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Background: Chronic kidney disease (CKD) has become a major public health

problem worldwide and has caused a huge social and economic burden,

especially in developing countries. No previous study has used machine

learning (ML) methods combined with longitudinal data to predict the risk of

CKD development in 2 years amongst the elderly in China.

Methods: This study was based on the panel data of 925 elderly individuals in

the 2012 baseline survey and 2014 follow-up survey of the Healthy Aging and

Biomarkers Cohort Study (HABCS) database. Six MLmodels, logistic regression

(LR), lasso regression, random forests (RF), gradient-boosted decision tree

(GBDT), support vector machine (SVM), and deep neural network (DNN), were

developed to predict the probability of CKD amongst the elderly in 2 years (the

year of 2014). The decision curve analysis (DCA) provided a range of threshold

probability of the outcome and the net benefit of each ML model.

Results: Amongst the 925 elderly in the HABCS 2014 survey, 289 (18.8%)

had CKD. Compared with the other models, LR, lasso regression, RF, GBDT,

and DNN had no statistical significance of the area under the receiver

operating curve (AUC) value (>0.7), and SVM exhibited the lowest predictive

performance (AUC = 0.633, p-value = 0.057). DNN had the highest positive

predictive value (PPV) (0.328), whereas LR had the lowest (0.287). DCA

results indicated that within the threshold ranges of ∼0–0.03 and 0.37–0.40,

the net benefit of GBDT was the largest. Within the threshold ranges of

∼0.03–0.10 and 0.26–0.30, the net benefit of RF was the largest. Age

was the most important predictor variable in the RF and GBDT models.

Blood urea nitrogen, serum albumin, uric acid, body mass index (BMI),

marital status, activities of daily living (ADL)/instrumental activities of daily

living (IADL) and gender were crucial in predicting CKD in the elderly.
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Conclusion: TheMLmodel could successfully capture the linear and nonlinear

relationships of risk factors for CKD in the elderly. The decision support system

based on the predictive model in this research can help medical sta� detect

and intervene in the health of the elderly early.
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Introduction

Chronic kidney disease (CKD) has become a major public

health problem worldwide and has caused a huge social and

economic burden, especially in developing countries (1). In

2017, the number of CKD patients worldwide reached 697.5

million, amongst which nearly one-sixth (132 million) were in

China (2). CKD plays an important role in the development

of end-stage renal disease (ESRD) (3), all-cause mortality (4),

non-vascular health outcomes (5) and hospitalisations (6). The

prevalence of CKD increases with age, and this problem is

exacerbated by the aging of the Chinese population. The 2015

Annual Data Report of the China Kidney Disease Network

showed that nearly half of CKD patients in China are over 60

years old (7). A study reported that the prevalence of CKD

(Stages III–IV) in men and women between 55 and 64 years old

is 6.1 and 13.1%, respectively; in the corresponding population

of 75–84 years old, the prevalence of CKD is increased to 33.2

and 41.7% (8). In addition, the average age of patients with

ESRD in China is 59 years; the patients with ESRD in China

are younger than those in the USA (62.8 years) and Japan

(64.7 years) (9). Therefore, the early identification, intervention

and establishment of effective treatment strategies for potential

Chinese CKD patients are crucial in controlling the number of

Chinese CKD cases. The elderly population is a high-risk group

in terms of CKD. Close attention must therefore be devoted to

the elderly population.

Several studies have analyzed the association between CKD

and its risk factors, which mainly include the following types

of indicators: (1) demographic characteristics, such as sex

(10), age (11), and marital status (12); (2) unhealthy lifestyle,

including smoking (13), and alcohol consumption (14); (3)

mental and physical health, including instrumental activities

of daily living (IADL) and activities of daily living (ADL)

(15), cognition (16), depression (17), body mass index (BMI)

(18), and waist circumference (19); (4) chronic diseases, such

as hypertension (20), diabetes (21), heart disease (22), stroke

and cerebrovascular diseases (23) and cancer (24); and (5)

biology medical indicators, including serum albumin (25),

blood urea nitrogen (21), total cholesterol (26), triglyceride

(27), urea acid (28), and hemoglobin (29). However, most

algorithms for predicting CKD are based on a small number

of patients and clinical predictors, and their predictive accuracy

is usually uncertain (21, 30–32). The main research method

used at present is multiple linear regression. The multiple linear

regression model is based on the least squares method and

assumes that the variables are independent of one another.

