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Background: Gas explosion is a fatal disaster commonly occurred in coal

mining and often causes systematic physical injuries, of which blast lung injury

is the primary one and has not yet been fully investigated due to the absence

of disease models. To facilitate studies of this field, we constructed an in vitro

blast lung injury model using alveolar epithelial cells.

Methods: We randomly divided the alveolar epithelial cells into the control

group and blast wave group, cells in the blast wave group were stimulated

with di�erent strengths of blast wave, and cells in the control group received

sham intervention. Based on the standards we set up for a successful blast

injury model, the optimal modeling conditions were studied on di�erent

frequencies of blast wave, modeling volume, cell incubation duration, and cell

density. The changes of cell viability, apoptosis, intracellular oxidative stress,

and inflammation were measured.

Results: We found that cell viability decreased by approximately 50% at 6 h

after exposing to 8 bar energy of blast wave, then increased with the extension

of culture time and reached to (74.33 ± 9.44) % at 12h. By applying 1000 ∼

2500 times of shock wave to 1 ∼ 5 × 105 cells /ml, the changes of cell viability

could well meet the modeling criteria. In parallel, the content of reactive oxide

species (ROS), malonaldehyde (MDA), interleukin 18 (IL-18), tumor necrosis

factor alpha (TNF-α), and transforming growth factor beta (TGF-β) increased in

the blast wave group, while superoxide dismutase (SOD) and Glutathione -S-

transferase (GST) decreased, which were highly consistent with that of human

beings with gas explosion-induced pulmonary injury.

Conclusion: An in vitro blast lung injury model is set up using a blast wave

physiotherapy under 8 bar, 10Hz blast wave on (1 ∼ 5)×105 alveolar epithelial

cells for 1 000 times. This model is flexible, safe, and stable, and can be used

for studies of lung injury caused by gas explosion and blast-associated other

external forces.
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1. Introduction

Coal is an important source of energy on earth, and the

modernization of coal mining varies between countries (1, 2).

China is the one who has abundant coal reserves and has

made great breakthroughs over the past years in coal mining

and utilization (3). However, coal mine accidents do occur

frequently, mainly including gas explosion accidents, mine

water accidents and poisoning suffocation accidents, of which

gas explosion accidents contribute to a large proportion (4).

Generally, the occurrence of gas explosion is mainly due to

poor ventilation in coal mining, where gas concentration can

quickly climb to 5–15% and, after mixing with about 12%

oxygen in the air, self-accelerating reaction will occur under

the induction of open fire, leading to explosion (5). Recent

data released by the National and Provincial Coal Mine Safety

Administration shows that there are 272 coal mine gas fatalities

from 2010 to 2019 with 1952 deaths, including 107 gas outburst

accidents with 735 deaths and 165 gas explosion, combustion

and suffocation accidents with 1,217 deaths. It is apparent that

coal mine accidents mainly gas explosions have brought severe

threats to lives of coal miners and national economy, and it is

urgent to find out solutions for the loss.

The main damage factors of gas explosion injuries include

blast wave, flame temperature, and poisonous gas, of which blast

injuries contribute to a large proportion (6, 7). The blast wave

could impact severely on fluid containing organs, including the

lung (8). Among all damages caused by blast wave, lung damage

is one of the most common causes of death (9). When the lung is

exposed by blast wave, a series of physiological stress responses

such as oxidative stress, inflammation, and edema often occur

(10–12). Moreover, some researchers used mice to establish a

blast lung injury model in vivo based on the shock tube to

explore the mechanism of blast lung injury, and found that

the blast wave could cause inflammation, oxidative stress and

apoptosis in the lung tissues of mice (13, 14). Mechanistically,

damage in alveolar epithelial cells is the main cause of oxidative

stress and inflammatory response, it plays an important role in

blast wave-induced lung injury (15). Therefore, a lung injury

model based on alveolar epithelial cell is particularly useful

for mechanistic studies, especially considering the high cost

and difficulties in energy control in establishing animal blast

lung injury models (16). Herein, to establish a stable, reliable

and flexible in vitro model, we exposed the alveolar epithelial

cells with specified energies of blast wave and examined the

appearance of blast injury.

