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According to World Health Organization statistics, falls are the second leading

cause of unintentional injury deaths worldwide. With older people being

particularly vulnerable, detecting, and reporting falls have been the focus of

numerous health technology studies. We screened 267 studies and selected 15

that detailed pervasive fall detection and alerting apps that used smartphone

accelerometers. The fall datasets used for the analyses included between

4 and 38 participants and contained data from young and old subjects,

with the recorded falls performed exclusively by young subjects. Threshold-

based detection was implemented in six cases, while machine learning

approaches were implemented in the other nine, including decision trees, k-

nearest neighbors, boosting, and neural networks. Allmethods could ultimately

achieve real-time detection, with reported sensitivities ranging from 60.4

to 99.3% and specificities from 74.6 to 100.0%. However, the studies had

limitations in their experimental set-ups or considered a restricted scope of

daily activities—not always representative of daily life—with which to define

falls during the development of their algorithms. Finally, the studies omitted

some aspects of data science methodology, such as proper test sets for results

evaluation, putting into question whether reported results would correspond

to real-world performance. The two primary outcomes of our review are: a

ranking of selected articles based on bias risk and a set of 12 impactful and

actionable recommendations for future work in fall detection.

KEYWORDS

remote patient monitoring, mHealth, mobile health, daily activity detection,

behavioral tracking, digital phenotyping,wearable devices, smart assistive technology

Introduction

Falls are the second leading cause of unintentional injury deaths worldwide,

according to the World Health Organization (1). More than 37 million falls each

year are severe enough to require medical attention (1), and people over 60 years old

are the most concerned with fatal falls (2). The global population of over-60s was

estimated to be 962 million in 2017, a number which is expected to double by 2050 (3).
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Furthermore, this population increasingly lives in isolated

conditions, making falls even more dangerous because

immediate assistance cannot always be provided (2). Other

populations concerned with falls are younger people with

disabilities or people recovering from an operation or an injury.

There is thus a need for technologies to better handle falls, such

as falling detection systems that can automatically send alerts.

The core principle of phone-based fall detection is illustrated

in Figure 1.

We offer here a review of research studies (4–18) that

propose practical methods to detect falls using a pervasive

device that most people carry every day: smartphones. These

devices have many built-in sensors, including an accelerometer,

which can capture the acceleration caused by a fall. Data can

be collected continuously during the day, which can then be

analyzed using threshold-based algorithms or more modern

machine learning techniques. This raises the possibility of

real-time operation, in which the chosen methodology would

be expected to achieve real-time detection and alerting. The

selected articles each report the building of an app that assumes

a phone being kept in a common location, like in a pocket. The

development of such fall apps presents four main challenges:

to design an experimental set-up and build an appropriate

dataset for fall recognition; to conceive and tune an algorithm;

to evaluate the results, including defining relevant metrics and

an evaluation procedure; and to ensure that the detection and all

associated functionalities work well-together.

The choice of using a phone to carry such monitoring is

part of the broader concept of “digital phenotyping,” which

is about tracking people’s behavior using data from personal

digital devices (19). Smartphones bring together virtually all

characteristics one can wish to have for an efficient monitoring:

a huge adoption rate, a multitude of sensors, computing power

FIGURE 1

Principle for fall detection with a smartphone, our review focuses on the detection step.

and network connection. These make them especially relevant

for fall detection but also other tasks such as general gait

analysis or mental health assessment. Van Laerhoven et al.

(20) determined that users have their smartphones on them

on average 36% of daytime. The main pattern they describe is

that while sitting, users tend to put their phone on the table

and place it in their pockets when they move, which suits

well a phone-based fall detection paradigm discussed here. The

trousers’ pocket emplacement is the first to carry a smartphone

when on the body for both men (21) and women (22). However,

there is also a significant gender difference as carrying a phone

separately in a bag is also very popular among women (22) and

only mildly adopted among men (21).

