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Objective: To explore the relationship between intestinal flora and obesity in

Tibetan children at di�erent altitudes.

Methods: Using16S rRNA gene sequencing results and blood lipid metabolism

indexes to study the characteristics of the intestinal flora present in faeces and

changes in blood lipid metabolism in obese children in Tibet who reside at

di�erent altitudes and to study correlations between blood lipid metabolism

indicators and the intestinal flora composition.

Results: The results showed the following. (a) The triglyceride (TG) and

low-density lipoprotein cholesterol (LDL-C) levels in the obesity groups were

higher than those in the normal-weight groups, and those in the high-altitude

obesity groups were lower than those in the low-altitude obesity groups.

(b) The 16S rRNA gene sequencing results showed that altitude a�ected the

composition and relative abundance of the gut microbiota. These parameters

were basically the same among the low-altitude groups, while they were

significantly lower in the high-altitude groups than in the low-altitude groups.

(c) Groups that lived at di�erent altitudes and had di�erent body weights

had di�erent dominant bacterial genera. Megamonas was closely related to

obesity, and its relative abundance in the low-altitude groups was higher

than that in the high-altitude groups. Prevotella was associated with altitude,

and its relative abundance in the high-altitude groups was higher than

that in the low-altitude groups. In addition, Prevotella elicited changes in

the abundance of Escherichia-Shigella. The lower prevalence of obesity

and incidence of intestinal inflammation in those living at high altitudes

were related to the abundance of Prevotella. (d) There were correlations

between the gut microbiota composition and lipid metabolism indicators. The

abundance of Romboutsia was positively correlated with TG and LDL-C levels

but negatively correlated with high-density lipoprotein cholesterol (HDL-C)

levels. The abundance of Akkermansia was negatively correlated with LDL-C

levels, and the abundance of Blautiawas negatively correlated with body mass

index (BMI) and LDL-C levels.
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Conclusions: The intestinal flora diversity varied by body weight and altitude,

with lower diversity in those at higher altitudes and with lower body weights.

Prevotella likely plays a role in suppressing obesity at high altitudes.
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Introduction

Obesity is a global health problem. Obesity is a complex,

multifactorial and largely preventable disease that affects

approximately one-third of people worldwide (1). Obesity

is linked to type 2 diabetes (2), respiratory disease (3),

cardiovascular disease (4, 5), female infertility (6, 7), and

nonalcoholic fatty liver disease (7), and it can also be a risk

factor for cancer (8). With improvements in living standards
and changes in diets, childhood obesity has become increasingly
prevalent worldwide, and children are becoming affected by
obesity at a younger age (9, 10). Jia et al. (11) found

that the prevalence of overweight and obesity in 6- to 17-

year-old children increased from 11.7 to 25.2% and from

2.8 to 10.1% from 1991 to 2011, respectively. Additionally,

the prevalence of obesity in children and adolescents in

China is rapidly increasing; it increased at a rate of 0.36%

annually from 2000 to 2011 (12). Many studies have shown

that obesity in childhood is associated with an increased

risk of obesity in adulthood (13, 14). This correlation

suggests that attention should be given to the problem of

childhood obesity.

Obesity is related to not only the imbalance of energy

intake but also genetics, the environment and lifestyle; however,

the underlying causes of obesity are still unclear (15). Among

the nongenetic factors associated with obesity, intestinal flora

composition has been recognized as a regulator of obesity, and a

correlation between changes in the intestinal flora composition

and body weight has been observed in a number of studies

conducted in animal models of obesity (16–18). However, the

status of the intestinal microbiome in children with obesity has

not been well studied. Several studies (19–21) have revealed that

the gut microbiome composition might be a factor that affects

obesity. Changes in the biological diversity of the intestinal flora

can affect the health and growth of the host to a large extent,

but the specific factor that regulates the gut microbiome remains

poorly understood.

The Tibetan Plateau is the highest plateau in the world,

with a mean elevation of 4,500m (22). It is characterized

by unique environmental conditions, such as low pressure,

low temperatures, low humidity and high radiation (23).

A high-altitude hypoxic environment causes disorder of the

intestinal flora; hypoxia causes inflammation, and inflammation

aggravates hypoxia in tissues. In a high-altitude hypoxic

environment, the intestinal mucosal barrier is highly prone

to damage. This damage causes the translocation of intestinal

bacteria and toxins, which causes immune system activation and

the release of inflammatory mediators, resulting in disruption

of the intestinal flora composition. Some studies have shown

that factors related to altitude and anoxic environments have

significant effects on the composition of the gut microbiome

(24), and high altitude may contribute to shaping the human

gut microbiota composition (25). The study by Santos (26)

showed that the rate of overweight/obesity in children who

reside at high altitudes is lower than that in children who

reside at low altitudes. The results of our research group’s

previous epidemiological survey showed that the prevalence of

overweight in 1,561 children aged 7–12 years who resided on

the Qinghai-Tibet Plateau was 8.5% (9.9% for boys and 7.1%

for girls), and the prevalence of obesity was 6.3% (6.0% for boys

and 6.5% for girls); these values were much lower than those

observed in the rest of China (11). Therefore, we sought to

examine whether altitude affects the gut microbiota composition

and thus influences obesity.

Materials and methods

Ethics statement

The experimental protocol was established according to the

ethical guidelines of the Declaration of Helsinki and approved by

the ethics committee of Qing Hai Provincial People’s Hospital,

Xining, China.

Study design

A cross-sectional study was designed to explore

the association between high altitude residency and

obesity with respect to lipid levels and gut microbiota

diversity by comparing two indigenous communities

who live at different altitudes. The study was approved

by the Human Rights Committee of the University of

Buenos Aires. Each parent provided written informed

consent after the study was explained and before it

was initiated.
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Participants

We enrolled 70 subjects in our research study. All the

participants were Tibetan children aged 7–12 years with the

same eating habits. Using simple random sampling, we selected

one primary school as a research site in each altitude area.

Based on the China Center for Disease Control and Prevention

(CDC) growth charts (27), we divided the subjects into four

groups: obese children (N = 15, high-altitude obese children,

HOB) and normal-weight children (N = 20, high-altitude

normal-weight children, HN) who lived at an altitude of

4,500m in Ma Duo County (34◦52′12
′′
N, 98◦15′36

′′
E), Guoluo

Tibetan Autonomous Prefecture, Qinghai–Tibet Plateau; and

obese children (N = 15, low-altitude obese children, LOB) and

normal-weight children (N = 20, low-altitude normal-weight

children, LN) who lived at an altitude of 1,500m in Hai Dong

County (36◦18′N, 102◦48′E), Hai Dong city, Qinghai–Tibet

Plateau. A detailed questionnaire that included questions about

age, sex, parental education level, history of breastfeeding, and

family history of obesity was administered.

Inclusion and exclusion criteria

The inclusion criteria were as follows: (a) age 7–12 years

old (28) and living in the research area for at least 5 years;

(b) attendance at the selected boarding school; and (c) a diet

containing grains, beef, and fresh vegetables. The exclusion

criteria were as follows: (a) use of antibiotics or probiotics within

the past 4 weeks; (b) gastrointestinal diseases (e.g., diarrhea)

within the past 4 weeks; (c) frequent constipation; or (d) failure

to agree to participate in this study. All the enrolled subjects were

healthy, with no history of gastrointestinal disease, liver disease,

hypertension, or diabetes, as demonstrated by their medical

histories and physical examinations.

Anthropometric measurements

Height, weight, waist circumference and hip circumference

were measured according to the protocol of the International

Society for the Advancement of Kinanthropometry (29). Height

was measured to the nearest 0.1 cm while the child stood upright

against a mounted stadiometer with bare feet. In addition

to height, waist and hip circumferences were measured. A

digital weighing scale (Huawei3Pro, ShengZhen, China) that

was calibrated regularly to the nearest 0.1 kg (after every 10

measurements) was used to measure body mass. We asked

children to wear only a t-shirt and pants. Based on the

height and body mass measurements, body mass index [BMI

(weight/height2)] was calculated using the following formula:

BMI = masskg/
[

height (m)
]2

Blood sample collection and analysis

Venous blood samples (5ml) were collected by

venepuncture into Vacutainer tubes, and plasma levels of

glucose (GLU), triglycerides (TGs), total cholesterol (TC),

high-density lipoprotein cholesterol (HDL-C) and low-

density lipoprotein cholesterol (LDL-C) were analyzed with

an LW-C400 automatic biochemical analyser (Landwind,

Shenzhen, China).

Stool samples

Using sterile fecal boxes, fresh fecal samples (5 g) were

collected from obese and control children within 2 h

of defecation. Fecal samples were quickly placed in an

ultralow temperature freezer (−80◦C) for further processing

and testing.

Determination of SCFAs contents in feces

Fresh fecal samples (2 g) were mixed with 3ml deionized

water and homogenized. The mixture was left for 20min at

room temperature and centrifuged at 14,000 rpm for 15min.

Then, the supernatant was transferred to new EP tubes. Then,

3ml deionized water was added to the precipitate, and all of

the above operations were repeated again. The extraction was

repeated twice, and the supernatants were combined. Next, it

was filtered through a 0.22µm filter. A 1ml sample solution

was injected into the GC system. Chromatographic analysis

of fecal samples was performed using ISQ Single Quadrupole

GC–MSMS (Thermo Fisher Scientific), Trace 1300 Series

Gas Chromatograph (Thermo Fisher Scientific) and TG-5MS

Separation column (30m × 0.32mm, 0.25µm). The injection

port temperature was 160◦C. The GC oven was programmed

with an increasing starting temperature from 50◦C for 1min

to 220◦C with 10◦C/min for 5min. A volume of 0.2 µl of

the sample was injected. Electron impact ionization (EI) was

used as an ionization source for the GC/MS analysis at 70 eV.

The injection temperature was 230◦C, and the transfer line and

ion source were set to 250◦C. XcaliburTM software (Thermo

Fisher Scientific) was used for the automatisation of the GC–

MS system and for data acquisition. Sample quantification

was obtained by means of acetic, propionic, and butyric

acid standard curves (Sinopharm). Construction of Standard

Curve The standard calibration curves were constructed using

seven concentrations: 9.325, 18.75, 37.5, 75, 150, 300, and

900µg/ml. The concentration of each sample was obtained

by the standard curve. The standard curves of acetic acid,

propionic acid, and butyric acid were Y = 3.796e5X + 9.363e4,

Y = 3.936e5X + 4.003e5, and Y = 1.366e6X + 1.151e6,

respectively (30, 31).
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DNA extraction

Total genomic DNA was extracted from the samples using

the acetyltrimethylammonium bromide (CTAB) method (28)

DNA concentration and purity were analyzed using 1% agarose

gels. According to the concentration, the DNA samples were

diluted to 1 ng/µl using sterile water. An equal volume of

1× loading buffer (containing SYBR green) was mixed with

the PCR products, and electrophoresis was performed on a

2% agarose gel to visualize the PCR products. PCR products

were mixed in equidensity ratios. Then, the PCR products were

purified with a Qiagen Gel Extraction Kit (Qiagen, Germany).

The DNA purity and concentration were analyzed by measuring

the optical density (OD) at wavelengths of 260 and 280 nm

with a NanoPhotometer R© spectrophotometer (Implen, Munich,

Germany) and then calculating the OD260:OD280 ratio. The

DNA concentrations were measured with the Qubit R© dsDNA

Assay Kit in a Qubit R© 2.0 Fluorometer (Life Technologies,

Camarillo, CA, United States).

Metagenomic bacterial 16S rRNA gene
sequencing assay

Based on many previous studies (32–34), we selected

the V3–V4 region to study the microbiome through

second-generation sequencing. 16S rRNA gene sequencing

was performed by Novogene Bioinformatics Technology

Co., Ltd., China. In brief, DNA samples were diluted

to a concentration of 1 ng/µl in sterile water and then

PCR amplified with the 515F/806R primer set (515F: 5′-

GTGCCAGCMGCCGCGGTAA-3′, 806R: 5′-XXXXXXGG

ACTACHVGGGTATCTAAT-3′). Sequencing libraries were

generated using the TruSeq R© DNA PCR-Free Sample

Preparation Kit (Illumina, USA) following the manufacturer’s

recommendations, and index codes were added. Library quality

was assessed with a Qubit@ 2.0 Fluorometer (Thermo Scientific)

and Agilent Bioanalyzer 2100 system. Finally, the library was

sequenced on the Illumina NovaSeq platform, and 250-bp

paired-end reads were generated.

Data analysis

Paired-end reads were assigned to samples based on their

unique barcodes and were truncated by removing the barcode

and primer sequences. Paired-end reads were merged using

FLASH (V1.2.7) (35), which is a very fast and accurate analysis

tool that was designed to merge paired-end reads when at least

some of the reads overlapped with the read generated at the

opposite end of the same DNA fragment. The splicing sequences

are called raw tags. Quality filtering of raw tags was performed

under specific filtering conditions to obtain high-quality clean

tags (36) according to the QIIME (V1.9.1) (37) quality control

process. The tags were compared with those in the reference

database (Silva138 database) using the UCHIME (28) algorithm

to detect chimeric sequences, and the chimeric sequences were

removed (38). Then, effective tags were finally obtained.

The data were analyzed and compared using SPSS version

27.0 (Chicago, Illinois, USA) and R software (v 2.15.3). Data

are summarized as the mean (standard deviation, SD)/median

(interquartile range, IQR) for continuous variables depending

on normality. Student’s t test was used to analyse significant

differences in age, sex, height, weight, waist circumference, hip

circumference, BMI and lipid levels among the schoolchildren

who lived at different altitudes. Analysis of variance (ANOVA)

was used to compare the content of short-chain fatty

acids (SCFAs) in feces among the four groups. Significant

differences in categorical variables are expressed as numbers

and percentages. The chi-square test was used to analyse count

data. The Kruskal–Wallis test was used to investigate significant

differences in operational taxonomic units (OTUs) and the

abundance-based coverage estimator (ACE), Chao 1, Simpson’s,

and Shannon’s indexes among the four groups. To correct for

type I errors, we applied the Bonferroni method for multiple

comparisons between two groups. Differences in microbial

community abundances between the obesity group and the

control group were analyzed using the Wilcoxon rank sum test,

and the significance of these differences was assessed using the

false discovery rate (FDR). Principal coordinate analysis (PCoA)

was performed using the WGCNA package, stat packages and

ggplot2 package in R software (v 2.15.3) to compare the

similarity of community structures. Multiresponse permutation

procedures (MRPPs) (39) were used to analyse differences in

the microbial community structure between groups. Linear

discriminant analysis effect size (LEfSe) was performed to

identify particular taxa with significantly different abundances

between the two groups. An unweighted pair-group method

with arithmetic means (UPGMA) clustering was performed

as a type of hierarchical clustering method to interpret the

distance matrix using average linkage by QIIME (2 v2022.2)

software. Correlations between blood lipid levels and intestinal

flora diversity were analyzed by Spearman’s correlation analysis.

p ≤ 0.05 indicated statistical significance.

Results

Basic participant information and serum
biochemical indexes

A total of 70 subjects were included in the high-altitude

groups (n = 35, normal/obese = 20/15) and low-altitude

groups (n = 35, normal/obese = 20/15; Table 1). There was no

significant difference in age, sex or height (p > 0.05; Table 1).

Body weight, BMI, waist circumference and hip circumference

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2022.963202
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Du et al. 10.3389/fpubh.2022.963202

TABLE 1 Characteristics of the participants by altitude.

Characteristics 1,500 m p-value 4,500 m p-value

LN (n = 20) LOB (n = 15) HN (n = 20) HOB (n = 15)

Age 9.20± 1.44 8.20± 1.24 0.094 8.70± 1.53 9.53± 1.06 0.079

Male 11 (55.0) 8 (53.3) 0.922 8 (40.0) 8 (53.3) 0.433

Female 9 (45.0) 7 (46.7) 12 (60.0) 7 (46.7)

Hight (cm) 135.6± 7.4 137.8± 9.7 0.450 135.8± 7.6 137.1± 6.5 0.618

Weight (kg) 25.8± 4.2 38.9± 5.0 0.000 24.9± 4.1 35.0± 4.5* 0.000

BMI (kg/m2) 13.9± 1.1 20.5± 2.2 0.000 13.5± 1.4 18.6± 1.8* 0.000

Waist (cm) 51.9± 4.6 70.5± 5.3 0.000 48.9± 5.4 61.6± 4.9* 0.000

Hip (cm) 57.3± 5.3 77.3± 5.1 0.000 55.0± 6.7 68.5± 4.9* 0.000

TC 3.9± 0.7 4.3± 0.9 0.116 4.5± 0.8 4.4± 0.5 0.814

TG 1.2± 0.3 1.6± 0.4 0.012 1.1± 0.4 1.4± 0.5 0.024

HDL 1.4± 0.9 1.1± 0.3 0.160 1.4± 0.3 1.1± 0.4 0.081

LDL 2.1± 0.4 2.3± 0.6 0.152 2.5± 0.6 2.8± 0.4* 0.068

GLU 4.8± 0.5 4.6± 0.5 0.224 4.8± 0.5 4.4± 0.9 0.122

LN means low-altitude obese children, LOB means low-altitude obese children, HN means high-altitude normal weight children, HOB means high-altitude obese children.

*Compared with LOB group (p < 0.05).

TABLE 2 Fecal microbial HiSeq sequencing data.

Group OTUs Shannon Simpson Chao1 ACE

LN 754.9± 201.39 5.99± 0.69 0.9± 0.09 1,002.2± 233.4 1,056.1± 245.7

LOB 688.1± 185.6 5.3± 0.8a 0.9± 0.06 a 935.2± 255.3 1,000.6± 267.0

HN 431.2± 26.9a 5.9± 0.4 0.9± 0.02 510.9± 50.0a 514.2± 45.0a

HOB 462.5± 71.9c 5.2± 0.4b 0.9± 0.03 b 533.8± 85.9c 539.5± 85.2c

p-Value 0.000 0.000 0.003 0.000 0.000

LN, low-altitude obese children; LOB, low-altitude obese children; HN, high-altitude normal weight children; HOB, high-altitude obese children. Kruskal-Wallis test was used to test the

significance of the OTUs, Shannon index, Simpson index, Chao 1, and abundance-based coverage estimator (ACE) index.
aCompared with LN group (p < 0.05).
bCompared with HN group (p < 0.05).
cCompared with LOB group (p < 0.05).

were significantly different between the obesity group and the

control group from the same altitude (p < 0.05; Table 1). There

was also a significant difference between the obese groups

from different altitudes (p < 0.05, Table 1). TG levels were

significantly different between the obesity group and the control

group from different altitudes (p < 0.05, Table 1), and LDL-C

levels were significantly different between the obese groups from

different altitudes (p < 0.05, Table 1).

High 16S rRNA gene sequence data
preprocessing and quality control

A total of 6,130,974 high-quality and classifiable raw reads

were obtained from 70 samples. We retained 5,991,598 clean

reads after removing the low-quality sequences. A total of

3,109,972 and 2,881,626 clean reads were obtained for the

high-altitude groups and the low-altitude groups, respectively.

Clustering analysis assigned the microbial sequences to the same

OTU if the samples had at least 97% similarity. We obtained

3,843 OTUs by high-throughput sequencing. These reads were

classified into 43 phyla, 101 classes, 226 orders, 331 families, 576

genera, and 340 species. The rarefaction curves showed that our

sequencing depth was sufficient (Supplementary Figure S1).

α-Diversity analysis

α-diversity analysis was performed using four indexes,

namely, OTUs and the Shannon index, Simpson index, Chao 1

index, and ACE index. There were highly significant differences

in all four indexes among the four groups according to the

Kruskal–Wallis test (p < 0.05; Table 2). The Shannon and

Simpson indexes were significantly different in the different
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TABLE 3 MRPP analysis of di�erences in microbial community

structure between groups.

Group A Observed-delta Expected-delta p-value

LN-LOB 0.016 0.505 0.513 0.015

HN-HOB 0.048 0.556 0.584 0.001

LN-HN 0.050 0.486 0.511 0.001

LOB-HOB 0.073 0.588 0.634 0.001

Multiresponse permutation procedures (MRPP) analysis of differences in microbial

community structure between group, A = 1 – (observed-delta/expected-delta), the

smaller the Observe Delta value, the smaller the difference within the group, and the

larger the Expect delta value, the larger the difference between the groups. A> 0, indicates

that the difference between groups is greater than the difference within the group, A <

0, indicates that the difference within the group is greater than the difference between

the groups.

LN, low-altitude obese children; LOB, low-altitude obese children; HN, high-altitude

normal weight children; HOB, high-altitude obese children.

BMI groups from the same altitude according to the Bonferroni

multiple comparisons test (p < 0.05; Table 2). The OTUs and

Chao 1 and ACE indexes were significantly different between

groups with the same BMI who were from different altitudes

according to the Bonferroni multiple comparisons test (p< 0.05;

Table 2).

β-Diversity analysis

β-diversity analysis was used to evaluate differences

in species composition among the samples from different

groups. Fecal microbial OTU data were examined by principal

coordinate analysis (PCoA) to evaluate similarities among

the four groups. Multiresponse permutation procedures

(MRPPs) were used to analyse differences in microbial

community structures between groups. The results showed

that the groups from different altitudes had different

microbiota compositions. The LN and LOB groups had

similar microbiota compositions, and the sequences

could be grouped into the same clusters, whereas the

HN and HOB groups did not have similar microbiota

compositions, and the sequences could not be grouped

into the same clusters. In addition, the results revealed

obvious differences in the community compositions and

structures in the groups from different altitudes (Table 3 and

Figure 1).

Relative abundance analysis

In this study, we found 484 common OTUs among the

four groups, and there were 357, 164, 266, and 313 unique

OTUs in the LN, LOB, HN, and HOB groups, respectively.

The relative abundance of the microbiota was lowest in the

FIGURE 1

Beta diversity analysis based on UniFrac analysis. Red dot

represents the high altitude obese children (HOB) group. Blue

dot represents the high altitude normal weight children (HN)

group. Green dot represents the low altitude obese children

(LOB) group. Orange dot represents the low altitude normal

weight children (LN) group. Circles in red, blue, orange, and

green represent di�erent periodontal bacterial community

clusters, respectively. LN, low-altitude obese children; LOB,

low-altitude obese children; HN, high-altitude normal weight

children; HOB, high-altitude obese children.

LOB group (Figure 2). Further analysis of the microbiota at

the phylum, class, genus and species levels in the four groups

showed that five of the top 10 most dominant bacteria at any

level were the same among the four groups. The microbiota

compositions in all four groups were dominated by the

following phyla (order: LN, LOB, HN, HOB): Firmicutes

(61.2, 60.1, 60.6, and 53.2%, respectively); Bacteroidota

(22.2, 15.4, 28.0, and 30.4%, respectively); Actinobacteriota

(11.3, 15.7, 8.5, and 9.9%, respectively); Proteobacteria (3.0,

7.2, 0.9, and 4.2%, respectively); and Verrucomicrobiota

(0.3, 0.05, 0.7, and 0.2%, respectively; Figure 3). At the

phylum level, the relative abundance of Firmicutes (F) was

higher than that of Bacteroides (B) in the obese groups.

Bacteroides abundances and F/B ratios were significantly

different among the four groups (Supplementary Table S1).

At the phylum level, the abundances of Bacteroidota,

Proteobacteria, and Verrucomicrobiota were significantly

different among the four groups (Table 4). At the class level, the

abundances of Clostridia, Negativicutes, Gammaproteobacteria,

Bacteroidia, Actinobacteria, and Verrucomicrobiae were

significantly different among the four groups (Table 4). At

the genus level, the abundances of Megamonas, Prevotella,

Akkermansia, and Bifidobacterium were significantly different

among the four groups (Table 4). At the species level, the

abundances of Romboutsia, Bacteroides caccae, and Escherichia

coli were significantly different among the four groups

(Table 4).
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FIGURE 2

(A–E) The comparison between the two groups was done using the Venn chart and multiple groups using petal chart. Di�erent colored circles

represent di�erent groups. Overlapping parts of the circles represent common OTUs between two groups, none overlapping parts represent

unique OTUs. LN, low-altitude obese children; LOB, low-altitude obese children; HN, high-altitude normal weight children; HOB, high-altitude

obese children.

FIGURE 3

Community composition of fecal microbiota in four groups. In the bar chart, each bar represents the average relative abundance of each

bacterial taxon. The taxa with high relative abundances at the phylum level (top 10, A), class level (top 10, B), genus level (top 10, C) and species

level (top 10, D) are shown. LN, low-altitude obese children; LOB, low-altitude obese children; HN, high-altitude normal weight children; HOB,

high-altitude obese children.
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TABLE 4 Comparison of dominant OTUs in four groups at di�erent level.

Level OTUs LN LOB HN HOB p-value

Phylum Firmicutes 61.2± 12.3 60.1± 9.3 60.5± 7.8 53.3± 11.9 0.120

Bacteroidota 22.2± 13.9 15.4± 10.0 28.0± 9.7 30.4± 13.3 0.003

Actinobacteriota 11.3± 8.9 15.7± 10.4 8.5± 5.0 9.9± 1.0 0.115

Proteobacteria 3.3± 0.3 7.2± 0.8 1.0± 0.9 4.2± 0.4 0.000

Verrucomicrobiota 0.3± 0.06 0.05± 0.001 0.7± 0.01 0.2± 0.01 0.002

Class Clostridia 53.8± 13.5 46.6± 11.9 50.3± 9.2 38.7± 12.7 0.004

Bacteroidia 22.2± 13.9 15.4± 10.0 28.0± 9.7 30.4± 13.3 0.003

Negativicutes 3.4± 3.8 8.3± 13.8 3.2± 6.0 9.8± 13.1 0.021

Actinobacteria 8.8± 9.0 13.9± 9.5 6.1± 4.0 8.1± 10.0 0.021

Gammaproteobacteria 2.9± 3.3 7.1± 8.4 0.9± 1.1 3.8± 4.9 0.000

Verrucomicrobiae 0.3± 0.6 0.1± 0.1 0.6± 0.2 0.2± 0.7 0.000

Genus Prevotella 4.5± 13.4 0.8± 2.0 9.4± 11.2 16.8± 15.0 0.000

Megamonas 0.2± 0.2 6.0± 14.4 0.02± 0.04 2.9± 6.0 0.000

Bifidobacterium 8.7± 9.0 13.8± 9.5 6.0± 4.0 7.7± 10.1 0.015

Bacteroides 13.3± 9.1 10.9± 7.1 11.4± 7.0 9.5± 10.4 0.284

Faecalibacterium 11.5± 5.5 10.6± 6.3 10.4± 4.2 12.6± 8.9 0.942

Akkermansia 0.3± 0.06 0.05± 0.001 0.7± 0.01 0.2± 0.01 0.002

Dialister(g) 2.7± 0.4 1.6± 0.15 2.6± 0.59 4.3± 0.55 0.473

Species Faecalibacterium 6.6± 3.7 6.9± 4.7 6.3± 2.8 9.7± 8.1 0.965

Romboutsia 2.5± 1.4 4.1± 5.9 1.1± 0.8 1.0± 0.8 0.000

Escherichia-coli 1.7± 2.2 5.3± 7.4 0.3± 0.2 1.0± 1.5 0.000

Bacteroides-caccae 1.7± 3.8 0.3± 0.3 0.7± 0.5 1.7± 5.2 0.006

Bacteroides-uniformis 2.1± 1.7 1.3± 1.6 3.3± 4.5 1.2± 1.9 0.096

LN, low-altitude obese children; LOB, low-altitude obese children; HN, high-altitude normal weight children; HOB, high-altitude obese children. