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Background: Before major non-pharmaceutical interventions were

implemented, seasonal incidence of influenza in Hong Kong showed a rapid

and unexpected reduction immediately following the early spread of COVID-

19 in mainland China in January 2020. This decline was presumably associated

with precautionary behavioral changes (e.g., wearing face masks and avoiding

crowded places). Knowing their e�ectiveness on the transmissibility of

seasonal influenza can inform future influenza prevention strategies.

Methods: We estimated the e�ective reproduction number

(Rt) of seasonal influenza in 2019/20 winter using a time-series

susceptible-infectious-recovered (TS-SIR) model with a Bayesian inference

by integrated nested Laplace approximation (INLA). After taking account of

changes in underreporting and herd immunity, the individual e�ects of the

behavioral changes were quantified.

Findings: The model-estimated mean Rt reduced from 1.29 (95%CI,

1.27–1.32) to 0.73 (95%CI, 0.73–0.74) after the COVID-19 community spread

began. Wearing face masks protected 17.4% of people (95%CI, 16.3–18.3%)

from infections, having about half of the e�ect as avoiding crowded places

(44.1%, 95%CI, 43.5–44.7%). Within the current model, if more than 85% of

people had adopted both behaviors, the initial Rt could have been less than 1.

Conclusion: Our model results indicate that wearing face masks and

avoiding crowded places could have potentially significant suppressive impacts

on influenza.
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COVID-19, influenza, face mask, social distancing, time-series analysis, infectious
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1. Introduction

Many studies warned that repeated COVID-19 outbreaks are

expected to happen and the number of infections and deaths

could become even worse during winter (1–5). Besides the

relaxation of social distancing during winter holidays, seasonal

influenza, which commonly circulates during wintertime, may

facilitate the transmission and mortality of COVID-19 if both

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) and influenza virus spread at the same time (6–9). In

fact, many places have seen surges in COVID-19 infections

in 2020/2021 winter (10–12). Since many cities have reopened

after the vaccine has been distributed, it is important to know

whether individual precautionary behaviors (such as avoiding

crowded places and wearing face masks) without strict social

distancing rules can prevent an influenza outbreak. How to

prevent influenza outbreak or the co-circulation with COVID-

19 are major tasks for World Health Organization (13, 14).

During the early spread of COVID-19 in China, many

Hong Kong residents began to wear face masks mainly in

public transport and avoid going to crowded places voluntarily.

Due to the high influx of travelers from mainland China,

Hong Kong faced and acknowledged an extremely high risk

during the early spread. After WHO made an announcement

of the initial spreading of COVID-19 in Wuhan on January

14, 2020 (15), people in Hong Kong perceived the risk of

infection and changed their behavior immediately. Cowling et

al. (16) showed that the number of people avoiding crowded

places and wearing face masks increased between January

and February 2020. Their first survey (January 20–23) was

conducted immediately after the announcement byWHO about

noting limited human-to-human transmission and the First-

Level Public Health Emergency Response in China (15, 17).

Their second survey (February 11–14) was conducted after the

first local (community) transmission event was confirmed in

Hong Kong on February 4. Few cases sporadically occurred

up to early March, indicating that the first significant COVID-

19 outbreak began. Because seasonal influenza incidence was

progressively reducing during these survey periods soon after its

initial rapid growth, it is likely that this unexpected reduction in

the incidence of influenza was due to the behavioral changes in

response to the potential COVID-19 spread.

These precautionary behavioral changes during January

and February 2020 showed a more relaxed restriction than

formal social distancing rules or other non-pharmaceutical

interventions (NPIs) implemented later (e.g., the first group

gathering ban was effective from March 29, 2020). By

comparing the effective reproduction number (Rt) in influenza

along with these differences in the precautionary behaviors,

the corresponding effects can be quantified, which provide

important insights to understand whether an influenza outbreak

can be controlled using less intensive social distancing

restrictions without huge socioeconomic impacts. Furthermore,

whether individuals practice precautionary measures or choose

to be vaccinated largely depends on their risk perception,

relating to a complex decision-making process (18, 19).

Knowing the impacts of these behavioral changes help to forecast

the possible epidemic situations after reopening.