However, the relationship between dependent and independent

variables is complex and nonlinear, with high-dimensional

correlation (33–36). Therefore, the performance of this model

in terms of sensitivity and specificity is insufficient for use in

predicting CKD.

Machine learning (ML) techniques have many advantages,

including robustness to parametric assumptions, high power

and accuracy, capability to model nonlinear effects, availability

of numerous well-developed algorithms and capability to model

high-dimensional data (37). ML techniques can be used to

design data-driven models and algorithms with predictive

capabilities in an unpredictable manner to achieve good results.

ML models have been widely used in medical and health

fields to assess disease risks and provide information for the

establishment of clinical decision support systems, including

predicting disease outcome (38), recommending treatment

methods (39), and personalized medicine (40). Therefore, ML

technology is an effective means for the early diagnosis of CKD.

To the authors’ knowledge, no previous study has used ML

methods combined with longitudinal data to predict the risk

of CKD amongst the elderly in China in 2 years. Therefore,

this study utilizes survey data from the Healthy Aging and

Biomarkers Cohort Study (HABCS) in China as a sample to

predict CKD amongst the elderly in longevity areas in China by

using six ML models.

Materials and methods

Study design and setting

The HABCS datasets were collected by the Center for

Healthy Aging and Development Studies (CHADS) of National

School of Development at Peking University and the Chinese

Center for Disease Control and Prevention (CDC) from in-

depth studies in the eight longevity areas in the Chinese

Longitudinal Healthy Longevity Survey (CLHLS) 5th, 6th, and
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FIGURE 1

Study samples selection process.

7th waves in 2009, 2012, and 2014. We selected the surveyed

individuals in 2012 as the baseline survey sample and the

surveyed individuals in 2014 as the follow-up survey sample.

The selected elderly did not have CKD in the baseline survey.

The specific sample selection process is shown in Figure 1. The

research conducted in this study was performed in accordance

with the Declaration of Helsinki.

Data collection

Questionnaire data

The CLHLS questionnaire data contained information on

the research subjects’ family structure, living arrangements and

proximity to children, ADL, capacity for physical performance,

self-rated health, self-evaluation of life satisfaction, cognitive

functioning, chronic disease prevalence, care needs and

costs, social activities, diet, smoking and drinking behaviors,

psychological characteristics, economic resources and care

giving and family support amongst elderly respondents and

their relatives.

Laboratory examination

In this study, blood and urine samples of subjects

corresponding to CLHLS samples in HABCS were collected

for laboratory examination. Hemoglobin concentration (HC),

which was amongst the indicators we collected for the laboratory

examination, was measured on-site. The clinical test center of

Capital Medical University used the Hitachi 7,180 automatic

biochemical analyser produced in Japan and commercial

diagnostic reagents produced by Roche Diagnostics company

to examine other indicators, including plasma albumin, serum

creatinine, blood urea nitrogen, blood urea acid, total cholesterol

and triglyceride (41).

Study variables

Outcome variable

This study defined whether the sample in the follow-up

survey met the diagnostic criterion of CKD as the outcome

variable. When the sample met the diagnostic criterion of CKD,

it was assigned a value of 1; otherwise, it was given a value of 0.
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The diagnostic criteria and definition for CKDwere based on the

Guidelines for the Screening, Diagnosis and Prevention of CKD

published in China in 2017 and the Kidney Disease Outcomes

Quality Initiative of the American Kidney Foundation (42).

These two documents are very authoritative in China and the

United States. The diagnostic criterion of CKD in these two

documents was defined as estimated glomerular filtration rate

(eGFR) <60 mL/min/1.73 m2. eGFR was calculated with the

CKD-EPI equation, which is expressed as follows (43):

eGFR = 141 × min(Scr/κ , 1)α × max(Scr/κ , 1)− 1.209

× 0.993 Age × 1.018(if female)

where Scr is serum creatinine expressed in mg/dL, κ is 0.7 for

females and 0.9 for males, α is −0.329 for females and −0.411

for males, min indicates the minimum of Scr/κ or 1 and max

indicates the maximum of Scr/κ or 1.