The in vitro model prepared by our method can be used for

studying the pathogenesis of blast wave-caused injury, especially

those occurred in lung tissues. Also, it highlights emerging

directions for studies concerning blast injury in different parts

of the body, and the injuries may not be caused by blast

wave, but similar external forces, such as brain blast injury,

liver and spleen blast injury (17–19). Moreover, this model

can also be used to observe the development of blast lung

injury in vitro, so as to systematically study the molecular

mechanism of related physical damages, which could contribute

to revealing the pathogenesis and clinical treatment of blast

lung injury.

2. Materials and methods

2.1. Materials

The alveolar epithelial cell line L2 cells and A549 cells

were purchased from Otwo Biotech (Shenzhen, China). Fetal

bovine serum (FBS) was provided by ExCell Bio (Jiangsu,

China). High glucose Dulbecco’s modified Eagle’s medium (H-

DMEM), MDA kit, SOD kit, Annexin V-FITC/PI kit, GST kit

and antibodies including IL-18, TNF-α, TGF-β were obtained

from Solarbio (Beijing, China). Cell counting kit 8 (CCK-8)

was bought from DOJINDO (Beijing, China). Calcein/PI cell

viability assay kit and ROS assay kit were purchased from

Beyotime (Shanghai, China).

2.2. Cell culture and model building

As shown in Figure 1, the alveolar epithelial cells were

cultured in H-DMEM with 10% FBS containing 100 U/mL

penicillin-streptomycin under the standard culture conditions

(37◦C and 5% CO2). The medium was discarded when the

cell confluence reached 70–80%, followed by washing with 1

× PBS twice. Then, the cells were digested with trypsin-EDTA

for 2min, and the digestion was terminated by adding adequate

volume of complete medium, followed by beaten gently until

they completely fell off. Further, the cells were counted and

a cell suspension with a volume of 1mL and a concentration

of 1 × 105/mL was prepared and placed in a 5mL centrifuge

tube. Then, the tube was sealed with aseptic sealing film and

inverted on the top of the warhead on a blast wave therapy

instrument, and the coupling agent was applied to the middle

joint. Subsequently, the blast wave physiotherapy was used for

modeling and matched with normal cells. After stimulation, the

cells were seeded in a 96-well plate at different concentrations

per the requirements of follow-up experiments. Besides, the

5mL centrifuge tube was used for each model construction and

the fixed frequency of the blast wave was 10 Hz.

2.3. Experimental groups

Six factors that may influence the model establishment were

considered and studied. To determine the optimal blast wave

energy on cell viability, we set six energy gradients of 0.5, 2,

4, 6, 8, and 10 bars, and the control group was matched. In
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FIGURE 1

Model construction process using a blast wave therapy instrument type HM08CJ based on the alveolar epithelial cells.

parallel, six time points of 4, 6, 8, 10, 12, and 24 h were set to find

the optimal culture time, five impulse frequencies of 500, 1,000,

1,500, 2,000, and 2,500 were utilized to find the appropriate

impulse frequency, five modeling volumes of 1, 2, 3, 4, and

5mL were set in a 5mL centrifuge tube to determine the most

appropriate modeling volume, six modeling concentrations of 1,

2, 4, 5, 7.5, and 10 × 105/mL were set to search for the ideal

modeling concentration, and five cell plating concentrations of

2 × 103, 4 × 103, 6 × 103, 8 × 103, and 1 × 104 cells/well were

set to identify the optimal cell plating number. Each group was

repeated with 5 samples in parallel, and each experiment was

repeated at least 3 times.

2.4. Cell viability assay

The cells were randomly divided into two groups: the control

group and the blast wave group, each with 5 samples in parallel,

and each experiment was repeated at least 3 times. Cells in the

blast wave group were exposed to 0.5, 2, 4, 6, 8, and 10 bars

of blast wave. On the completion of cell stimulation, 10 µL of

CCK-8 solution was added to each well, followed by incubation

for 2 h at 37◦C (20). The absorbance was measured at 450 nm by

a multi-mode plate reader (Bio Tek, VT, USA).

