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Background: Antimicrobial resistance has emerged as one of the foremost

public health troubles of the 21st century. This has ended in a public health

disaster of the global situation, which threatens the exercise of present-day

remedy. There is an urgent requirement for a cost-e�ective strategy to reduce

antimicrobial resistance. Infectious disease control researchers most often

analyze and predict antimicrobial resistance rate data that includes zeros or

ones. Commonly used time-series analysis such as autoregressive moving

average model is inappropriate for such data and may arrive at biased results.

Objective: This study aims to propose a time-series model for continuous

rates or proportions when the interval of series includes zeros or ones and

compares the model with existing models.

Data: The Escherichia coli, isolated from blood cultures showing variable

susceptibility results to di�erent antimicrobial agents, has been obtained from

a clinical microbiology laboratory of a tertiary care hospital, Udupi district,

Karnataka, during the years between 2011 and 2019.

Methodology: We proposed a Degenerate Beta Autoregressive model which

is a mixture of continuous and discrete distributions with probability mass at

zero or one. The proposed model includes autoregressive terms along with

explanatory variables. The estimation is done using maximum likelihood with

a non-linear optimization algorithm. An R shiny app has been provided for the

same.

Results: The proposed Degenerate Beta Autoregressive model performed

well compared to the existing autoregressive moving average models. The

forecasted antimicrobial resistance rate has been obtained for the next 6

months.

Conclusion: The findings of this article could be beneficial to the infectious

disease researchers to use an appropriate time-series model to forecast the

resistance rate for the future and to have better or advance public health

policies to control the rise in resistance rate.

KEYWORDS

Beta distribution, time-series model, mixture distribution, rates, proportions, inflated

distribution, AMR, resistance
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1. Introduction

Antimicrobial resistance (AMR) is a serious problem in

many developing countries. The World Health Organization

(WHO) has categorized AMR as a serious health problem

affecting the patients of various countries. In 2015, the WHO

surveyed in its six regions called country situation analysis

to examine the current practices and to determine the gaps

which increase antimicrobial resistance. Eleven and eight

countries from Asian and African continents, respectively,

from low- to middle-income participated in the study. The

analysis showed that AMR is a major issue in both the

continents, and in the South-East Asia, nosocomial infections

are of particular concern. The main cause of resistance is

the inappropriate use of antimicrobial medicines and poor

healthcare facilities (1).

In the past, to study antibiotic usage and resistance time-

series, models such as Box-Jenkins ARIMA (autoregressive-

integrated moving average) (2) and transfer function models

have been used. Some studies used time-series to forecast

trend and seasonality of the data with the exponential

smoothing technique.

However, there is a limitation of these models in terms

of accuracy of prediction or violation of assumptions in the

applicability. Hence, this study proposes to develop and test

stochastic models to predict antibiotic resistance rate, which

helps us in understanding the pattern of resistance to plan

strategies for the rational use of antibiotics.

Oftentimes, the data like antimicrobial resistance include

data in the interval [0, 1) or (0, 1], when the bacteria is

highly susceptible or resistant to the antibiotic. To model

data with rates/proportions regression, models are proposed

by Ferrari and Cribari-Neto (3), Mitnik and Baek (4), Pumi

et al. (5), and Artur and Bazán (6) and the time-series

models are proposed by Rocha and Cribari-Neto (7) and

Bayer et al. (8). But these models are not appropriate for

the proportion data with zeros or ones. To model such kind

of data, we look for a mixture of distributions. Ospina and

Ferrari (9) and Cribari-Neto and Santos (10) introduced inflated

Beta distributions and inflated Kumaraswamy distributions

which is a mixture of discrete and continuous distributions.

Ospina and Ferrari (11) and Bayer et al. (12) introduced

the inflated Beta regression model and inflated Kumaraswamy

regression model. Currently, there is scope to use a time-

series model for proportion data in the interval [0, 1) or

(0, 1].

This paper proposes to model the time-series data in the

interval [0, 1) or (0, 1] using a mixture of Degenerate and Beta

distributions through a frequentist approach. This study is an

extension of βARMA model proposed by Rocha and Cribari-

Neto (7), where instead of Beta distribution, inflated Beta

distribution is incorporated. The proposed model is compared

with the ARIMA model.

The developed model is illustrated with an application based

on antimicrobial resistance (AMR) data. Rates of Escherichia

coli (E. coli) isolated from blood cultures showing variable

susceptibility results to different antimicrobial agents are

considered for the modeling in this study. E. coli is a gram-

negative bacteria, most regularly isolated in patients with blood

stream infection (BSI), and in severe instances, it may cause

loss of life. The rates of BSI have accelerated steadily in recent

years (13). However, knowledge of future resistance rate using

forecasting may help in recommending new interventions or

policy recommendations in hospital settings.

2. Materials and methods

2.1. Data description

The variable susceptibility of Escherichia coli (E. coli),

isolated from blood cultures showing variable susceptibility

results to different antimicrobial agents, has been obtained from

a clinical microbiology laboratory of a tertiary care hospital,

Udupi district, Karnataka, during the years between 2011

and 2019. Institutional ethical clearance was obtained from

Kasturba Medical College and Kasturba Hospital Institutional

Ethics Committee (IEC no. 832/2019). The laboratory generally

receives more than 10,000 blood culture tests annually from

patients who have been suspected of bacteremia/sepsis. The

blood cultures yielded positive results in 20–30% of cases and

E. coli is the most common among several other bacteria causing

bacteremia in our patient population. We retrieved the data of

antimicrobial susceptibility test (AST) results of this bacteria

from the electronic records of the laboratory. Antimicrobial

susceptibility tests were performed using the Kirby Bauer disc

diffusion method until 2014 and by the Vitek-2 automated

method after 2015, both of which are accepted and standardized

test methods according to the Clinical Laboratory Standards

Institute (Ref:CLSI supplement M100. Wayne, PA: Clinical and

Laboratory Standards Institute; 2012). In the former method,

the bacteria was considered resistant to the antimicrobial agent

amoxicillin-clavulanic acid, based on the ESBL phenotypic test,

although the individual agent appeared susceptible. However, in

the latter method, results were reported unchanged as detected

in the automated system. Laboratory had tested E. coli against

different antimicrobial agents and the results were interpreted

as either susceptible or resistant. The data include information

on the monthly number of E. coli isolates obtained and the total

number of isolates resistant to the different antibiotics which

includes a total of 108 time points. The resistance proportion is

calculated as the number of E. coli isolates that were resistant

to a particular antimicrobial agent/total number of E. coli

tested during that time interval. This study considered the

data on the antibiotic amoxicillin-clavulanic acid (AMC) and

Cefoperazone-sulbactam (CSL) since it met the requirements
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of the model (i.e., time dependency and in the interval [0,1) or

(0,1]).

2.2. Degenerate Beta autoregressive
(DeβAR) model

2.2.1. Beta distribution

The parameterized probability density function of random

variable X of Beta distribution is

f (x;µ, ζ ) = Ŵ(ζ )

Ŵ(µζ )Ŵ((1− µ)ζ )x
µζ−1(1−x)(1−µ)ζ−1, 0 < x < 1

(1)

Here, 0 < µ < 1 and ζ > 0. The mean and variance of the

random variable X is, E(X = x) = µ and V(X = x) = V(µ)
1+ζ ;

where V(µ) = µ(1−µ). Hence, hereµ and ζ act as distribution

mean and precision parameters. Here, when value of µ is fixed,

as the value of ζ increases, the variance of x decreases.

2.2.2. Degenerate distribution

A Degenerate distribution is a one-point distribution where

a random variable X has a single possible value.

The probability mass function of random variable X can be

written as follows:

P(X = x) =
{

1 if x = c;
0 elsewhere

(2)

That is, a random variable, X, is degenerate if, for some constant,

c, P(X = c) = 1.

This distribution has a single parameter, c, and it ranges from

-∞ to∞.

2.2.3. Inflated Beta distribution

Ospina and Ferrari (9) introduced inflated Beta distributions

which is a mixture of Degenerate and Beta distributions. The

probability density function is

bic(x;ω,µ, ζ ) =
{

ω if x = c;
(1− ω)f (x;µ, ζ ) if x ∈ (0,1)

(3)

where, 0 < ω < 1 is the mixture parameter, f (x;µ, ζ ) is the p.d.f
of Beta distribution and c=0 or 1 known value which follows

Degenerate distribution. The cumulative distribution function

(c.d.f) of mixture distribution is given by

BIc(x;ω,µ, ζ ) = ωI[c,1](x)+ (1− ω)F(x;µ, ζ )

Where, IA(x) is an indicator function that equals 1 if x ∈ A and

0 if x /∈ A. Here, F(.;µ, ζ ) is the c.d.f. of the beta distribution.

The rth moment and variance of inflated beta distribution is

E(xr) = ωc+ (1− ω)µr

Var(x) = (1− ω)V(µ)
ζ + 1

+ ω(1− ω)(c− µ)2

where, µr = (µζ )r/ζr .

2.2.4. Beta autoregressive moving average
model

Rocha and Cribari-Neto (7) introduced βARMAmodel to fit

continuous time-series data in the interval (0, 1), which follows

Beta distribution.