Predictors

We selected 22 variables of the respondents in the 2012

baseline survey as predictors of CKD, and these included the

following: (1) demographic characteristics, such as gender (male

vs. female), age (a continuous variable) and marital status (has a

spouse vs. no spouse); (2) unhealthy lifestyle, including smoking

(yes vs. no) and alcohol consumption (yes vs. no); (3) mental and

physical health, including IADL/ADL (a continuous variable),

cognitive function (a continuous variable), depression (yes vs.

no), BMI (a continuous variable) and waist circumference (a

continuous variable); (4) chronic diseases, such as hypertension

(yes vs. no), diabetes (yes vs. no), heart disease (yes vs. no), stroke

and cerebrovascular diseases (yes vs. no), cancer (yes vs. no), and

blood disease (yes vs. no); and (5) biology medical indicators,

including serum albumin (a continuous variable), blood urea

nitrogen (a continuous variable), total cholesterol (a continuous

variable), triglyceride (a continuous variable), urea acid (a

continuous variable), and hemoglobin (a continuous variable).

In this study, we determined whether a respondent had

hypertension based on whether the respondent was diagnosed

with hypertension by a doctor. The diagnosis of Chinese doctors

is based on the “China Guidelines for the Prevention and

Treatment of Hypertension”, in which hypertension is defined as

systolic blood pressure over 140 mmHg, diastolic blood pressure

over 90 mmHg.

A modified version of Lawton’s scale was used to measure

impairments in IADL amongst the elderly samples (44). The

scale includes the following self-reported activities: visiting

neighbors, shopping, cooking a meal, washing clothes, walking

continuously for 1 km at a time, lifting a weight of 5 kg,

continuously crouching and standing up three times and

taking public transportation. These items had three response

categories, namely, “yes, independently”, “yes, but need some

help” and “no, can’t”; the three options were coded 3, 2 and

1, respectively. Impairment in ADL was measured using the

Katz scale (45), which covers the following activities: bathing,

dressing, going to the toilet, transferring indoors, continence

and eating. The response categories of ADL were consistent with

IADL’s and coded similarly. We calculated the total score of 14

items as a respondent’s final score, with a maximum of 42 points.

The measurement for depression used two levels of

indicators, and an answer of “yes” to any question is considered a

representation of depression (coded as 1, otherwise 0). The two

questions were as follows: (1) Have you had a time in the last

12 months when you felt sad, blue or depressed for 2 weeks or

more? (2) Have you had a time in the last 12 months lasting 2

weeks or more when you lost interest in most things, such as

hobbies, work or activities, that you usually find pleasurable?

Statistical analysis

In the training set (70% random sample), we developed

different ML models to predict the probability of CKD for the

elderly. The data structure of this study contains both predictor

variables and outcome variables, so the ML prediction models

were based on supervised learning algorithm. Meanwhile, the

outcome variable is a binary variable, so this study focused on the

classification problem, so as to solve the identification of CKD in

the elderly. Therefore, we have constructed six ML classification

algorithms based on supervised learning, logistic regression

(LR), LR with lasso regularization (lasso regression), random

forest (RF), gradient-boosted decision tree (GBDT), support

vector machine (SVM) and deep neural network (DNN). A

systematic comparison of the strengths and weaknesses of six

machine learning algorithms was shown in Table 1 (46).

LR

Logistic Regression is a ML algorithm which is used for

the classification problems, it is a predictive analysis algorithm

and based on the concept of probability (47). We implemented

LR algorithm in an R and the used the glm function to fit

the model.

Lasso regression

Lasso regularization automatically deletes unnecessary

covariates, and only the most significant variables are retained

in the final model. We used 10-fold cross validation to obtain

the optimal value of the regularization parameter (lambda) with

minimum mean squared error (MSE) (48). The optimal lambda

values were used for variable selection. The methods presented

above are implemented in an R package called glmnet. minMSE

is automatically calculated using arguments s = “lambda.min”

in the cv.glmnet function.
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TABLE 1 A systematic comparison of the strengths and weaknesses of six machine learning algorithms.

Supervised MLa

algorithms

Strengths Weaknesses

LRb (1) Easier to implement, interpret. (1) It tends to underperform when there are multiple or

non-linear decision boundaries.

(2) It makes no assumptions about distributions of

classes in feature space.

(2) It is not flexible enough to naturally capture more

complex relationships. DNN can easily outperform this

algorithm.

(3) It has a nice probabilistic interpretation of model

parameters

(3) It requires average or no multicollinearity between

independent variables.

(4) It can interpret model coefficients as indicators of

feature importance.

(4) Unless multinomial, generic LR can only classify

variables that have two states (i.e., dichotomous).

Lasso regression (1) It can be regularized to avoid overfitting. (1) It leads to dimensionality reduction, which means

the model is built using a lower dimensional dataset.