Timely public health decision-making often needs to be

made during an outbreak. However, the methods of estimating

parameters, such as Rt , of traditional susceptible-infectious-

recovered (SIR) equations under Bayesian framework (e.g.,

Markov chain Monte Carlo (20), particle filtering (21, 22),

etc.) are usually time-consuming. Alternatively, the time-series

susceptible-infectious-recovered (TS-SIR) model provides a

computationally inexpensive way to model the transmission

dynamics as the parameters can be estimated through a

generalized linear model (GLM) (23–25). Compared with

frequentist approaches, Bayesian approaches to modeling and

inference of infectious disease dynamics have the advantage

that latent parameters (e.g., actual numbers of uninfected

(susceptible) and infected individuals) and their uncertainties

can be seamlessly accounted for (26). To further reduce the

computational load from traditional methods for Bayesian

inference, some approximation methods such as integrated

nested Laplace approximations (INLA) approach can be

applied (27).

The aim of our studywas to identify the relationship between

precautionary behaviors (e.g., wearing face masks and avoiding

crowded places) and the reduction in influenza transmissibility.

We adopted a TS-SIR model to estimate the Rt in influenza

seasons by using a Bayesian approach with INLA. TS-SIR

was transformed to a GLM with Poisson regression. After

considering the effect of underreporting and separating the effect

from herd immunity, we were able i) to quantify the effects of

wearing face masks and avoiding crowded places throughout an

outbreak and ii) to identify the required percentage of people

adopting such precautionary behaviors that could suppress

the outbreak.

2. Materials and methods

2.1. Data collection

The weekly reported influenza cases in Hong Kong from

April 12, 2015 to March 22, 2020 were obtained from the

Centre for Health Protection (CHP) (28). Only outbreaks during

regular winter seasons were collected for our study (Figure 1A).

2.2. Modeling

On January 14, 2020, WHO made an announcement of

COVID-19 outbreak, and shortly afterward, China declared a

first-level public health emergency response (15, 17). Hence,
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FIGURE 1

Reported cases of influenza in Hong Kong between years 2015 and early 2020. (A) Weekly reported influenza cases. Influenza seasons

considered for model training are highlighted in light brown color, indicating an ordinary influenza period. Red color indicates the period with

precautionary behavioral changes. (B) Weekly reported severe influenza cases.

within the study period of 2019/20 seasonal influenza outbreak

(Figure 1A), we defined the period from the start of the outbreak

(November 24, 2019) up to January 12, 2020 before the majority

of Hong Kong residents knew the existence of COVID-19 as an

ordinary influenza period. This ordinary period also included

the winter influenza seasons during the years 2015–2016, 2017–

2018, and 2018–2019. We included these previous seasons to

increase the statistical power and obtain robust estimates of the

baseline reporting rate. We did not consider the year 2016–2017

in our training set as there was no obvious winter seasonal peak.

Three phases with different transmission patterns were

observed in the 2019–2020 winter influenza season (i.e., the

growing, plateau, and decline periods). These phases were

correlated to the stages of COVID-19 spread in Hong Kong.

The ordinary phase (Phase 1) indicated the period before

COVID-19. In addition to the ordinary phase (corresponding

to the growing period of the outbreak), we further split

the influenza season after January 12, 2020 into two other

phases: the awareness phase (Phase 2), from January 12 to

February 2, when people received the announcement given by

WHO, corresponding to the plateau period; and the spreading

phase (Phase 3), from February 2 to February 23, during

which local community transmission occurred in Hong Kong,

corresponding to the decline period.
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Time-Series Susceptible-Infectious-Recovered (TS-SIR)

model

Effective reproduction number Rt at time t was calculated as

follows:

Rt = R0 × Cj × (
St

N
), (1)

where R0 is the basic reproduction number and Cj is the contact

ratio, a ratio of the contact rate during phase j compared to the

pre-pandemic period (Phase 1; j = 1). The baseline contact

ratio for the pre-pandemic period was fixed at C1 = 1. St is

the susceptible population at time t and N is the population in

Hong Kong. Since official population data were only reported

in 2016 and 2021 from the Census and Statistics Department

of Hong Kong (29), we assumed the population growth to

be linear between 2016 and 2021, that is, the population was

7,336,585 in 2016, 7,365,931 in 2018, 7,380,605 in 2019, and

7,395,278 in 2020. We defined the effects of behavioral changes

on transmissibility in phase j (8j) as the percentage of reduction

in contact ratio, in which the effect of herd immunity (i.e., the

effect contributed by the reduction in susceptible population

over time) is removed:

8j = (1− Cj)× 100%. (2)