This review aims to provide a detailed overview of

existing solutions reported as working for fall detection

using smartphone accelerometers. We describe the various

approaches, highlight best practices, and note areas for

improvement, presenting a review that will give valuable insights

for future research into fall detection and offer a significant

head-start for future development.

Related work and technologies

First we would like to shortly mention another review work

from Casilari et al. (23), its main conclusions but also limitations

regarding fall detection with a smartphone. The study presents

quite extensively the technological and IT possibilities for a

fall detection system. However from our perspective, the most

relevant insights from this study lie on its critique on evaluation

methods being performed to assess a solution performance. It

notably points out the lack of common data across studies to

draw comparisons, the heterogeneity of fall typologies used and
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the lack of real world evaluation. Nevertheless, this review clearly

has non negligible limitations. From a timeline perspective it

was published in 2015 which means it could not capture most

recent papers and development of the topic. This is particularly

illustrated by a lack of discussion on machine learning choices

and issues one must face when developing a time series classifier

for fall detection.

Second, we also would like to indicate alternative

technologies that have been explored to detect falls beyond

using the smartphone. It is possible to group them into two

separate categories: wearable sensors and external sensors.

The first category entails wearing on the body a sensor

(commonly an accelerometer), which is usually built in a

smartwatch or a belt. Some commercial application have

even seen the day of light with for instance the Apple

Watch offering a fall detection feature to its users. The

second category corresponds generally to devices that can

be found in a smart-home and that can monitor their

environment. The list includes radars, infrared sensors,

ultrasounds, or even image processing of camera recordings.

For further reference on technological possibilities for

fall detection, we recommend the review from Wang

et al. (24).

Materials and methods

Search strategy

To conduct our review, we searched three research

databases-IEEE Xplore, PubMed, and Embase-chosen for their

relevance to this topic at the nexus of health and modern data

analysis. We used their advanced keyword search functionalities

to find articles published in the last decade (from January

1st, 2012, to the date of our search on March 17th, 2022).

Our search request contained the following search terms:

(fall OR falling) AND (accelerometer) AND [smartphone OR

(smart phone)].

Inclusion and exclusion criteria

To refine the initial search results, we applied the

following additional criteria based on content. Screening:

the article must be readable by the reviewers. Type: the

article should be a primary research study. Goal: the study

should be focused on fall detection. Device: the employed

device should be a smartphone with an accelerometer.

Phone positioning: the phone should be positioned in a

natural and common way without additional straps. App: the

research should have led to the development of an app as

a proof-of-concept.

Results

Applying these criteria as filters, we reduced our initial

results set of 267 articles to the 15 most relevant to understand

the current state of the art. The complete process can be

visualized with the PRISMA diagram in Figure 2.

In this section, we aim to provide a comprehensive

comparative view of the selected articles by analyzing them

according to a set of features and metrics. Table 1 summarizes

all information collected on the studies. After a careful

reading of each article, we collated their content across the

following dimensions:

• Publication: general information on the publication to

provide context

• Data collection: characteristics of experimental set-up

characteristics to understand how the data were collected

• Scope: the range and the depth of the investigation

• Data analysis: techniques used to illustrate the design of

the proposed algorithms

• Evaluation:metrics reported to compare performances

Publication

The selected studies span most of the last decade, ranging

from 2012 to 2020. The average and median publication

year is 2016, which is in contrast with the concurrent rapid

development of data science. It should therefore be kept in mind

that earlier studies (4–10) did not have access to same knowledge

and tools for their analysis as the most recent ones (13–18). A

visualization of the publication years is presented in Figure 3 and

highlights a steady interest for the topic.

Data collection

For data collection, most of the studies (4–12, 14–17)

designed their own experimental set-ups and constructed their

own fall datasets from scratch. The numbers of participants

were relatively low, with an average of 14.8, but this was mostly

due to the laborious experimental procedures. Figure 4 displays

the age ranges of the participants as well as their reported

health conditions. We note in particular that two studies (5, 18)

included real data from elderly people, who generally performed

only the activities of daily living (ADLs), but not falls. No study

mentions having people with disabilities or recovering from an

operation in their data. One study (9) had the ingenious idea

of adding a dummy with human proportions and weights as a

means to simulate difficult falls.
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FIGURE 2

PRISMA diagram of the selection of relevant articles for practical fall detection using smartphone accelerometers.