This generally leads to a high bias errror.

(2) Lower dimensional dataset is computationally

efficient.

(2) It could be computationally expensive.

(3) Outputs have a nice probabilistic interpretation. (3) A poor value for hyperparameter might make the

model performance worse.

RFc (1) It outputs importance of variable. (1) No interpretability.

(2) Individual decision trees can be trained in parallel. (2) A large number of trees can make the algorithm too

slow and ineffective for real-time predictions.

(3) It reduces overfitting, since RF takes the average

value from the outcomes of its constituent decision

trees.

(3) Overfitting can occur easily.

(4) There is no need for feature normalization. (4) It favors those variables or attributes that can take

high number of different values in estimating variable

importance.

(5) Scales well for large datasets.

(6) RF is harder to overfit than GBDT.

GBDTd (1) Often provides predictive accuracy that cannot be

beat.

(1) GBDT are more sensitive to overfitting if the data is

noisy.

(2) Lots of flexibility - can optimize on different loss

functions and provides several hyperparameter tuning

options that make the function fit very flexible.

(2) Training generally takes longer because of the fact

that trees are built sequentially.

(3) No data pre-processing required. (3) GBDT are harder to tune than RF. There are

typically three parameters: number of trees, depth of

trees and learning rate, and each tree built is generally

shallow.

(4) Handles missing data, imputation not required.

(5) GBDT are better learners than RF.

SVMe (1) More robust compared to LR (1) Memory intensive

(2) Can model non-linear decision boundaries, and

there are many kernels to choose from.

(2) A time-consuming approach if applied to a huge

database.

(3) Fairly robust against overfitting, especially in

high-dimensional space.

(3) It is trickier to tune due to the importance of picking

the right kernel, and don’t scale well to larger datasets.

(4) RF are usually preferred over SVM

DNNf (1) They are usually outperformed by tree ensembles

for classical ML problems.

(1) A black box approach for a statistical modeler we

have very little control on what the model does.

(Continued)
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TABLE 1 (Continued)

Supervised MLa

algorithms

Strengths Weaknesses

(2) Can detect complex nonlinear relationships

between dependent and independent variables.

(2) Non-repetitive results and instability.

(3) Strong gradual corruption ability. (3) It require much more expertise to tune (i.e., set the

architecture and hyperparameters).

(4) Corruption of one or more cells of ANNg does not

prevent it from generating output.

(4) It needs parallel processing environment.

aML, machine learning; bLR, logistic regression; cRF, random forests; dGBDT, gradient-boosted decision tree; eSVM, support vector machine; fDNN, deep neural network; gANN, artificial

neural network.

RF

RF is a meta-estimator that fits a number of decision

tree classifiers in various sub-samples of the dataset and uses

averaging to improve the predictive accuracy and control

overfitting (49). In this study, we used out-of-bag estimation to

measure the prediction errors. In addition, we used R ranger and

caret packages to construct RF models.

GBDT

GBDT produces a prediction model in the form of an

ensemble of weak predictionmodels, builds themodel in a stage-

wise manner and generalizes them by allowing the optimisation

of an arbitrary differentiable loss function (50). In this study, we

used 10-fold cross-validation to measure the prediction error

and used the XGBoost package in R software to construct

GBDT models.

SVM

SVM is a discriminative classifier that is formally defined by

a separating hyperplane. In other words, given labeled training

data (supervised learning), the algorithm outputs an optimal

hyperplane that categorizes new examples (46). The radial

basis function (RBF) kernel in the SVM function was used in

this study.

DNN

DNN is an artificial neural network (ANN) with multiple

layers between the input and output layers. DNN searches for

the correct mathematical manipulation to turn the input into

the output, whether it is a linear relationship or a non-linear one

(51). In DNN, we constructed a three-layer feedforward model

with an adaptive moment estimation optimiser by utilizing the

Keras package. For DNN, we developed the final models by

randomly andmanually tuning the hyperparameters, such as the

number of layers and hidden units, learning rate, learning rate

decay, batch size and epochs, by using the Keras package. To

minimize potential overfitting, we used batch normalization that

normalizes the means and variances of layer inputs.

Model evaluation

In the test set (30% random sample), we used the AUC value

and prospective prediction results [sensitivity (Eq. 1), specificity

(Eq. 2), accuracy (Eq. 3), positive predictive value (PPV) (Eq.