2.5. Settlement of a standard for in vitro

blast lung injury model

The standards for establishment of the in vitro blast

lung injury model were set according to the requirements of

toxicology. First, the viability of adherent cell should decrease

to (50 ± 5)% at 6 h after blast wave stimulation. Secondly, the

viability of cells should increase to no more than 75% after 12 h

of maintenance.

2.6. Calcein-AM/PI assay

After stimulation, the cells were seeded in a 96-well plate and

the medium was discarded after 6 h of maintenance, followed by

washing with 1 × PBS twice. Then, 100 µL/well of Calcein/PI

detection solution was added, followed by incubation for 30min

at 37◦C in darkness. The cells were imaged using the Image

X press R© Micro Confocal system (Molecular Devices, CA,

USA), where the living cells were stained in green with Calcein,

and the membrane-ruptured cells were stained in red with PI.

Each group was repeated with 10 samples in parallel, and each

experiment was repeated at least 3 times.

2.7. ROS detection assay

The cells were cultured and stimulated in line with

above steps. According to the manufactures’ instructions,

the intracellular ROS was detected after 6 h of maintenance

using a fluorescence probe hybridization with DCFH assay

kit, and the fluorescence intensity of ROS was observed

under fluorescence microscope upon the completion of above

stimulations. Similarly, the contents of MDA, SOD, and GST

in cells were also detected after 6 h of maintenance using

specific kits per the manufacturer’s instructions. Each group was

repeated with 10 samples in parallel, and each experiment was

repeated at least 3 times.
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2.8. Flow cytometry assay

The cells were stimulated in line with above steps and

cultured for 6 h, followed by washing with 1 × PBS twice. Then

1 × 106 cells were separated and resuspended in 400 µL of

Annexin V-FITC binding solution. 5µL of Annexin V-FITC and

5 µL of PI were added to the cells in order and the stained cells

were subjected to the Accuri C6 flow cytometer (BD Biosciences,

CA, USA). Data acquisition and analysis were performed using

the BD software. Each group was repeated with 10 samples in

parallel, and each experiment was repeated at least 3 times.

2.9. Immunofluorescence

The cells were stimulated in line with above steps and

seeded on a round pick in a 24-well plate (3 × 105/well).

After maintained at 37◦C for 6 h, the cells were fixed with

4% formaldehyde for 10min and penetrated with 0.3% Triton

X-100 for 10min at room temperature. Then, the cells were

blocked with goat serum for 30min and coated with primary

antibodies of IL-18, TNF-α and TGF-β. After incubation for

about 12 h at 4◦C, the cells were incubated with secondary

antibody conjugated by TRITC or FITC for 50min. Then the

cells were incubated with DAPI solution for 10min. Finally, the

cells were imaged under the Image Xpress R© Micro Confocal

system. Each group was repeated with 10 samples in parallel, and

each experiment was repeated at least 3 times.

2.10. Statistical analysis

Each experiment was repeated at least 3 times. All

experimental data were analyzed and visualized using GraphPad

Prism 7.0 and expressed asmean± standard deviation. One-way

ANOVAwas applied for multi-group comparison followed by an

SNK post-hoc test, and t-test was used for comparison between

two independent groups. A P-value < 0.05 was considered

statistically significant.

3. Results

3.1. L2 cell viability decreases in a blast
energy and post-blast culture time
dependent manner

As shown in Figures 2A–F, the cells were stimulated with

0.5, 2, 4, 6, 8, and 10 bars of blast wave, after incubation

for 4, 6, 8, 10, 12, and 24 h, the cell viability increased at

0.5 bar energy in varying degrees except for 24 h group. In

comparison, the cell viability of 24 h time point decreased in

an energy dependent manner. According to criteria set for

blast modeling, an 8-bar energy of blast wave introduced a

reduction of cell viability to (53.52 ± 2.86)% at 6 h and (74.33

± 9.44)% at 12 h, other energies of the same incubation period

caused lower reduction of cell viability as compared to the 8-

bar group. Therefore, 8-bar blast wave energy and 6 h culture

time were determined for the preparation of blast lung injury

cell model.

