.cancer.gov/quick-profiles/index.php?statename=pennsylvania
https://statecancerprofiles.cancer.gov/quick-profiles/index.php?statename=pennsylvania
https://statecancerprofiles.cancer.gov/map/map.withimage.php?42&county&001&047&00&0&01&0&1&5&0#results
https://statecancerprofiles.cancer.gov/map/map.withimage.php?42&county&001&047&00&0&01&0&1&5&0#results
https://www.health.pa.gov/topics/HealthStatistics/CancerStatistics/net-survival/Documents/current/Documents/summary.aspx
https://www.health.pa.gov/topics/HealthStatistics/CancerStatistics/net-survival/Documents/current/Documents/summary.aspx
https://doi.org/10.1183/13993003.00359-2016
https://doi.org/10.1016/S1470-2045(12)70280-2
https://doi.org/10.1016/S1470-2045(13)70487-X
https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono105.pdf
https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono105.pdf
https://www.yalemedicine.org/conditions/lung-cancer-in-nonsmokers
https://www.yalemedicine.org/conditions/lung-cancer-in-nonsmokers
https://www.iarc.fr/
https://www.iarc.fr/
https://doi.org/10.1038/s41586-023-05874-3
https://doi.org/10.1038/s41586-023-05874-3
https://doi.org/10.1158/1055-9965.EPI-05-0456
https://doi.org/10.1007/s11356-021-12884-z
https://doi.org/10.1007/s11356-021-12884-z
https://doi.org/10.1002/cncr.32052
https://doi.org/10.1016/0895-4356(88)90058-3
https://doi.org/10.21037/ace-19-40
https://doi.org/10.3390/ijerph17249498
https://doi.org/10.3390/ijerph17249498
https://www.census.gov/topics/population.html
https://www.census.gov/topics/population.html
https://doi.org/10.1016/j.seps.2006.09.001
https://doi.org/10.1093/aje/kwj234
https://doi.org/10.5888/pcd15.180035
https://doi.org/10.5888/pcd15.180035
https://desktop.arcgis.com/en/arcmap/10.6/get-started/main/get-started-with-arcmap.htm
https://desktop.arcgis.com/en/arcmap/10.6/get-started/main/get-started-with-arcmap.htm
https://www.arcgis.com/home/item.html?id=fc870766a3994111bce4a083413988e4
https://www.arcgis.com/home/item.html?id=fc870766a3994111bce4a083413988e4
https://www.cdc.gov/places/index.html
https://www.cdc.gov/places/measure-definitions/unhealthy-behaviors/index.html
https://www.cdc.gov/places/measure-definitions/unhealthy-behaviors/index.html
https://www.americashealthrankings.org/explore/annual/measure/Smoking/state/PA
https://www.americashealthrankings.org/explore/annual/measure/Smoking/state/PA
https://www.health.pa.gov/topics/Documents/Programs/Tobacco/PADOH_TobaccoFacts_2012-2016.pdf
https://www.health.pa.gov/topics/Documents/Programs/Tobacco/PADOH_TobaccoFacts_2012-2016.pdf
https://www.health.pa.gov/topics/Documents/Programs/Tobacco/PADOH_TobaccoFacts_2012-2016.pdf
https://www.epa.gov/toxics-release-inventory-tri-program/tri-basic-data-files-calendar-years-1987-present
https://www.epa.gov/toxics-release-inventory-tri-program/tri-basic-data-files-calendar-years-1987-present
https://doi.org/10.1016/j.scitotenv.2011.06.022
https://doi.org/10.1371/journal.pone.0070911
https://doi.org/10.1111/risa.13001
https://www.epa.gov/sites/default/files/2015-10/documents/strap_2016_hhra_508.pdf
https://www.epa.gov/sites/default/files/2015-10/documents/strap_2016_hhra_508.pdf
https://doi.org/10.1897/IEAM_2004a-015.1
https://www.epa.gov/sites/default/files/2015-07/documents/hf_es_erd_jun2015.pdf
https://www.epa.gov/sites/default/files/2015-07/documents/hf_es_erd_jun2015.pdf
https://doi.org/10.1016/j.scitotenv.2016.08.167
https://doi.org/10.1016/j.scitotenv.2016.08.167
https://doi.org/10.1007/s11270-012-1265-7
https://doi.org/10.1093/jnci/djr483
https://doi.org/10.1289/ehp.1509912
https://seer.cancer.gov/stdpopulations/index.html
https://doi.org/10.1111/j.1538-4632.2009.00768.x
https://doi.org/10.1111/j.1538-4632.2009.00768.x


Zhu et al. 10.3389/fpubh.2023.1002597

Frontiers in Public Health 11 frontiersin.org

 44. Moran PAP. A test for the serial independence of residuals. Biometrika. (1950) 
37:178–81. doi: 10.1093/biomet/37.1-2.178