4), and negative predictive value (NPV) (Eq. 5)] to evaluate

the performance for each ML model. We selected the threshold

value of expected prediction results based on receiver operating

curve (ROC) (i.e., the value with the shortest distance to the

perfect model). A widely used test to compare the difference

between two AUCs relies on the method developed in a seminal

paper by DeLong et al. (52) (henceforth “the DeLong test”).

The DeLong test was applied to compare the differences in the

ROC curves of different ML models. Decision curve analysis

(DCA) was performed to calculate the clinical “net benefit”

for the six ML prediction models in comparison with default

strategies of treating all or no patients. Net benefit was calculated

across a range of threshold probabilities, which is defined as the

minimum probability of a disease at which further intervention

would be warranted, as follows: net benefit = sensitivity ×

prevalence – (1 – specificity) × (1 – prevalence) × w, where w

is the odds at the threshold probability (53). To obtain an in-

depth understanding of the contribution of each predictor to the

ML model, we also calculated the importance of variables in the

GBDT and RF model for each result.

Sensitivity =
TP

TP+ FN
(1)

Specificity =
TN

TN+ FP
(2)

Accuracy =
TN+ TP

TN+ TP+ FN+ FP
(3)

Positive predictive value =
TP

TP+ FP
(4)

Negative predictive value =
TN

TN+ FN
(5)
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Here, true negatives (TN) and true positives (TP) indicate

the elderly that were accurately identified as not suffering

depression and suffering depression, respectively; false negatives

(FN) and false positives (FP) indicate the elderly that were

inaccurately identified as not suffering depression and suffering

depression, respectively.

Results

Characteristics of elderly samples with
CKD in HABCS 2012

As shown in Table 2, amongst the 925 elderly in HABCS

2014, 289 (18.8%) had CKD. The age of the elderly with CKD

(87.34± 10.73) was higher than that of the elderly without CKD

(78.67 ± 10.44). The female elderly with CKD (25.4%) had a

larger proportion than the male elderly (12.4%). The marital

status of married but not living with spouse (15.2%) for the

elderly accounted for a larger proportion than the marital status

of married and living with spouse and divorced (9.6 and 9.1%,

respectively). The cognitive function score of the elderly with

CKD (19.34 ± 5.80) was lower than that of the elderly without

CKD (21.01 ± 3.99). The elderly who smoked (12.0%) had a

larger proportion than the elderly who did not smoke (20.1%).

The ADL/IADL score of the elderly with CKD (36.57 ± 6.79)

was lower than that of the elderly without CKD (39.08 ± 5.42).

The plasma albumin level of the elderly with CKD (39.04± 5.36)

was lower than that of those without CKD (41.23 ± 4.51). The

total cholesterol level of the elderly with CKD (4.18 ± 0.97) was

lower than that of the elderly without CKD (4.36 ± 0.94). The

hemoglobin level of the elderly with CKD (126.55 ± 20.61) was

lower than that of the elderly without CKD (132.4± 22.32). The

elderly with hypertension (26.1%) had a larger proportion than

the elderly without hypertension (15.8%).

Afterward, we performed binary logistic regression to

analyze the crude and adjusted odds ratios for the elderly with

CKD (vs. non-CKD) for each predictor. The elderly with a high

age had a higher risk of CKD compared with the elderly with

a low age [adjusted odds ratio (OR) = 1.066; 95% confidence

interval (CI): 1.041–1.092]. The female elderly had a higher risk

of CKD than the male elderly (adjusted OR = 1.897; 95% CI:

1.152–3.122). The elderly with a marital status of married but

not living with spouse had larger odds of CKD than the elderly

with a marital status of married and living with spouse (adjusted

OR = 1.837; 95% CI: 1.161–2.907). The elderly with low plasma

albumin had a higher risk of CKD than the elderly with high

plasma albumin (adjusted OR = 0.928; 95% CI: 0.885–0.973).

The elderly with high urea acid had a higher risk of CKD than

those with low urea acid (adjusted OR = 1.004; 95% CI: 1.001–

1.006). The analysis showed that the elderly with hypertension

(adjusted OR=1.957; 95%CI: 1.298–2.951) had a higher risk of

CKD than those without hypertension.