3.2. L2 cell viability decreases with
increased blast frequency

As shown in Figure 3A, the cells were stimulated by

500, 1,000, 1,500, 2,000, and 2,500 impulses at a fixed

frequency of 10Hz, 8-bar blast energy, and 6 h post exposure

culture time. Compared with the control groups, the cell

viability reduced with increased blast frequency, the trough

of (36.28 ± 4.61)% appeared in 500-impulse group, and

half number of cell death was found in 1,000, 1,500, 2,000,

and 25,000-impulse groups. According to the established

model making standard, the impulse between 1,000 and

2,500 is available for the preparation of blast lung injury

cell model.

3.3. The modeling volume has no e�ect
on cell viability

To examine the effect of modeling volume on cell viability

under constant cell concentration, five modeling volumes (1,

2, 3, 4, and 5mL) were set. As shown in Figure 3B, comparing

with the control group, the cell viability of all modeling

volumes decreased, but the differences between them were of no

statistical significance.

3.4. Increased cell modeling
concentration is associated with
decreased cell viability

As shown in Figure 3C, the cell modeling concentration

was adjusted to 1, 2, 4, 5, 7.5, and 10 × 105/mL. After being

stimulated with 8-bar blast wave and 1,000-impulse at 10Hz

in 1mL complete medium, 1 × 104 cells/well were plated in a

96-well plate and incubated for 6 h. Compared with the control

group, the cell viability decreased at all modeling concentrations

and showed a concentration-dependent trend. Referring to

modeling criteria, a reduction of ∼50% of cell viability is

determined in concentration groups of 10, 20, 40, and 50 ×

104 cells [(53.95 ± 1.71), (51.58 ± 4.31), (50.41 ± 10.96), and

(48.97 ± 3.86)%], which are all available in establishing blast

lung injury models.
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FIGURE 2

E�ects of di�erent blast wave energy and post exposure culture time on L2 cell viability. (A–F) show the changes of cell viability after 4, 6, 8, 10,

12, and 24h post exposure culture time. Impulse energy gradient is set at each time point for comparison. Data represent mean ± standard

deviation; n = 5. *P < 0.05.

FIGURE 3

Changes of cell viability under di�erent blast wave frequencies, modeling volumes, modeling concentrations and cell plating number. (A)

Di�erent impulse frequencies are set for comparison. (B) Di�erent modeling volumes are set for comparison. (C) Di�erent modeling

concentrations are set for comparison. (D) Di�erent cell plating number is set for comparison. Group 0 represents the control group and data

represent mean ± SD; n = 5. *P < 0.05. NS, not significant, P > 0.05.
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FIGURE 4

E�ects of blast wave stimulation on viability and apoptosis of L2 and A549 cells. (A) Images of Calcein-AM/PI staining showing the living and

membrane-ruptured L2 and A549 cells. Green, living cells; red, membrane-ruptured cells. (B) Dot plot showing the apoptosis of L2 and A549

cells. (C, D) Quantitative analysis and comparison of cell viability between the control and blast wave groups of L2 and A549 cells. (E)

Comparison of L2 cell apoptosis between groups. (F) Comparison of A549 cell apoptosis between groups. (G) Comparison of A549 cell viability

between groups. Data represent mean ± SD; n = 10. *P < 0.05. FITC, fluorescein isothiocyanate; PI, propidium iodide.

3.5. The cell plating number has no e�ect
on cell viability

To explore the effect of different cell plating number, we

set five gradients of 2, 4, 6, 8, and 10 × 103/well in a 96-well

plate. The cells were stimulated with fixed conditions of 8-bar

blast wave, 1,000-impulse at 10Hz in 1mL complete medium,

1 × 105/mL modeling concentration, and 6-h post stimulation

culture time. As shown in Figure 3D, the cell viability decreased

in all plating number groups as compared to the control, but

the differences between different stimulation groups were of no

statistical significance.

3.6. E�ects of specific modeling
conditions on alveolar epithelial cells

Based on above findings, the modeling conditions were

set as 8-bar blast wave, 1,000-impulse at 10Hz in 1mL

complete medium, 1 × 105/mL modeling concentration, 6-h

post stimulation culture time, and 1 × 104 cell plating number.