 45. Srinivasan S. Spatial autocorrelation measures In: S Shekhar, H Xiong and X Zhou, 
editors. Encyclopedia of GIS. Cham: Springer International Publishing (2015)

 46. Ord K. Estimation methods for models of spatial interaction. J Am Stat Assoc. 
(1975) 70:120–6. doi: 10.1080/01621459.1975.10480272

 47. Jenks GF. The data model concept in statistical mapping. Int Yearb Cartogr. 7:186–90.

 48. Terpstra TJ. The asymptotic normality and consistency of Kendall’s test against 
trend, when ties are present in one ranking. Indag Math. (1952) 55:327–33. doi: 10.1016/
S1385-7258(52)50043-X

 49. Anselin L. Spatial externalities, spatial multipliers, and spatial econometrics. Int 
Reg Sci Rev. (2003) 26:153–66. doi: 10.1177/0160017602250972

 50. Anselin L. Spatial econometrics: Methods and models. Berlin: Springer (1988).

 51. Fischer MM, LeSage JP. Spatial regression-based model specifications for exogenous and 
endogenous spatial interaction. European Regional Science Association. Report No.: 
ersa14p716. (2014). Available at: https://ideas.repec.org/p/wiw/wiwrsa/ersa14p716.html.

 52. Burkey ML. A short course on spatial econometrics and GIS. University Library of 
Munich, Germany. Report No.: 88575. (2018). Available at: https://ideas.repec.org/p/
pra/mprapa/88575.html.

 53. De Groot PM, Wu CC, Carter BW, Munden RF. The epidemiology of lung cancer. 
Transl Lung Cancer Res. (2018) 7:220–33. doi: 10.21037/tlcr.2018.05.06

 54. Siegel DA, Fedewa SA, Henley SJ, Pollack LA, Jemal A. Proportion of never 
smokers among men and women with Lung Cancer in 7 US states. JAMA Oncol. (2021) 
7:302–4. doi: 10.1001/jamaoncol.2020.6362

 55. Kramer BS, Berg CD, Aberle DR, Prorok PC. Lung cancer screening with low-dose 
helical CT: results from the National Lung Screening Trial (NLST). J Med Screen. (2011) 
18:109–11. doi: 10.1258/jms.2011.011055

 56. Aberle DR, Berg CD, Black WC, Church TR, Fagerstrom RM, Galen B, et al. The 
National Lung Screening Trial: overview and study design. Radiology. (2011) 
258:243–53. doi: 10.1148/radiol.10091808

 57. PA Environmental Justice Areas. (2023). Available at: https://www.dep.pa.gov:443/
PublicParticipation/OfficeofEnvironmentalJustice/Pages/PA-Environmental-Justice-
Areas.aspx (Accessed March 30, 2023).

https://doi.org/10.3389/fpubh.2023.1002597
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.1093/biomet/37.1-2.178
https://doi.org/10.1080/01621459.1975.10480272
https://doi.org/10.1016/S1385-7258(52)50043-X
https://doi.org/10.1016/S1385-7258(52)50043-X
https://doi.org/10.1177/0160017602250972
https://ideas.repec.org/p/wiw/wiwrsa/ersa14p716.html
https://ideas.repec.org/p/pra/mprapa/88575.html
https://ideas.repec.org/p/pra/mprapa/88575.html
https://doi.org/10.21037/tlcr.2018.05.06
https://doi.org/10.1001/jamaoncol.2020.6362
https://doi.org/10.1258/jms.2011.011055
https://doi.org/10.1148/radiol.10091808
https://www.dep.pa.gov:443/PublicParticipation/OfficeofEnvironmentalJustice/Pages/PA-Environmental-Justice-Areas.aspx
https://www.dep.pa.gov:443/PublicParticipation/OfficeofEnvironmentalJustice/Pages/PA-Environmental-Justice-Areas.aspx
https://www.dep.pa.gov:443/PublicParticipation/OfficeofEnvironmentalJustice/Pages/PA-Environmental-Justice-Areas.aspx

	Association of multi-criteria derived air toxics hazard score with lung cancer incidence in a major metropolitan area
	1. Introduction
	2. Methods
	2.1. Data sources
	2.2. Air toxics hazard scores
	2.3. Descriptive analysis and spatial autocorrelations
	2.4. Spatial autoregressive regression models
	2.5. Stratified analysis by smoking prevalence

	3. Results
	3.1. Sample characteristics
	3.2. Mapping of air toxics hazard score and age-adjusted lung cancer incidence
	3.3. Association between air toxics hazard score and age-adjusted incidences
	3.4. Spatial autocorrelation regression of the multivariable model
	3.5. Stratified analysis by smoking prevalence

	4. Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note

	 References