Prediction appearance for elderly with
CKD by using the six ML models

A comparison of the ROC curves of the six ML models

for elderly with CKD is shown in Figure 2A and Table 3. We

further compared the models by using the DeLong test. LR,

lasso regression, RF, GBDT and DNN showed no statistical

significance (AUC > 0.7), implying that these models had

similar predictive power. In our study, SVM had the lowest

predictive performance (AUC = 0.633, p-value = 0.06). The

threshold values of LR, lasso regression, RF, GBDT, SVM,

and DNN were 0.127, 0.138, 0.272, 0.050, 0.180, and 0.352,

respectively. SVM had the highest accuracy (0.732, 95% CI:

[0.677–0.782]), and LR had the lowest accuracy (0.634, 95%

CI: [0.576–0.690]). SVM had the lowest sensitivity (0.460), and

DNN had the highest sensitivity (0.760). The specificity of SVM

was the highest (0.716), and the specificity of the LR was the

lowest (0.612). DNN had the highest PPV (0.328), whereas LR

had the lowest PPV (0.287). DNN had the highest NPV (0.930),

whereas SVM had the lowest NPV (0.874). DCA (Figure 2B)

showed that within the threshold ranges of ∼0–0.03 and 0.37–

0.40, the net benefit of GBDT was the largest, and within the

threshold ranges of∼0.03–0.10 and 0.26–0.30, the net benefit of

RF was the largest.

Importance of CKD predictors for the
elderlys

The importance of the predictors in the RF and GBDT

models is shown in Figure 3. Age was the most important

predictor variable in both models. In addition, blood urea

nitrogen, serum albumin, uric acid, BMI, marital status,

ADL/IADL and gender were crucial in predicting CKD amongst

the elderly.

Discussion

This study was based on the panel data of 925 elderly

individuals in the 2012 baseline survey and 2014 follow-

up survey of the HABCS database. The data included the

socioeconomic status, unhealthy lifestyle, chronic diseases and

other biological indicators of each elderly person. We used

six ML models (LR, lasso regression, RF, GBDT, SVM, and

DNN) to predict the risk of CKD in the elderly 2 years

later. The results showed that the ML model has excellent

performance in predicting the risk of CKD in the elderly. The

DCA result indicated that all ML models can generate a huge

net benefit within various thresholds, and each ML model has

its own advantages derived from its net benefit within different

threshold ranges.
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TABLE 2 Characteristics and odds ratio of elderly with depression presenting to the CLHLS 2014.

Predictors All elderly Na

(%)

Elderly with

CKDb N (%)

Elderly with

non-CKD N (%)

p-value Crude ORc

(95%CId)

Adjusted ORg

(95%CI)

Age 80.27± 11.01 87.34± 10.73 78.67± 10.44 <0.001 1.072 (1.056–1.089) 1.066 (1.041–1.092)

Gender Male 499 (53.9) 62 (12.4) 437 (87.6) <0.001 Reference Reference

Female 426 (46.1) 108 (25.4) 318 (74.6) 2.394 (1.697–3.377) 1.897 (1.152–3.122)

Marital status Married and living with spouse 500 (54.1) 48 (9.6) 452 (90.4) <0.001 Reference Reference

Married but not living with spouse 414 (44.8) 121 (29.2) 293 (70.8) 3.889 (2.699–5.603) 1.837 (1.161–2.907)

Divorced 11 (1.2) 1 (9.1) 10 (90.9) 0.942 (0.118–7.515) 0.794 (0.082–7.723)

Cognitive function 20.70± 4.43 19.34± 5.80 21.01± 3.99 <0.001 0.929 (0.899–0.961) 1.010 (0.967–1.056)

Smoking No 725 (78.4) 146 (20.1) 579 (79.9) 0.009 Reference Reference

Yes 200 (21.6) 24 (12.0) 176 (88.0) 0.541 (0.340–0.860) 0.891 (0.496–1.603)

Drinking No 747 (80.8) 142 (19.0) 605 (81.0) 0.31 Reference Reference

Yes 178 (19.2) 28 (15.7) 150 (84.3) 0.795 (0.511–1.239) 1.222 (0.704–2.122)

ADL/IADLe 38.62± 5.78 36.57± 6.79 39.08± 5.42 <0.001 0.939 (0.916–0.963) 1.027 (0.989–1.068)

BMIf 22.59± 16.10 24.86± 35.20 22.08± 6.21 0.31 1.009 (0.995–1.022) 1.025 (0.999–1.052)

Waist circumference 82.55± 32.10 82.97± 11.18 82.45± 35.13 0.74 1.000 (0.996–1.005) 1.001 (0.997–1.006)

Plasma albumin 40.83± 4.75 39.04± 5.36 41.23± 4.51 <0.001 0.906 (0.874–0.940) 0.928 (0.885–0.973)

Blood urea nitrogen 6.29± 1.64 6.43± 1.75 6.25± 1.61 0.23 1.067 (0.965–1.179) 1.133 (1.012–1.267)

Total cholesterol 4.33± 0.95 4.18± 0.97 4.36± 0.94 0.03 0.813 (0.679–0.974) 0.925 (0.727–1.177)

Triglyceride 0.99± 0.61 0.97± 0.56 1± 0.63 0.59 0.931 (0.703–1.234) 1.142 (0.808–1.613)

Urea acid 270.37± 79.02 270.21± 74.89 270.4± 79.97 0.98 1.000 (0.998–1.002) 1.004 (1.001–1.006)

Hemoglobin 131.33± 22.12 126.55± 20.61 132.4± 22.32 0.001 0.987 (0.979–0.995) 0.998 (0.989–1.008)

Hypertension No 691 (74.7) 109 (15.8) 582 (84.2) <0.001 Reference Reference

Yes 234 (25.3) 61 (26.1) 173 (73.9) 1.883 (1.318–2.689) 1.957 (1.298–2.951)

Diabetes No 903 (97.6) 165 (18.3) 738 (81.7) 0.59 Reference Reference

Yes 22 (2.4) 5 (22.7) 17 (77.3) 1.316 (0.479–3.617) 1.736 (0.556–5.416)

Heart disease No 853 (92.2) 154 (18.1) 699 (81.9) 0.38 Reference Reference

Yes 72 (7.8) 16 (22.2) 56 (77.8) 1.297 (0.724–2.322) 1.068 (0.541–2.108)

Stroke and cerebrovascular diseases No 871 (94.2) 160 (18.4) 711 (81.6) 0.98 Reference Reference

Yes 54 (5.8) 10 (18.5) 44 (81.5) 1.010 (0.498–2.050) 0.567 (0.252–1.273)

Cancer No 922 (99.7) 169 (18.3) 753 (81.7) 0.50 Reference Reference

Yes 3 (0.3) 1 (33.3) 2 (66.7) 2.228 (0.201–24.711) 2.232 (0.162–30.816)

Blood disease No 913 (98.7) 168 (18.4) 745 (81.6) 0.88 Reference Reference

Yes 12 (1.3) 2 (16.7) 10 (83.3) 0.887 (0.193–4.085) 1.511 (0.279–8.191)

Depression No 869 (93.9) 160 (18.4) 709 (81.6) 0.92 Reference Reference

Yes 56 (6.1) 10 (17.9) 46 (82.1) 0.963 (0.476–1.950) 1.024 (0.468–2.242)

aN represents the samples; bCKD, chronic kidney disease; cOR, odds ratio; dCI, confidence interval; eADL/IADL, activities of daily living/instrumental activities of daily living; f BMI, body mass index. gAn adjusted OR is an odds ratio that controls for

other predictor variables in the binary logistic regression.
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FIGURE 2

Predictive performance of six machine learning models for

elderly with CKD (A) ROC curve. The x-axis represents specificity

(probability of negative test given that the elderly did not have

the CKD), and the y-axis represents sensitivity (probability of a

positive test given that the elderly had the CKD). (B) Decision

curve analysis. The y-axis is benefit and the x-axis is preference.

The benefit of a test or model is that it correctly identifies which

patients do and do not have disease (in our example, CKD).

This study found that the elderly with old age, female,

married but not living with a spouse, low plasma albumin, high

urea acid and hypertension have a high risk of CKD, which is

consistent with the results of several studies (1, 54, 55). Previous

studies on CKD risk prediction did not analyze the elderly

individually (56–58). The age of respondents in several previous

studies was 40 or over 50, but according to the prediction

results of the ML model, the AUC value of these studies are all

above 0.7. The AUC value of the ML model in this study was

between 0.716 and 0.750, which is effective in predicting CKD in

the elderly.

Several studies have shown that the ML prediction model

is driven by automatic prediction based on the most objective

indicators (59, 60). It can use the complex nonlinear relationship

between predictors to improve prediction performance. When

the sample size is sufficient, the predictive performance of the

ML algorithm is good. However, in certain sample screening

procedures, the sample size is insufficient. Therefore, we must

ensure that the ML algorithm can obtain good prediction

performance with a small sample size. In this study, although

we selected a relatively small data set of 925 elderly people,

the sample size meets the requirements of power analysis

and can be used to perform high-precision prediction tasks.