The proposed βARMA(p, q) model is

g(µt) = β0+ s′tβ+6
p
i=1φi{g(xt−i)− s′t−iβ}+6

q
j=1αjrt−j (4)

where, g(.) is the link function, β0 is the intercept term,

st ’s are the regressor variables, and β = (β1,β2, ...,βk)
′ are

set of parameters of regressors. The φ’s and the α’s are the

autoregressive (AR) and moving average (MA) parameters,

p and q are the AR and MA orders, and rt is an error

term, respectively.

In case of a real-life scenario when time-series data includes

zeros or ones, it is challenging to use this model by assuming

Beta distribution. To model such kind of continuous time-

series data, we replaced Beta distribution with inflated Beta

distribution proposed by Ospina and Ferrari (9). The density

function of inflated Beta distribution with time can be written

as follows:

Let Xt t=1,2...n be the response variable of proportion data

which includes zeros or ones. We assume that the proportion

series is conditionally distributed as InBE (µt , ζ , ω) (where,

InBE stands for "Inflated Beta") with probability density function

defined as:

fXt (xt|Ft−1) = ωI(xt=c) + (1− ω) Ŵ(ζ )

Ŵ(µtζ )Ŵ((1− µt)ζ )
x
µtζ−1
t (1− xt)

(1−µt)ζ−1 (5)

or equivalently

fXt (xt |Ft−1)

=
{ ω ifx = c;
(1− ω) Ŵ(ζ )

Ŵ(µtζ )Ŵ((1−µt)ζ ) x
µtζ−1
t (1− xt)

(1−µt)ζ−1 ifx ∈ (0, 1)

which is a mixture of Beta and Degenerate distributions. Here,

Ft−1 is the previous information set of response series. When

the mixture parameter ω = 0, inflated Beta distribution reduces
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to Beta distribution. Based on Equations (3) and (4), the mean

and variance of distribution can be written as follows:

For [0,1),

E(Xt|Ft−1) = (1− ω)µt

V(Xt|Ft−1) = (1− ω)µt(1− µt)
ζ + 1

+ {ω(1− ω)µ2t }

For (0,1],

E(Xt|Ft−1) = ω + (1− ω)µt

V(Xt|Ft−1) = (1− ω)µt(1− µt)
ζ + 1

+ {ω(1− ω)(1− µt)2}

2.2.5. Proposed model

The proposed Degenerate Beta Autoregressive (DeβAR)

model for the parameters of mixture distribution is

ηt = g(µt) = s′tβ +6p
i=1φi{g(xt−i)− s′t−iβ} (6)

where, ηt is the linear or non-linear predictor of the model,

where g(.) is the link function (we used logit), st ’s are the

regressor variables, and β = (β1,β2, ...,βk)
′ are the unkonwn

parameters of regressor variables. φi = (φ1,φ2, ...,φp)
′ are the

autoregressive parameters with order p. Let θ = (β ′, ζ ,ω,φ′i)
′

be vector of unknown parameters with length k+p+2.

2.2.6. Parameter estimation

The parameters of the model are estimated by maximizing

log-likelihood function.

Here, let Xt , t=1,2,...,n be a random variable and Ft−1 be

the set of past information. Then, the likelihood function of the

parameters θ conditioning on the past p observations can be

written as follows:

L(θ; x) =
n

∏

t=p+1

fXt (xt|Ft−1)

The likelihood function for the parameters of Degenerate Beta

AR model is given by

L(θ; x) =
n

∏

t=p+1

{ωIxt=c + Ixtǫ(0,1)(1− ω)

Ŵ(ζ )

Ŵ(µtζ )Ŵ((1− µt)ζ )
x
µtζ−1
t (1− xt)

(1−µt)ζ−1}

Then, the log-likelihood of model is

log(L(θ; x)) = l(θ)

=
n

∑

t=p+1

Ixt=clog(ω)+
n

∑

t=p+1

Ixtǫ(0,1)log{(1− ω)

Ŵ(ζ )

Ŵ(µtζ )Ŵ((1− µt)ζ )
x
µtζ−1
t (1− xt)

(1−µt)ζ−1}

Here, take Ixt=c = xct , then l(θ) equals to

n
∑

t=p+1

xct log(ω)+
n

∑

t=p+1

(1− xct)log{(1− ω)

Ŵ(ζ )

Ŵ(µtζ )Ŵ((1− µt)ζ )
x
µtζ−1
t (1− xt)

(1−µt)ζ−1}

Then, the score function is given by

U(θ) = ∂

∂θ
l(θ) = 0

i.e., for l=1,2...k

∂ l(θ)

∂βl
=

n
∑

t=p+1

∂ l(θ)

∂µt

∂µt

∂ηt

∂ηt

∂βl

Note that, ∂µt
∂ηt

= µt(1−µt) and ∂ηt
∂βl

= stl−
∑p

i=1 φis(t−i)l.