While many of the epidemiological models used for

influenza modeling are conventional compartmental models

(i.e., SIR model), an alternative, though related, model is the TS-

SIR model (24), which transforms the conventional model to a

GLM, a classic regression approach. In this study, we adopted

a TS-SIR model with reference to Imai et al. (24) to capture the

transmission dynamics for influenza and we considered different

reporting rates at different periods of time due to public’s risk

perception amid COVID-19:

Yt

ρj
= R

Tc
t−1 ×

Yt−1

ρj

= (R0 × Cj ×
St−1

N
)Tc ×

Yt−1

ρj

= (R0 × Cj ×
N −

∑t−1
i=0 Yi/ρj

N
)Tc ×

Yt−1

ρj
,

(3)

where Yt is the reported incidence at time t and St−1 is

the susceptible population at time t − 1; we considered the

susceptible population equal to total population minus the

cumulative incidence within an influenza season, i.e., St−1 =

N −
∑t−1

i=0 Yi/ρj, ρj is the reporting rate at Phase j. Because

weekly influenza data are published by CHP in Hong Kong, the

unit of t is week (and t = 1, 2, ...). To calculate the number of

infected cases generated from a single infected case after a unit

of time, a time scale Tc relative to the generation time of 3.5 days

is introduced (30), which is calculated as 7/3.5 = 2.

Equation (3) can be transformed to a GLM with Poisson

distribution (see Supplementary material for details), such that

Yt/ρj ∼ Poisson(µt), where µt denotes the expected value

of the weekly influenza cases. We had log(µt) = log(
Yt−1
ρj

) +

Tc log(R0 × Cj)−
Tc×

∑t−1
i=0 Yi/ρj
N .

To estimate parameters, we first obtained R0 and ρ1

during the ordinary period (which includes the winter influenza

seasons during 2015–16, 2017–18, 2018–19, and 2019–20 up

to January 12, 2020). Then, we obtained ρ2, C2, ρ3, and C3,

subsequently, by modeling the situations in Phase 2 and Phase

3. The detailed procedures for model fitting can be found in

Supplementary material.

We estimated the effects of wearing face masks and avoiding

crowded places on the contact ratio defined in our model. The

percentage of reduction in contact ratio was used to represent

the percent reduction in Rt while excluding the impact from the

herd immunity (see Equation 2). We assumed that these two

effects are independent and additive; thus, we have

8j = φsd(xj,sd − x1,sd)+ φm(xj,m − x1,m), (4)

where 8j is the overall percent reduction of contact ratio

in Phase 2 and Phase 3 (j = 2, 3), which was previously

estimated from Equations 1 and 2; xj,sd and xj,m are the

percentages of population avoiding crowded places and wearing

face masks in Phase j, respectively. x1,sd and x1,m are their

baseline percentages (the estimates of the baseline percentages

come from our survey, see Results Section for details). φsd and

φm are parameters indicating the effectiveness of individual

behaviors. The product of φ and x was referred as the effect on

contact ratio in total population. To account for the uncertainty

in the extent of avoiding crowded places and wearing face

masks at different periods of time, we assumed that the number

of survey participants avoiding crowded places or wearing

face masks followed a binomial distribution (the number of

trials is equal to the population in Hong Kong in 2020, with

different probabilities in the different phases according to the

mean percentages in the surveys. We adopted a bootstrap

approach to capture the uncertainty in model parameters

(see Supplementary material for details). The code for the

abovementioned models can be found at https://github.com/

hy39/ts-sir-flu.

3. Results

To quantify the effects of behavioral changes (in response to

the initial spread of COVID-19) on influenza transmissibility,

we classified the 2019–20 winter influenza season into three

different phases based on the pattern of influenza activity as

mentioned in the Section 2 (Figure 2): Phases 1, 2, and 3

show the growth, plateau, and decline phases of the dynamics,

respectively. Comparing influenza activity in year 2019–2020

with the previous seasons, the growth became apparently

limited after Phase 1 and then reduced significantly without
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FIGURE 2

Model prediction of influenza cases in 2019–20 winter influenza season in Hong Kong. Rt at the boundaries (the second and third dashed lines)

between phases were estimated from the model taking account of changes in both behavior and herd immunity. The prediction in Phase 2

(Awareness: the period immediately after people were aware of the existence of COVID-19) is shown in red. The prediction in Phase 3

(Spreading: the period immediately after local COVID-19 cases began to spread) is shown in green. The prediction intervals in Phase 2 and 3 are

shown with narrow intervals. 8 denotes the percentage of reduction in Rt at Phase 2 and 3 compared to Phase 1, resulting from the changes in

behavior only (i.e., excluding the e�ects from herd immunity).

showing a typical curvature of epidemic peak. Presumably, this

unusual pattern was due to the human behavioral changes

associated with people’s risk perception on certain critical public

health events (i.e., COVID-19 spreading) (Figure 3B). Hence, we

correlated these three phases to different epidemic statuses of

COVID-19, namely ordinary, awareness, and spreading phases

(see Section 2 and Figure 2).