All the selected studies considered the common positioning

of phones in pants pockets, although some also investigated

a second positioning. In some cases, the researchers were

looking for better performance by placing the phone at a

higher, yet less common, position on the body, such as the

waist (18), belt (10, 14), or shirt pocket (7). In other cases,

the researchers focused on additional real-life possibilities,

like having the phone in the hand (8, 16) or in a bag (6).

Because of the exclusion criteria, all the studies used the

accelerometer, with only two (7, 16) leveraging angle sensors
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TABLE 1 Summary table of the 15 selected articles.

Publication Scope Data collection Data analysis Evaluation

References Year No.

ADLs

No.

Falls

Phone

drop

Data-

seta
No. Part Age Gender

(M,F)

Device

positionb

Sensorsc Sampl.

freq.

Falls

reps

Main

featuresd
Filterse AlgorithmSensi-

tivity

Speci-

tivity

Accu-

racy

Eval.

method

Power

check

Shi et al. (4) 2012 5 5 Yes O 4 20–26 3, 1 TP A 50 Hz 100 GR, MA, TI LP SVM 90.0 95.7 N/A LOSO No

Aguiar

et al. (5)

2014 10 10 No O 36 22–69 28, 8 TP A 67 Hz 1,025 SF,MA LP Dec. Tree 94.0 90.2 92.0 CV Yes

Medrano

et al. (6)

2014 N/A 8 No O 10 20–42 7, 3 TP,BA A 50 Hz 240 N/A N/A kNN 92.0 95.0 N/A CV No

Pierleoni

et al. (7)

2015 10 10 No O 5 24–29 N/A TP,SP A,M 40 Hz 150 SF LP SVM 99.3 96.0 97.7 Train set No

Helmy and

Helmy (8)

2015 N/A 4 Yes O 14 N/A N/A TP,OH A 20 Hz 400 TI,MA N/A Thresholds 95.0 90.0 N/A Train set Yes

Cao et al. (9) 2015 N/A 17 No O 20 N/A N/A TP A 17 Hz 648 MA N/A Boosting 88.0 74.6 N/A Train set Yes

Vermeulen

et al. (10)

2015 16 10 No O 8 18–24 4, 4 TP,BE A 67 Hz 400 MA N/A Thresholds 90.0 87.0 N/A Train set No

Srisuphab

et al. (11)

2016 N/A 9 No O N/A N/A N/A TP A N/A 90 TI,MA,VE N/A Thresholds 95.6 N/A N/A Train set No

Chaitep and

Chawachat

(12)

2017 2 8 Yes O N/A N/A N/A TP A N/A 800 MA,GF N/A Thresholds 83.0 91.5 N/A Train set No

Tsinganos and

Skodras (13)

2017 12 4 No P 24 22–47 17, 7 TP A 50 Hz 288 TD,SF LP kNN 97.5 94.9 N/A CV Yes

Tran et al. (14) 2017 3 1 No O 15 N/A N/A TP,BE A 50 Hz 86 MA,TD N/A Perceptron 60.4 94.8 82.5 Val. set No

Shahzad and

Kim (15)

2018 10 10 No O 4 26–32 3, 1 TP A 64 Hz 175 TI,MA LP MKL-SVM 95.8 88.0 91.7 CV Yes

Ning et al. (16) 2018 5 4 No O 10 N/A 6, 4 TP,OH A,G,M 50 Hz 400 MA KA Thresholds 92.0 91.2 90.0 Train set No

Lee and

Tseng (17)

2019 11 4 No O 4 N/A 4, 0 TP A 50 Hz 100 MA N/A Thresholds 96.0 100 99.0 Train set No

Salama and

Eskaf (18)