Then,

∂ l(θ)

∂βl
=

N
∑

t=p+1

(1− xct)ζ [log(
xt

1− xt
)

−{ψ(µtζ )− ψ((1− µt)ζ )}]µt(1− µt)(stl −
p

∑

i=1

φis(t−i)l)

Here, let x∗t = log( xt
1−xt

) if xtǫ(0, 1) else x∗t = 0 and

ψ(µtζ )−ψ((1−µt)ζ ) = µ∗t , whereψ(.) is a digamma function.

Then,

∂ l(θ)

∂βl
=

n
∑

t=p+1

(1−xct)ζ (x
∗
t −µ∗t )µt(1−µt)(stl−

p1
∑

i=1

φis(t−i)l)

Similarly,

∂ l(θ)

∂ζ
=

n
∑

t=p+1

ζ (1− xct){µt(x∗t − µ∗t )+ log(1− xt)

−ψ((1− µt)ζ )+ ψ(ζ )}

∂ l(θ)

∂ω
=

n
∑

t=p+1

(xct − ω)
ω(1− ω)
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TABLE 1 Simulation results.

Sample size
(n)

100 250 500

Model Estimators Bias
√
MSE Bias

√
MSE Bias

√
MSE

β0 0.001 0.057 0.0006 0.0364 0.0001 0.026

DβAR(1) φ1 –0.002 0.072 –0.001 0.045 –0.0007 0.031

ζ –3.222 12.603 –1.308 6.883 –0.637 4.679

ω 0.003 0.206 –0.0004 0.032 –0.00007 0.022

β0 0.005 0.110 0.0004 0.048 0.0008 0.034

φ1 –0.002 0.125 –0.0006 0.053 –3.77E–05 0.037

DβAR(2) φ2 -0.008 0.134 –0.002 0.055 -0.001 0.039

ζ –10.306 26.772 –1.758 7.159 –0.881 4.712

ω 0.0003 0.073 –0.0003 0.032 –0.0001 0.022

For i=1,2...p

∂ l(θ)

∂φi
=

n
∑

t=p+1

(1− xct)ζt(x
∗
t −µ∗t )µt(1−µt)(g(xt−i)− s′t−iβ)

The maximum likelihood estimator of θ is obtained by

equating U(θ) = 0. Since there exists no closed form solution

for these equations, a non-linear optimization algorithm like

Newton’s method or a Quasi-Newton algorithm such as limited-

memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-

BFGS-B) has been used (14, 15).

Practically, we can use the gamlss function in R software in

the package GAMLSS (generalized additive models for location

scale and shape) (16) to get the initial values for estimating

the parameters.

In this study, we have used the Quasi-Newton method (17)

under which we performed the L-BFGS-B algorithm to obtain

the optimum solution for the parameters.

Large sample inference: If the model specified by

Equation (5) follows the regularity condition of maximum

likelihood estimation (MLE) then, MLEs of θ and J(θ)

(Fisher information matrix) are consistent. Assuming that

I(θ) = limn→∞{n−1J(θ)} exists and is non-singular, we have√
n(θ̂ − θ) converges in distribution to N(0, I(θ)−1).

2.3. Simulation study

In this simulation study, we featured finite-sample

performance of the MLE. Due to time consumption, the

simulated time-series data generated only for DeβAR with lag 1

and lag 2.

ηt = logit(µt) = β0 + φ1g(xt−1)

ηt = logit(µt) = β0 + φ1g(xt−1)+ φ2g(xt−2)

Here, ζ and ω are constant for all observations. We took

β0 = 1.2, φ1 = −0.8, φ2 = −0.2, ζ = 50, and ω = 0.5 as

true parameters.

The Monte Carlo simulation with 15,000 replications was

carried out each with sample size n = 100, 250, and 500. Of the

15,000 replicants, 5,000 were the burn out. Parameter estimates

were obtained as the convergent outcome of the remaining

10,000. The parameters are estimated by maximizing the log-

likelihood function using the L-BFGS-B algorithm. The bias and

root mean square error of the estimates are reported.

Table 1 represents the bias and root mean square error of

the parameters. Here, we can observe that, as the sample size

increases, the algorithm converged for all the samples. Themean

of β0, φ1, φ2, and ω are close to the true values or the initial

values. Also, the root mean square errors of all the estimators

are decreased as the size of the sample increases, as anticipated.