To estimate the effects of behavioral changes on the

transmissibility, we adopted a TS-SIR model by taking account

of the herd immunity changes. Our model captured the

dynamics across the three phases well. The number of influenza

cases stopped growing after people avoided crowded places

and wore face masks. Compared with the projection of cases

without the effects of behavioral changes (i.e., under ordinary

transmission dynamics), the number of cases began to decline at

least 4 weeks earlier and the total number of reported cases until

February 23 was reduced by 78.8% (Figure 2).

Initial Rt , also called the basic reproduction number R0, was

estimated to be 1.37 (95%CI, 1.35–1.4). In 2020 winter influenza

season, the Rt reduced slightly from 1.31 to 1.23 during Phase

1 (Figures 2, 3A), which was mainly caused by the increase in

herd immunity after the infected cases were recovered. After

the risk of COVID-19 transmission has been noticed, the Rt on

January 12 reduced from 1.23 (end of Phase 1) to 1.03 (start

of Phase 2), with an effect of behavioral changes 82 (i.e., the

percentage of reduction in Rt after excluding the effects of herd

immunity; see Section 2) being 16.2% (95%CI, 14.8–17.5%) in

this phase. The Rt on February 2 further reduced from 0.94 (end

of Phase 2) to 0.75 (start of Phase 3), with an overall effect of

behavioral changes 83 being 32.9% (95%CI, 31.6–34.1%) in this

phase. In Phase 3, the Rt slightly reduced to 0.73 at the end. The

prediction intervals in Phase 2 and Phase 3 are narrow because

the uncertainty of adjusted reporting rates at the corresponding

phases was small (see Supplementary material and subsequent

paragraphs for details). The results showed that the reductions

in transmissibility were primarily due to the behavioral changes

against COVID-19 and only partially due to the increase in herd

immunity (Figure 3A).

We next quantified the effects of different behaviors. The

survey during the baseline showed that 37.9% of people would

avoid crowded places and 45.5% would wear face masks

for preventing influenza infection (Figure 4). The behavioral

changes in the subsequent phases were revealed by the study

of Cowling et al. (16) (Figure 4), in which two surveys were

conducted immediately after Phase 2 and 3 began (Figure 3A).

The percentage of people avoiding crowded places increased

from 60% to 90%, while the percentage for wearing face masks

increased from 75 to 98%. At that time, social distancing rules,
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FIGURE 3

Changes in Rt before COVID-19 outbreak. (A) Estimated Rt in 2019/20 winter influenza season. The mean Rt was estimated as 1.29 (95%CI,

1.27–1.32) in Phase 1, reduced to 1.00 (95%CI, 0.99–1.00) in Phase 2, and further reduced to 0.73 (95%CI, 0.73–0.74) in Phase 3. In applying

EpiEstim package, the number of influenza cases per week was converted into cases per 3.5 days by linear interpolation on the cumulative

influenza cases, which equals to roughly one generation time of influenza (30). For other settings in applying the EpiEstim package, the serial

interval was a gamma distribution with the mean equal to 3.5 days and the standard deviation equal to 1 day, and the window size was 2 weeks.

(B) Timeline about COVID-19. Important events are shown in red, while other events are shown in green.
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TABLE 1 Impacts of precautionary behaviors in influenza control and

transmissibility from our model.

Impact Value (95%CI)

(%) Effectiveness of avoiding crowded places 44.1 (43.5, 44.7)

(%) Effectiveness of wearing face masks 17.4 (16.3, 18.3)

Estimated R0 when nobody

wears face masks or avoids crowded places 1.71 (1.707, 1.715)

Percentage of people required to adopt precautionary

behaviors in order to lower R0 to below 1 84.3% (84.1%, 84.5%)

such as gathering ban, have not been implemented by the

Hong Kong government yet. Both avoiding crowded places and

wearing face masks were precautionary behaviors triggered by

individual’s risk perception.

We estimated the effects of these two behavioral changes

after separating the effect of herd immunity (see Section 2). The

results showed that wearing face masks was associated with an

17.4% reduction in Rt (the coefficient is 0.174, 95%CI, 0.163–

0.183) (Table 1). The effect of avoiding crowded places was

44.1% (the coefficient is 0.441, 95%CI, 0.435 to 0.447). When

nobody wears face masks or avoids crowded places, the initial

Rt was 1.71 (95%CI, 1.707–1.715), which was higher than our

previous estimate of 1.37. This is because a fraction of people

have adopted preventive measures for influenza (Figure 4). To

reduce R0 to below one, more than 84.3% (95%CI, 84.1–84.5%)

of people have to wear face masks and avoid crowded places.

Note that we addressed the concerns of underreporting due

to COVID-19 by adjusting the reporting rates in different phases

(see Supplementary material for details) with the ratio of the

severe influenza cases to total reported influenza cases (Table 2

and Figure 1B). The ordinary reporting rate was estimated as

0.0065 (95%CI, 0.0064–0.0067), and the adjusted reporting rate

dropped to 0.0057 (95%CI, 0.0056–0.0059) in Phase 2 and

further to 0.0022 (95%CI, 0.0021–0.0022) in Phase 3. There was

a reduction in reporting rate (0.0008 and 0.0043, respectively,

for Phase 2 and Phase 3, compared with Phase 1) across the

three phases, which conforms to the expectation that fewer

patients with influenza visit hospitals or clinics under the risk

of COVID-19.

Our results were compared with the Rt estimated using data

on the number of observed new cases with a statistical method

based on renewal function (EpiEstim package) (31) (Figure 3A).

The comparison showed that the Rt estimations from both

methods were consistent. However, the Rt from the EpiEstim

package showed larger variations within each phase than our

predictions. Before the spread of COVID-19 (i.e., Phase 1), the

Rt from EpiEstim are similar with and without reporting rate

adjusted (gray line and blue line, respectively, in Figure 3A).

However, without adjusting reporting rate, the Rt from EpiEstim

was lower than the Rt estimates with the reporting rate adjusted.

4. Discussion

The importance of wearing face masks on stopping COVID-

19 spread through droplet or aerosol transmission has been

addressed by the WHO (32). Although the effects of wearing

face masks on preventing common respiratory virus infection,

such as influenza or SARS-CoV-2, have been intensely discussed

using empirical evidence from laboratory (33–36) or simulation

studies (37), the evidence from the population study is little (38).

We quantified the effects of wearing face masks and avoiding

crowded places on seasonal influenza transmissibility during

early COVID-19 spread period when human behavior changed.

The results demonstrated that precautionary behavioral changes

may have had a large impact on influenza transmission, even

before strict social distancing rules were implemented. This

gives important recommendation on the prevention of future

influenza using NPIs.

Possibly because of the risk perception related to previous

experience of SARS epidemic in 2003, the adoption rate of face

masks in Hong Kong was high even before COVID-19 began

to spread in the community [see Figure 4 from our data and

the data revealed by the surveys from Cowling et al. (16) and

Kwok et al. (39)]. Even though these spontaneous behavioral

changes were less restricted than formal social distancing

rules, our estimation, taking account of the underreporting

of influenza cases, showed that Rt reduced from 1.31 to 0.73

(Figure 2). High risk perception may also affect the decision-

making in vaccination. The complex relationships between

behavioral changes and transmission dynamics can be modeled

through the evolutionary game theory (18, 19), which is

important in predicting and preparing for future outbreaks

after reopening.

A reduction in the incidence of influenza has also been

reported in mainland China during the early COVID-19 spread

(40), which further supports the finding that the interventions

implemented against COVID-19 significantly reduced influenza

incidence. The interventions appeared to have different degrees

of impact on influenza incidence than in Hong Kong, which

was likely because of the start time of the influenza season. In

mainland China, the influenza season began in November 2019

(40) but the COVID-19 interventions (first-level responses)

were implemented in late January 2020, when the epidemic

peak has already been reached. However, Hong Kong had an

influenza season at a later time and the COVID-19-induced

interventions or precautionary behaviors were adopted before

the peak (Figure 2). Hence, the incidence of influenza incidence

was less in Hong Kong.

Based on the data from Hong Kong, our results showed

that wearing face masks could reduce seasonal influenza

transmission by as much as 17.4% in the population, which is

nearly half of the effect of avoiding crowded places (44.1%).