On the completion of above specified blast wave stimulation, we

repeated the experiments using A549 cells. Compared with the

control group, the viability of blast wave stimulated A549 cells

decreased by 53.76± 1.92% (Figure 4G). Moreover, we explored

the effect of specific modeling conditions on L2 cells and A549

cells. As shown in Figures 4A, C, D, the proportion of PI-stained

cells increased at ∼50% after blast wave stimulation, indicating

the damage of cell membrane and decrease of cell viability.

Besides, the apoptosis rate of L2 and A549 cells increased after

exposing to blast wave (Figures 4B, E, F). These data indicated

that themodeling condition could effectively introduce amedian

lethal dose to alveolar epithelial cells.

Also, according to clinical manifestations of gas explosion-

induced lung injury in the real world, we evaluated this in

vitro blast model by examining the occurrence of oxidative

stress and inflammation. As shown in Figures 5A–D, K–M,

compared with the control group, the content of ROS increased

in L2 and A549 cells after blast wave stimulation, whilst the
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FIGURE 5

Oxidative stress and inflammatory response of blast wave stimulated alveolar epithelial cells. (A, B) Representative images of

immunofluorescence staining showing the content of ROS in L2 and A549 cells. (C, D) Quantitative analysis and comparison of intracellular ROS

(Continued)
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FIGURE 5 (Continued)

between groups. (E–G) Representative images of immunofluorescence staining showing the expression of IL-18, TNF-α, and TGF-β in L2 cells.

(H–J) Representative images of immunofluorescence staining showing the expression of IL-18, TNF-α, and TGF-β in A549 cells. (K–M)

Quantitative analysis and comparison the intracellular MDA, GST, and SOD of L2 cells. Data represent mean ± SD; n = 10. *P < 0.05. IL-18,

interleukin 18; TNF-α, tumor necrosis factor alpha; TGF-β, transforming growth factor beta; ROS, reactive oxide species; MDA, malonaldehyde;

GST, Glutathione -S- transferase; SOD, superoxide dismutase.

anti-oxidative GST and SOD decreased in L2 cells. Figures 5E–J

showed increased expression of inflammatory cytokines like IL-

18, TNF-α, and TGF-β after blast wave stimulation. These data

further confirmed that the modeling condition could induce

similar alterations with that of gas explosion-induced human

pulmonary injuries.

4. Discussion

Blast waves from gas explosion strike structures or impact

in the immediate proximity of coal mine workers or structures

housing them (21). The air blast shock wave in enclosed coal

mining environment is the primary damage mechanism in

an explosion which seriously threatens the life and health of

coal mine workers (22). Due to the sudden and uncontrollable

features of gas explosion, the mechanism of blast lung injury is

still uncertain. Over the past years, several studies have tried to

use the real roadway to establish in vivo blast lung injury model

of rats (16, 23). Also, the shock tube is used to build the in vitro

model of blast lung injury (24, 25). However, these two patterns

of model establishing methods have high cost and relatively low

successful rate in achieving a flexible and stable blast lung injury

model because their experiment results are easy to be affected

by different experimental conditions (26). In this study, a blast

lung injury model based on alveolar epithelial cells is established

using blast wave physiotherapy instrument, which can provide a

stable, reliable and simple in vitro blast lung injury model, and

this model is helpful for the mechanism exploration and clinical

treatment research of related damages. When gas explodes, the

blast wave of certain energy could cause mechanical damage to

human alveolar epithelial cells. Moreover, the blast wave would

be reflected when encountering obstacles, and the repeated blast

wave would further aggravate the damage. In order to simulate

the damage of human alveolar epithelial cells in real situations,

we use different energy and impulse times to damage the cells, so

as to find the most appropriate parameters. Finally, we find the

parameters in detail for the model establishment: a blast wave

physiotherapy type HM08CJ at 8 bar, 10Hz blast wave on (1–5)

×105 alveolar epithelial cells for 1,000 times.

In the process of blast lung injury model establishment,

different parameter settings can produce variedmodeling effects.

To achieve the optimal modeling conditions, these parameters

are explored one by one. For energy of blast wave which directly

affected the severity of cell damage, we set different energy

gradients and find that the cell viability increased slightly when

the energy is 0.5 bar. Hence, we speculate that the slight blast

wave might improve the cell viability to a certain extent and the

blast wave intensity that the cells can tolerate is 0.5 bar, while

increased energy of blast wave at 8 bar causes reduction of cell

viability to (53.52 ± 2.86)%, which meet the preset modeling

standard. Further, to explore the appropriate frequency of

impulses, we set five gradients of the blast wave frequencies,

and find that there is an obvious drop of cell viability when

the impulse reach to 500 times, but the specific mechanism still

needs to be discussed. At 10Hz of impulse frequency, different

times of impulse need different time, so we choose the 1,000

impulses since it takes the least time.

Since the cells undergo a repair process over time, the time

of maintenance after modeling is also important. In order to

observe the damage and repair of cells after stimulated by blast

wave, six time points are set within 24 h, we find that the cell

damage is most serious at 6 h, which is consistent with the results

of Zhang (25) who utilizes shock tube to build cell damage

model. After incubation for 12 h, the cell viability recovers to

(74.33 ± 9.44)%. Similarly, some researchers report that the

definition of primary blast lung injury is acute lung injury

occurring within 12 h after blast wave exposure (27). Therefore,

this model could simulate the process of blast lung injury with

specific features of first injury then recovery. For reasons of this

phenomenon, the cells could secrete various regulatory factors

to repair itself during damage conditions, which for example

could promote the degradation and re-utilization of damaged

organelles through autophagy, thus maintaining the structure

and function of cells (28). Besides, the cell viability declines

again at 24 h, which may be due to the gradual reduction of

nutrients in the culture plate over time, leading to the decline

of cell viability.

Previous studies have shown that blast wave can induce

free radical reaction to trigger oxidative stress, causing oxidative

damage (29, 30). To compare the established model with gas

explosion-induced lung injury in the real world, we examine

the occurrence of oxidative stress by detecting intracellular ROS,

MDA, GST, and SOD after the successful establishment of the

blast lung injury model. We find that the content of ROS

and MDA increase, meanwhile, the content of SOD and GST

decrease, indicating that this model does effectively cause cell

oxidative damage.

In addition to oxidative damage, blast waves are reported

to trigger inflammatory response and apoptosis (31). Thereby,
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we examine the apoptosis and inflammatory responses of

A549 and L2 cells. Among all inflammatory cytokines

we concentrate, IL-18 plays an important role in early

inflammatory response, it is reported to promote neutrophils

aggregation and lympho T cell proliferation, and mediate

cytotoxic reactions (32). TNF-α is located in the upstream

of the inflammatory response and mediate the synthesis

of various inflammatory cytokines (14). TGF-β can inhibit

cell proliferation and induce cell differentiation or apoptosis

(33, 34). Local inflammatory responses play an important

role in tissue repair and regeneration, but excessive or

persistent inflammatory responses might lead to systemic and

uncontrolled inflammatory responses and distal organ failure

(35). Apoptosis is a process in which cells automatically

end their lives under certain physiological or pathological

conditions under the control of intrinsic genetic mechanisms

(36). Similarly, some researchers report that blast exposure

leads to inflammation, oxidative stress, and apoptosis in mouse

lungs (31).

This study provides a blast lung injury model which can

definitely contribute to revealing the pathogenesis and clinical

treatment of blast lung injury, the model is fast, simple, safe, and

low-cost. However, there are not only blast injuries in explosion

accidents, but also burns and inhalation injuries, but this model

cannot simulate burns and inhalation injuries, which should

further be improved in future studies.

5. Conclusion

In conclusion, an in vitro blast lung injury model is set up

using a blast wave physiotherapy at 8 bar, 10Hz blast wave by

acting on (1–5) × 105 alveolar epithelial cells for 1,000 times.

The model is simple, safe, and stable, and can be used for studies

of injury caused by gas explosion and blast-associated other

external forces.
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