2.4. Forecast evaluation criteria

Selecting a proper model among several competing

candidates is a hassle in a lot of time-series analysis. In many

cases, to look for out-of-sample forecast accuracy, the MAPE

(“Mean absolute percentage error") is used for model selection

or comparison. However, when data are close to zero, other

forecast measurement criteria can be used, such as MAE (“mean

absolute error"), MSE (“mean square error"), RMSE (“root

mean square error"), and ex post forecast error (18). In the

case of time-series analysis, the ACF plot is one of the model

selection criteria, and the AIC (“Akaike information criterion")

and the BIC (“Bayesian information criterion") will be used for

an in-sample accuracy check.
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TABLE 2 Descriptive statistics for the data on rate of E. coli resistant to AMC and CSL.

Antibiotic Sample
size

Range Mean Std.Deviation Skewnes Min Max Median

AMC 108 0.593 0.703 0.165 –0.0024 0.407 1 0.702

CSL 108 0.4 0.15 0.10 0.40 0 0.4 0.14

2.5. R shiny application

R shiny is a website application available freely to build

under R-studio. It is an interactive website application that

requires no web development skills1. R shiny web app can be

accessed at DeBAR.app2.

3. Results

3.1. Exploratory data analysis

To understand the characteristics of the response series,

the descriptive statistics for the data are represented in Table 2.

Figure 1 represents the time-series plot of the bacteria E. coli

isolated from blood cultures resistant to the antimicrobial agents

AMC and CSL, where the sudden change between the years

2015 and 2016 is due to the improvisation in the testing

method in April 2015, which involved a shift from manual

testing method (i.e., Kirby Bauer disc diffusion method) to

Vitek-2 automated method from the year 2015. This change

point has been considered as a covariate in the model and

represented as an indicator variable It . Figure 2 displays the

histogram of the same. The proposed model is applicable to

model stationary time-series data. The ACF plot will be used

to identify the stationarity in the series. If non-stationarity

exists, then significant deterministic elements can be added as a

regressor variable in themodel. As the current study data include

change points in the series, stationarity cannot be identified

through the ACF plot.

3.2. Time-series analysis

The data have been modeled using Degenerate Beta

Autoregressive (DeβAR(p)) model proposed in Section 2 and

the analysis has been carried out using the software R. Quasi-

Newton algorithm (L-BFGS-B) has been used to maximize the

partial log-likelihood function.

First, the following DeβAR(p) models, where p=1, 2, 3,...,12

fitted to the AMC data,

1 https://shiny.rstudio.com/

2 https://jevithalobo.shinyapps.io/column/

FIGURE 1

Time plot of proportion of E. coli in blood resistant to antibiotics

AMC and CSL.

Model1 : ηt = logit(µt) = β0 + αIt + φ1{g(xt−1)}

Model2 : ηt = logit(µt) = β0 + αIt +62
i=1φi{g(xt−i)}

Model3 : ηt = logit(µt) = β0 + αIt +63
i=1φi{g(xt−i)}

Model12 : ηt = logit(µt) = β0 + αIt +612
i=1φi{g(xt−i)}

where, xt−i i=1,2,...,12 is the lagged response series and It

is the change point (Indicator) variable with coefficient α.
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FIGURE 2

Histogram of proportion of E. coli in blood resistant to antibiotics AMC and CSL.

Among the 12 models, the best model is selected using

the AIC and the BIC for which these values are minimum.

The selected model is then compared with the existing

ARIMA model.

The AIC and the BIC select Model 1 as the best among

the 12 models as its values are minimum compared to the

others (Table 4). From the significance test (Table 3), it can be

seen that for the data AMC, lag-1 is significant at 5% level
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TABLE 3 Fitted DeβAR model for rate of E. coli resistant to AMC and CSL.

Antibiotic Parameter Estimate Std. Error z stat p-value

β0 1.689 0.156 10.808 0.00e+00

φ1 –0.109 0.080 –1.367 1.74e−02

AMC log(ρ) 2.798 0.554 5.043 2.15e−06

logit(�) –3.188 0.099 –32.043 0.00e+00

α –1.338 0.150 –8.889 3.59e−14

β0 –2.185 0.166 –13.112 0.00e+00

φ1 –0.0215 0.068 –0.313 7.547e-02

CSL log(ρ) 3.099 0.020 148.21 0.00e+00

logit(�) –2.102 0.319 –6.580 2.46e-09

α 0.877 0.128 6.834 7.55e-10

of significance (l.o.s) and for data CSL, lag-1 is significant at

10% level of significance (l.o.s) along with the indicator variable

and parameters of the model, respectively. Next, the model is

compared with the ARIMA model. Autocorrelation function

(ACF) plots for residuals, forecast accuracy criteria (MAE, MSE,

and MAPE), and information criteria (AIC and BIC) were used

to select the best model for the given data.