2020 19 15 No P 38 19–75 19, 19 TP,WA A 50 Hz 1,798 SF,MA ME DNN N/A N/A 96.1 Test set Yes

aO, Own; P, Public.
bTP, Trouser’s pocket; SP, Shirt’s pocket; WA, Waist; BE, Belt; OH, On-hand.
cA, Accelerometer; M, Magnetometer; G, Gyroscope.
dGR, gravity cross-rate; MA, magnitude; TI, tilt; SF, statistical features; VE, velocity; GF, G-force; TD, time domain.
eLP, low-pass; KA, Kalman; ME, mean.
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FIGURE 3

Publication years of selected papers, there is a steady interest for the topic of app-based fall detection.

FIGURE 4

Age range and health condition of participants. Two studies notably included elders who performed Activities of Daily Living tasks.

as well. Most sampling frequencies (4, 6–8, 10, 13–18) were

in the range of 40–60 Hz, with three studies (7, 14, 18)

interestingly mentioning that this represents a good trade-

off between precision and efficiency. Clearly, with a higher

sampling frequency, more data points are collected, but more

computational power is then required for both sampling and

analysis. One of the articles (9) describes the frequency as a

trade-off in precision itself, with an excessively high frequency

creating noise and one that is too low missing important signals.

Finally, Nyquist’s theorem is also mentioned (13), according to

which the sampling frequency should be at least double that of

the typical 0–20 Hz frequency of human movements.
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FIGURE 5

Our plot of acceleration magnitudes for di�erent types of activities of daily living and falls, based on data retrieved from the UniMiB-SHAR (25)
dataset. Amplitude and signal frequency di�erences are apparent from visual inspection.

To give the reader a better idea of the signals being recorded,

we plotted the acceleration magnitude of ADL and fall samples

from the public UniMiB-SHAR (25) dataset (Figure 5). The

plot is divided into two groups: ADLs and falls. There are

clear differences in terms of signal magnitude and frequencies

between the two groups. Even inside the ADLs group, distinctive

patterns appear based on the activity being performed. Whilst

walking and running feature periodic signals, other activities

like standing up or jumping lead to a more sudden, one-time

acceleration signal. Regarding falls, they all share a sudden

rise in acceleration magnitude when the fall occurs and seem

to have similar patterns. It is however to keep in mind that

the accelerometer records separately the acceleration across the

three movement axis (not shown here). Such separation can

help classification algorithms distinguish further sub categories

of falls.

Scope

The scope represents the extent to which fall detection was

studied. Eleven articles (4, 5, 7, 10, 12–18) reportedly used

pre-defined ADLs as negative samples, including activities like

walking, sitting, jumping, and walking up and downstairs.While

this makes sense from a classification perspective, pre-defining

ADLs creates the risk of omitting real-life situations that should

be considered to be non-falls. Two articles (6, 9) took the

approach of leaving subjects to their normal daily routines and

passively recording data while they carried their phones. This

latter approach has the advantage of being unbiased regarding

the types of daily activities, though it may still miss some rare

non-fall events.

Falls themselves were simulated in all cases because

recording real unwanted falls would be very challenging due to

their rarity. Different fall types were envisioned in all but one

study (4–13, 15–18), even though the most dangerous scenarios

(like falling down stairs) were never performed, which puts the

practicality of the proposed solutions into question as they were

not conceived to detect the most perilous types of falls. Finally,

the possibility of dropping the phone was only discussed and

addressed in three instances (4, 8, 12) despite it being a key event

to consider due to its ordinariness and its fall-like pattern.

Data analysis

Feature engineering is often performed after data are

gathered from sensors, but before classification. All but

one study (4, 5, 7–18) used orientation-invariant features,

like magnitude-such orientation-independent methods are

preferable to ensure that the user is as unconstrained as possible

in their use of the technology. The main features engineered and

defined are shown in Figure 6 and explained below. They are

based on the acceleration components ax, ay, and az as well as

the angular velocity componentsωx,ωy, andωz , captured across

N time samples.

