Investigation of the community-level symptomatic onset risk regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern, is crucial to the pandemic control in the new normal.
Investigated in this study is the spatiotemporal symptom onset risk with Omicron BA.1, BA.2, and hamster-related Delta AY.127 by a joint analysis of community-based human mobility, virus genomes, and vaccinations in Hong Kong.
The spatial spread of Omicron BA.2 was found to be 2.91 times and 2.56 times faster than that of Omicron BA.1 and Delta AY.127. Identified has been an early spatial invasion process in which spatiotemporal symptom onset risk was associated with intercommunity and cross-community human mobility of a dominant source location, especially regarding enhancement of the effects of the increased intrinsic transmissibility of Omicron BA.2. Further explored is the spread of Omicron BA.1, BA.2, and Delta AY.127 under different full and booster vaccination rate levels. An increase in full vaccination rates has primarily contributed to the reduction in areas within lower onset risk. An increase in the booster vaccination rate can promote a reduction in those areas within higher onset risk.
This study has provided a comprehensive investigation concerning the spatiotemporal symptom onset risk of Omicron BA.1, BA.2, and hamster-related Delta AY.127, and as such can contribute some help to countries and regions regarding the prevention of the emergence of such as these variants, on a strategic basis. Moreover, this study provides scientifically derived findings on the impact of full and booster vaccination campaigns working in the area of the reduction of symptomatic infections.