Models considered were,

Model 1: DeβAR(p), with lag at 1

ηt = logit(µt) = β0 + αIt + φ1g(xt−1)

Model 2: ARIMA(0, 0, 1) model using Arcsine transformation

yt = β0 + αIt − θ1ǫt−1

In the analysis, as a final step, data have been forecasted by

keeping out the last six observations (hold-out data) from the

time-series, and Model 1 and Model 2 have fitted to the selected

(test data) series and forecasted for the next 6 months. The out-

of-sample forecast accuracy are calculated using the hold-out

and forecasted data from the models and comparisons between

models have been carried out. The hold-out series of AMC is

0.545, 0.592, 0.7, 0.469, 0.667, and 0.6. The forecasted series

from Model 1 is 0.597, 0.594, 0.6, 0.595, 0.595, and 0.6. The

forecasted series from Model 2 is 0.602, 0.579,0.579, 0.579,

0.579, and 0.579. Similarly, the hold-out series of CSL is 0.205,

0.184, 0.133, 0.184, 0.294, and 0.067. The forecasted series from

Model 1 is 0.192, 0.194, 0.193, 0.193, 0.194, and 0.195. The

forecasted series from Model 2 is 0.223, 0.215, 0.213, 0.214,

0.214, and 0.213.

The study found that for both the data, the forecast accuracy

for Model 1 is better compared to the Model 2 (Table 5) and

residual plot of Model 1 follows white noise assumptions (i.e.,

the residual series should have mean 0 and no autocorrelation

within the series), whereas for AMC data (Figure 3), Model 2 is

serially correlated at lag 4. Thus, we select Model 1 as the best fit

model for both the data.

Thus, the estimated DeβAR(1) model for AMC is

µ̂t =
exp(β0 + αIt + φ1g(xt−1))

1+ exp(β0 + αIt + φ1g(xt−1))

E(x) = ω̂ + (1− ω̂)µ̂t

where, (β̂0, α̂, φ̂1, ω̂) = (1.68, –1.34, –0.11, 0.03). The forecasted

series for next 6 months is 0.604, 0.587, 0.613, 0.587, 0.604, and

0.582.

Similarly, the estimated DeβAR(1) model for CSL is

µ̂t =
exp(β0 + αIt + φ1g(xt−1))

1+ exp(β0 + αIt + φ1g(xt−1))

E(x) = (1− ω̂)µ̂t

where, (β̂0, α̂, φ̂1, ω̂) = (–2.185,0.877, –0.021, 0.108). The

forecasted series for next 6 months is 0.19, 0.20, 0.19, 0.194,

0.192, and 0.189.

The R code of the analysis has been provided in the

supporting file.

4. Discussion

AMR is difficult to control and expensive to deal with, and

the outcome is that it can lead to death or severe disability. Many

researchers have used different statistical techniques to look at

the relationship between antimicrobial use and resistance. To

list a few of them, a study by Athanasiou and Kopsini (19)

in 2018 systematically reviewed the statistical methods used to

analyze the AMR rate time-series data. Many of the studies
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FIGURE 3

Sample ACF of the residuals obtained from the fitted models for AMC and CSL.

used the ARIMA model (20) and the transfer function model

and few studies used the multiple linear regression model.

Infectious disease control researchers most often analyze and

predict antimicrobial resistance rate data, which includes zeros

or ones [resistance rate with zeros can be seen in the figure

of the article by Lopez-Lozano et al. (21)]. The commonly

used ARIMA model is inappropriate for non-Gaussian (not

normally distributed) time-series data and may arrive at biased

results. Rocha and Cribari-Neto (7) and Bayer et al. (8)

introduced the Beta autoregressive moving average model and

the Kumaraswamy autoregressive moving average model to

fit rate/proportion time-series data in the interval (0, 1). To

analyze proportion data with zeros or ones, Ospina and Ferrari

(11) proposed an inflated beta regression model, and as an
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TABLE 4 AIC and BIC for DβAR(p) models for AMC and CSL data.

Antibiotic AMC CSL

Model AIC BIC AIC BIC

Model 1 –126.19 –112.78 –153.69 –140.28

Model 2 –121.92 –105.83 –149.96 –133.86

Model 3 –117.64 –98.86 –152.58 –133.81

Model 4 –122.33 –100.87 –147.01 –125.55

Model 5 –119.55 –95.42 –151.37 –127.23

Model 6 –115.17 –88.35 –146.66 –119.84

Model 7 –110.99 –81.48 –142.14 –112.63

Model 8 –108.40 –76.22 -140.54 –108.35

Model 9 –105.93 –71.07 -138.07 –103.21

Model 10 –110.76 –73.22 –134.39 –96.84

Model 11 –106.62 –66.39 –133.56 –93.32

Model 12 –103.46 –60.55 –136.87 –93.96

TABLE 5 Model selection criterion.

Antibiotic Model Log-
likelihood

MAE MSE MAPE AIC BIC

AMC Model 1 68.09 0.089 0.011 13.93 –126.19 –112.78

Model 2 57.81 0.109 0.018 18.40 –107.62 –97.12

CSL Model 1 75.64 0.053 0.005 — –153.69 –140.28

Model 2 63.39 0.064 0.006 — –118.79 –108.29

alternative, Bayer et al. (12) proposed an inflated Kumaraswamy

regression model. But none of the studies addressed the

autocorrelation in the response series in the interval [0, 1) or (0,

1]. So, to fill this gap, in this article, we proposed the Degenerate

Beta Autoregressive (DeβAR) model.

For this intention, we collected time-series data on E. coli

isolates resistant to the different antimicrobial agents, and for

the current study, only amoxicillin–clavulanic acid (AMC) and

Cefoperazone–sulbactam (CSL) were considered. The primary

focus of this study is to forecast the AMR rate for the time-series

data in the interval (0, 1] or [0, 1). The proposed DeβAR(p)

models (where p=1,2,...,12) fitted to the data and best order for

“p" was selected for which the values of the AIC and the BICwere

minimum. The best model among these was then compared

with the existing ARIMA model and the best among both was

decided based on the forecasting evaluation criteria (MSE,MAE,

and MAPE).

From Table 4, we can see that for the data AMC, the

values of the AIC and the BIC are minimum for Model 1

(i.e., AIC = −126.19 and BIC = −112.78) compared to other

models. The study found that the DeβAR (1) model performed

well compared to the remaining 11 models. Next, the selected

DeβAR(1) model is compared with the existing ARIMA (0, 0, 1)

model selected from the autogeneration. From Table 5, we can

see the values of MAE, MSE, and MAPE are minimum for the

proposed Model 1 compared to the existing Model 2 along with

the AIC and BIC. Hence, the study selected the DeβAR(1)model

as the best among all. Similar procedure followed for the data

of CSL.

By using the proposed DeβAR(1) model, the AMR rate was

forecasted for next 6 months. The study results indicate the

forecasted resistance rate of E. coli to the antimicrobial AMC

ranges between 58 and 62% for the next 6 months, implying

constant variations in the resistance rate.

The DeβAR(p) model introduced in this article would be

beneficial to healthcare providers to implement early public

healthmeasures to control and prevent the rise in resistance rate.

5. Conclusion and future direction

Antimicrobial resistance is an emerging issue of

public health. However, taking appropriate precautions or

interventions in advance may help in reducing the resistance

rate. Forecasting using an appropriate time-series model may
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help in predicting the expected resistance rate for the future

which is further useful for policy-making.

This study proposed the Degenerate Beta Autoregressive

model (DeβAR) to model antimicrobial resistance rate data,

which is an extension of the βARMAmodel proposed by Rocha

and Cribabri-Neto (2009). The proposed model can be used to

fit continuous time-series data in the interval [0, 1) and (0, 1],

for example, rates or proportions. The model is applicable when

the series is stationary in nature. The parameters of the model

are estimated by maximizing the likelihood function and closed-

form solutions for the score function are obtained by using the

non-linear optimization algorithm (L-BFGS-B). The application

of the model is presented using AMR data.

The outcome from a time-series model helps the healthcare

policymakers to implement an appropriate intervention in

advance to reduce the risk of rise in resistance rate.

In future, the study results can be improvised by considering

antimicrobial consumption as a regressor variable and the

proposed model can be improvised by incorporating moving

average terms and seasonal components.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary material, further inquiries

can be directed to the corresponding author.

Ethics statement

The studies involving human participants were reviewed and

approved by Institutional Ethical Clearance was obtained from

Kasturba Medical College and Kasturba Hospital Institutional

Ethics Committee (IEC No. 832/2019). Written informed

consent for participation was not required for this study in

accordance with the national legislation and the institutional

requirements.

Author contributions

JL, AK, and VK framed the objective of the study. VK

collected the data. JL conducted the analysis, drafted initial

manuscript, and developed R shiny app. AK and VK revised

the manuscript. All authors have read and approved the final

manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fpubh.