Magnitude features

Acceleration magnitude (4, 5, 8–18):

at =
√

a2t,x + a2t,y + a2t,z

G-Force (12): Gt =
at
9.8

Di�erential features

Gravity cross-rate (4):

Zg =
1
2N

∑N−1
i=0 sign(ai − gupper bound) − sign(ai−1 −

glower bound)
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FIGURE 6

Wordcloud of features engineered in the selected papers. Larger
fonts represent higher frequencies, with magnitude and tilt the
most prominent.

Tilt (4, 8, 11): cos θt1,t2 =
Eat1 · Eat2
at1at2

Velocity (11): Evt = Evt0 +
∑t

i=t0
Eaidt

Absolute Acceleration Magnitude Variation (13, 15):

AAMVI =
1
|I|

∑

i∈I |ai+1 − ai|

Statistical features

For k an axis in x, y, z:

Maximum:Mk = max0≤t≤N (at,k)

Minimum:mk = min0≤t≤N (at,k)

Average: µk = 1
N

∑N−1
i=0 ai,k

Standard deviation: σk =
√

1
N−1

∑N−1
i=0 (ai,k − µk)

2

Skewness: µ
(3)
k

= 1
N

∑N−1
i=0

(ai,k−µk)
3

σ 3
k

Kurtosis: µ
(4)
k

= 1
N

∑N−1
i=0

(ai,k−µk)
4

σ 4
k

Time domain features

These features are derived from the temporal analysis of a

fall event. The following is a brief overview of a few examples;

the exact definitions can be found in some of the selected articles

(13, 14) and their respective references.

Impact Duration Index: IDI = duration of the fall.

Peak Duration Index: PDI = duration of the acceleration

peak.

First acceleration magnitude value: FAM = time of the first

acceleration peak above 2g.

Peak time: PT = time of the peak exceeding the 3g threshold.

In addition to feature engineering, many of the studies

(4, 5, 7, 13, 15, 16, 18) used signal filtering to smooth the signal

and remove its highest-frequency components, which represent

mostly noise, prior to the detection task.

For the classification step, Figure 7 shows a categorization

of approaches used between threshold-based and machine-

learning-based. Six studies (8, 10–12, 16, 17) used quite

basic threshold classifiers, which give a fall alert if a certain

quantity (generally derived from the acceleration) exceeds a

pre-defined level. While this approach is easily explainable

and computationally efficient, it is likely to create many false

positives in real-life scenarios. The nine other studies (4–7,

9, 12–14, 18) instead explored machine learning classifiers,

with only two (15, 18) going beyond standard machine

learning algorithms. The reviewed articles reportedly used

the following programming languages for the implementation

of their approaches: Java (6–15, 17, 18) (for Android OS),

MATLAB (4, 16), and RAPIDMINER (5).

Evaluation

Commonly reported metrics for evaluating the results are

sensitivity, specificity, and accuracy, which are based on the

following detection outcomes:

• True Positive (TP): A fall is correctly classified as a fall

• True Negative (TN): A non-fall activity is correctly

classified as non-fall activity

• False Positive (FP): A non-fall activity is incorrectly

classified as a fall

• False Negative (FN): A fall is incorrectly classified as a

non-fall activity

These are defined as follows for binary classification,

with m the total number of samples: Sensitivity = TP
TP+FN

Specificity = TN
TN+FP Accuracy = TP+TN

m

Sensitivity is therefore the ability to detect falls when they

occur-the higher the sensitivity, the fewer falls are missed.

Specificity is the ability to avoid false alarms, with a higher

specificity meaning fewer false alarms-one can see a clear trade-

off between sensitivity and specificity. Finally, accuracy is a

mixture of both, being the ability to correctly classify an event,

with no particular focus.