The AUC value of most models is close to 0.7, and the

performance of linear models is better than that of other types

of models. In this study, due to the small amount of data,

the linear classifiers could separate samples ideally, and the

highly complex ML models (e.g., SVM) demonstrated powerful

learning capabilities but were prone to overfitting. The forecast

accuracy was thus reduced. SVM performed the worst in this

study because the Euclidean distance on which SVM relies is

not the best way to deal with the classification of CKD in

the elderly. Therefore, the linear model performed better in

our study.

When predicting the risk of CKD in the elderly 2 years

later, we should determine a threshold for identifying CKD and

non-CKD in the elderly. If a model has high PPV and NPV,

then it is theoretically ideal. However, in practice, we need to

weigh high PPV and high NPV based on the actual situation.

In this study, because the proportion of elderly people suffering

from CKD is small, we needed to consider the PPV results

of different models. This task allows researchers to measure

the prediction of the model so that many potential high-risk

CKD groups can be screened out. In addition, we used DCA to

analyse the net benefits of six ML models at different thresholds.

The results can help medical service providers provide flexible

model selections based on their professional knowledge to guide

clinical decision-making.

This is the first survey to comprehensively study the

practicality of different modern ML models in predicting CKD

in the elderly in China. The decision support system based on

the predictivemodel in this research can helpmedical staff detect

and intervene in the health of the elderly early, and it can provide

scientific evidence for clinical treatment, disease prevention and

community health management.

Our study has several limitations. Firstly, only 22 predictors

were considered. We restricted our analyses to predictive

modeling with known or possible risk factors, including

demographic indicators, biomarkers of kidney function and

kidney damage, such as ethnicity, serum cystatin C and renalase.

Hence, our conclusion cannot be generalized to data sets with

numerous predictors. In future studies, we can continue to

add more specific predictors to help improve the prediction

performance, such as the size and cortical thickness of the

kidney. Secondly, the diagnostic criteria for chronic diseases

were mainly based on self-reported medical history, and related

variables were obtained through questionnaire surveys. No clear

test diagnosis was performed. Thus, deviations may be present.

Thirdly, the sample size used was relatively small; the tuning
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TABLE 3 Prediction performance of elderly with CKD using 6 machine learning models.

Model AUCa p-valued Threshold Accuracy Sensitivity Specificity PPVb NPVc

Logistic regression 0.716 Reference 0.127 0.634 (0.576–0.690) 0.740 0.612 0.287 0.918

Logistic regression with Lasso regularization 0.734 0.28 0.138 0.652 (0.593–0.707) 0.740 0.633 0.298 0.920

Random forest 0.729 0.71 0.272 0.686 (0.629–0.740) 0.640 0.696 0.308 0.902

Gradient boosted decision tree 0.750 0.34 0.050 0.659 (0.601–0.713) 0.720 0.646 0.300 0.916

Support vector machine 0.633 0.06 0.180 0.732 (0.677–0.782) 0.460 0.789 0.315 0.874

Deep neural network 0.750 0.56 0.352 0.686 (0.629–0.740) 0.760 0.671 0.328 0.930

aAUC, area under the receiver operating curve; bPPV, positive predictive value; cNPV, negative predictive value.
dp-value is the result of Delong test of AUC curve based on the comparison of each machine learning model.

FIGURE 3

Variable importance of RF (A) and GBDT (B) model for elderly with CKD.

parameters could be optimized further to avoid overfitting. In

follow-up research, we can consider recruitingmore participants

for model testing and evaluation. Lastly, the capability to

diagnose depression amongst the elderly depends on local

medical resources, and indications and clinical thresholds may

vary between emergency departments and clinicians.
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Conclusion

We established and compared six ML models that

can predict the risk of CKD 2 years later based on

the socioeconomic characteristics, unhealthy lifestyle, chronic

diseases and biomedical indicators of the elderly. The LR, lasso,

RF and ML models, including GBDT and DNN, demonstrated

a high overall predictive capability, and the different models

showed high net benefit at different threshold levels. We also

found that age, blood urea nitrogen, serum albumin, uric

acid, BMI, marital status and ADL/IADL exerted an important

influence on model predictability, whereas the other predictors

were not as important. Further research is required to test the

effect of using the system in a clinical environment.
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