2022.969777/full#supplementary-material

References

1. WHO. Worldwide Country Situation Analysis: Response to Antimicrobial
Resistance. Geneva: WHO (2015). Available online at: https://ghc.fiu.edu/
wpcontent/uploads/sites/38/2018/04/Supplement-Material.pdf

2. Zeng S, Xu Z, Wang X, Liu W, Qian L, Chen X, et al. Time series
analysis of antibacterial usage and bacterial resistance in China: observations
from a tertiary hospital from 2014 to 2018. Infect Drug Resist. (2019) 12:2683.
doi: 10.2147/IDR.S220183

3. Ferrari S, Cribari-Neto F. Beta regression for modelling rates and proportions.
J Appl Stat. (2004) 31:799–815. doi: 10.1080/0266476042000214501

4. Mitnik PA, Baek S. The Kumaraswamy distribution: median-dispersion re-
parameterizations for regression modeling and simulation-based estimation. Stat
Pap. (2013) 54:177–92. doi: 10.1007/s00362-011-0417-y

5. Pumi G, Rauber C, Bayer FM. Kumaraswamy regression model with Aranda-
Ordaz link function. Test. (2020) J3:1-21. doi: 10.1007/s11749-020-00700-8

6. Lemonte AJ, Bazán JL. New class of Johnson distributions and its associated
regression model for rates and proportions. Biometr J. (2016) 58:727–46.
doi: 10.1002/bimj.201500030

7. Rocha AV, Cribari-Neto F. Beta autoregressive moving average models. Test.
(2009) 18:529. doi: 10.1007/s11749-008-0112-z

8. Bayer FM, Bayer DM, Pumi G. Kumaraswamy autoregressive
moving average models for double bounded environmental
data. J Hydrol. (2017) 555:385–96. doi: 10.1016/j.jhydrol.2017.
10.006

9. Ospina R, Ferrari SL. Inflated beta distributions. Stat Pap. (2010) 51:111.
doi: 10.1007/s00362-008-0125-4

10. Cribari-Neto F, Santos J. Inflated Kumaraswamy distributions. Anais da
Academia Brasileira de Ciências. (2019) 91:955. doi: 10.1590/0001-37652019201
80955

11. Ospina R, Ferrari SL. A general class of zero-or-one inflated
beta regression models. Comput Stat Data Anal. (2012) 56:1609–23.
doi: 10.1016/j.csda.2011.10.005

12. Bayer FM, Cribari-Neto F, Santos J. Inflated Kumaraswamy regressions with
application to water supply and sanitation in Brazil. Stat Neerlandica. (2021) 75:
453–81. doi: 10.1111/stan.12242

Frontiers in PublicHealth 11 frontiersin.org

https://doi.org/10.3389/fpubh.2022.969777
https://www.frontiersin.org/articles/10.3389/fpubh.2022.969777/full#supplementary-material
https://ghc.fiu.edu/wpcontent/uploads/sites/38/2018/04/Supplement-Material.pdf
https://ghc.fiu.edu/wpcontent/uploads/sites/38/2018/04/Supplement-Material.pdf
https://doi.org/10.2147/IDR.S220183
https://doi.org/10.1080/0266476042000214501
https://doi.org/10.1007/s00362-011-0417-y
https://doi.org/10.1007/s11749-020-00700-8
https://doi.org/10.1002/bimj.201500030
https://doi.org/10.1007/s11749-008-0112-z
https://doi.org/10.1016/j.jhydrol.2017.10.006
https://doi.org/10.1007/s00362-008-0125-4
https://doi.org/10.1590/0001-3765201920180955
https://doi.org/10.1016/j.csda.2011.10.005
https://doi.org/10.1111/stan.12242
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Lobo et al. 10.3389/fpubh.2022.969777

13. Daga AP, Koga VL, de Matos CM, Perugini MR, Pelisson M, Kobayashi RK,
et al. Escherichia coli bloodstream infections in patients at a university hospital:
virulence factors and clinical characteristics. Front Cell Infect Microbiolgy. (2019)
9:191. doi: 10.3389/fcimb.2019.00191

14. Nocedal J, Wright SJ. Numerical Optimization. New York, NY: Springer
(1999).

15. Xiao Y, Wei Z, Wang Z. A limited memory BFGS-type method for
large-scale unconstrained optimization. Comput Math Appl. (2008) 56:1001–9.
doi: 10.1016/j.camwa.2008.01.028

16. Stasinopoulos DM, Rigby RA. Generalized additive models for location scale
and shape (GAMLSS) in R. J Stat Softw. (2008) 23:1–46. doi: 10.18637/jss.v023.i07

17. Schoenberg R. Optimization With the Quasi-Newton Method. Maple Valley,
WA: Aptech Systems, Inc. (2001).
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