At first glance, the studies appear to report high metrics, with an

average sensitivity of 90.6%, specificity of 91.5%, and accuracy

of 92.2% and the best reaching 99.3% (7), 100.0% (17), and

99.0% (17), respectively. However, these results should be treated

with caution for three reasons. First, eight of the articles only

used a training set to both tune and evaluate their algorithms,

greatly increasing the risk of overfitting and thus producing

over-confident results. Figure 8 presents an overview of the

reported sensitivities and specificities and contrasts them with

the confidence in the evaluation method; it notably shows that
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FIGURE 7

Categorization of algorithms for selected studies between threshold and ML-based. ML-based approaches constitute the majority.

the two apparently leading results (7, 17) used an inaccurate

evaluation method on the training set. Second, most of the

studies used their own original datasets, which are, to different

degrees, challenging to classify, depending on the scope of the

daily activities considered. Third, all but one11 of the studies

evaluated their results offline-that is, the detection app was not

running in someone’s pocket, but instead used pre-collected data

on a computer-which may have caused bias. Among the best

approaches to evaluation, we find that the cross-validation by

Shi et al. (4) is particularly well-considered because it is the

only one that uses the leave-one-subject-out method to properly

estimate how their SVM-based classification could perform with

new subjects upon which it has not learned.

Finally, a thorough evaluation would consider the power

consumption of the app, which only six studies reported (5, 8,

9, 13, 15, 18); it should be obvious that a smartphone battery

must be able to last for a full day with the app running in the

background. Power consumption can be reported using battery

percentage per hour (%/h) (5, 8, 15, 18), energy per analysis

(J) (9), or electric charge (mAh) (13). The range for those that

reported in battery percentage per hour is 0.9–6.0%.

Bias evaluation and ranking of selected
articles

Figure 9 summarizes the bias assessment of the approach

of each article across the dimensions chosen for the review.

Based on the criteria identified in Table 1, we estimated a

comparative risk of bias for the 15 selected articles on the

following dimensions: scope, data collection, data analysis, and

evaluation. The risk score ranges from 0 to 1. After adding the

score for each dimension, we can rank each study, as shown

in Figure 9. We found Salama and Eskaf (18) to be superior

according to our criteria, as they display a low risk of bias across

FIGURE 8

Sensitivity and specificity, if available, for the selected studies.
The two best results do not use cross-validation as their
evaluation method which may hint at an overestimation of their
performances.

all dimensions. They are followed by Aguiar et al. (5), which

also have three dimensions with a low bias risk but a slightly

higher risk on the data analysis dimension. This is due to using

a decision tree as a classification algorithm, which may lack the

complexity to classify tough cases. Tsinganos and Skodras (13)

and Shahzad and Kim (15) share third place. Tsinganos and

Skodras (13) have a low risk on data collection and evaluation

but quite a restrictive scope featuring only four types of falls.

In addition, regarding data analysis, they are using kNNs which

may be too simplistic in some cases. Shahzad and Kim (15)

have a low bias risk on scope, data analysis, and evaluation.

Conversely, they feature a high risk on the data collection, as

only four participants were included in the data acquisition

process, which leads eventually to low statistical significance.
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FIGURE 9

Risk of bias of selected papers across defined dimensions. Four papers stand out due to their quality across several dimensions. *Reliability is
given by the number of dimensions (four) minus the risk in each dimension. Each moon quarter increases the risk score of the dimension by 0.25.

Discussion

From our findings, we compiled four main areas of

improvement for future work on fall detection apps that use

smartphone accelerometers.

Adequation between study scope and
end-users habits

Studies must account for the specifics of the population

upon which they are focusing in order to replicate them in

their experimental investigations. First, regarding smartphone

positioning, most of the selected studies (4, 5, 9, 11–13,

15, 17) assumed that the phone would always be placed in

the pants pocket. Despite being a common position, this is

still a significant assumption that could be erroneous when

considering the full span of a normal day. Mechanisms should

be implemented to either correctly identify the real position of

the device or to encourage the user to put the device where

it is expected, such as by sending a notification if the phone

is stationary, for instance. Second, the scope of the ADLs

considered in a study should be as large-and pre-empt as

many false positives-as possible. One can think of many daily

actions that might cause a sudden acceleration that could be

mistakenly classified as a fall, like lying down or dropping the

phone. Such false positives would trigger false alarms in real life,

which would deteriorate the user experience and hence the app

utilization rate.

Tailored app design

The needs that the fall app will meet should be clearly

identified. Only one study (4) directly asked the targeted

population what key functionalities a fall application

should offer. It subsequently implemented, for instance,

the transmission of relevant personal information alongside

the alert. Another study emphasized that, because users may

not be tech-savvy, the app interface should be as curated and

straightforward as possible and should feature streamlined

processes (11). Besides visuals and functionality, battery usage

is also critical, and to be truly usable, the smartphone battery

should last at least a full day while the app is functioning. This

means that battery-saving optimizations should be applied

without negatively impacting the app’s performance. Among

the studies were multiple ideas to minimize power usage, such

as leveraging an adaptive sampling frequency (5, 8, 13, 18),
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FIGURE 10

Data science process and overall quality analysis for each step for the included papers. Algorithm design, validation, and testing are notable
areas for improvement.

avoiding unnecessary computations (15, 18), and using fog

computing (9).

Rigorousness of the data science process

Data science processes should be standardized to ensure

both the relevancy and usability of study results. The first area of

attention is splitting the dataset into a training set, a validation

set, and a test set. A training set allows the algorithm fit to

be created, the validation set is used to select hyperparameters,

and the test set can then be used for final evaluation and

results reporting. If several participants are involved, the data

for any given participant should belong only to one of the three

sets. Such an approach lays the groundwork for optimization

while ensuring that algorithms have not been overfitted and

are not reporting overly optimistic results. This is of particular

relevance here, given the large number of varieties of fall and

of people prone to falling. Figure 10 offers an overview of the

overall quality in each step of the process for the selected

articles. Another practice that could be systematized is the

benchmarking of results. As studies often resort to building their

own datasets, comparisons lose their significance. To alleviate

this, studies could also report results that they achieve using

publicly available datasets. For instance, the datasets MobiAct

(26) andUniMiB SHAR (25) are both recent, public datasets and

contain appropriate data for the scope of fall detection studies

that the current paper has considered.

Advanced machine learning
opportunities

Advanced machine learning methods are of interest in this

research area because of their potential for delivering both good

performance and robustness. Besides the two selected studies

(14, 18) that employed non-basic machine learning approaches,

other studies in the literature (27–29) have considered deep

learning methods, and despite not creating apps and thus not

being selected for this review, they still laid out interesting

ideas. They chose neural architectures that are especially relevant

for time series analysis-specifically, gated recurrent units (27)

(GRU), long-short term memory networks (28) (LSTM), and

convolutional neural networks (29) (CNN). When tested for

activity recognition, GRU architecture has notably been shown

to outperform LSTM, CNN, support vectormachines, Adaboost,

and k-nearest neighbors in terms of accuracy and in terms of

F1-scores on the publicly available MobiAct dataset (27). The

better performance of deep learning is generally explained by

its ability to account for the temporality of the data compared

to traditional machine learning approaches (27). Receiving

feedback directly from the user through the reporting of bugs,

such as false positives, has also been suggested (28) and could

lead to the implementation of both online learning mechanisms

and personalization. Further studies should then investigate

whether such architectures could be embedded in an app, how

they could be used for real-time detection, and whether they lead

to excessive power consumption.
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FIGURE 11

Twelve recommendations to reduce risk of bias on the scope, data collection, data analysis, and evaluation dimensions.

Recommendations for future work

We give in Figure 11 a list of twelve concise

recommendations that are considered both actionable

and impactful, so that even better fall detection

apps with less risk of bias can be built as part of

future research.

Conclusion

In the current review, we first defined relevant criteria

for selecting articles closest to having a machine learning-

based solution for fall detection. We identified 15 studies

with an operating application and defined categories

to structure our analysis, notably highlighting narrow

scope, uneven depths of data analysis, and possible biases

in the evaluation process. We finally constructed 12

actionable and promising recommendations for future

studies, which should give more consideration to end-user

specifics, data science methodology, and more advanced

machine learning.
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