Within our model, if more than 85% of the people had avoided

crowded places and wore face masks, Rt could have reduced to
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FIGURE 4

Changes in behavior in response to COVID-19. Results of Phase 1 were taken from a survey conducted during January 5–February 15, 2020 for

assessing the baseline behavior taken to prevent influenza infection. Sample size is 66, with 45 females. Respondents were aged between 19 and

64. Three respondents have taken flu vaccination. Note that the survey questions only ask the possible measures in order to prevent influenza

but not COVID-19. Hence, the results indicate the baseline behavior before COVID-19 emerged (Avoiding crowded places: 37.9%, 95%CI,

26.2–49.6%; Wearing face masks: 45.5%, 95%CI, 33.5–57.5%). Results of Phases 2 (Cowling Survey 1) and 3 (Cowling Survey 2) were taken from

a previous study conducted by Cowling et al. (16)) before NPIs were implemented in Hong Kong. Cowling Survey 1 (January 20-23) was

conducted immediately after the WHO made an announcement on January 14, 2020 and when China declared a first-level public health

emergency response (January 20, 2020) (15, 17) (sample size is 1008; Avoiding crowded places: 61%, 95%CI, 57.2–65.4%; Wearing face masks:

75%, 95%CI, 70.4–78.6%). Cowling Survey 2 (February 11-14) was conducted after the first community transmission event was confirmed in

Hong Kong (sample size is 1000; Avoiding crowded places: 90%, 95%CI, 86.2–94.2%; Wearing face masks: 98%, 95%CI, 93.5–100%).

TABLE 2 Ratios of severe cases to the total reported cases in several

winter influenza seasons.

Year Ratio (%)

2016 3.1

2018 3.5

2019 3.8

2020 - Phase 2 4.0

2020 - Phase 3 10.0

The ratios were applied to adjust the reporting rates in Phase 2 and Phase 3 of 2019/2020

winter influenza season.

below one. This evidence suggests that, without strong policy

restrictions in social distancing (i.e., four-person gathering ban

in public places or even a lockdown), the incidence of influenza

can still be greatly reduced by simple behavioral changes. This

highlights the need of future research on whether mandatory

mask wearing policy in certain public places only (e.g., public

transport or other crowded places) can significantly reduce

influenza infection.

A TS-SIR model provides a convenient way to estimate

epidemiological parameters using the classical GLM approach

without losing the nonlinear effects in the conventional SIR

model. To estimate the reproduction number accurately, our

model took account of the change in reporting rate due to the

outbreaks of COVID-19, with reference to the fact that people

were reluctant to go to the clinic (81% (16) and 76% (39) of

the respondents). Using the TS-SIR model, we were able to

separate the changes in Rt due to both behavioral changes and

the increase in herd immunity. This allowed us to quantify the

changes in Rt caused by the behavioral changes using a classical

statistical approach.

Nevertheless, there are some limitations in our study.

In the proposed model, we assumed the population was

random mixing without considering the effect of heterogeneous

mixing (24). We mainly assumed that avoiding crowded

places and wearing face masks were the major behaviors
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that could reduce the number of transmissions, because these

transmissions mainly occur through the droplets released when

an infected person sneezes, coughs, or speaks. In addition, in

the effectiveness-behavior analysis (Equation 4), we checked

whether confounding factors occurred. We found that the

probability of wearing face masks is not conditional on avoiding

crowded places, enabling us to use a simple additive approach to

assess the individual effects. A larger sample indeed can increase

the statistical power of the effectiveness-behavior analysis (i.e.,

the credible intervals of the resulted effects). However, due

to time constraints, the sample size in our survey on Phase

1 behavior was limited. Furthermore, the surveyed behavioral

changes were simply interpreted in the percentage of the

population. Future studies should be conducted to quantify the

duration of wearing face masks.

Preparing for the co-circulation of influenza and COVID-

19 is critically important (14). While many countries lifted the

requirements of social distancing and wearing face masks as

COVID-19 vaccination rolled out and the omicron (B.1.1.529)

outbreaks passed, these relaxations likely led to the rise of

seasonal influenza infections. However, COVID-19 continues

to spread with more than 1 million new cases per day

globally (March 2022) (41). Some biotechnology companies have

been developing a COVID-19-Influenza combination vaccine

to provide protections from both illnesses at the same time

(42, 43). To reduce the influenza incidence from a non-

pharmaceutical perspective, we recommend that the idea of

wearing face masks in certain public places and/or simple social

distancing (i.e., avoiding crowded places) should be promoted.

The effectiveness of such precautionary behaviors on seasonal

influenza based on our study can also potentially give us hints for

the recommendations of behavioral shift in dealing with future

pandemics (44).
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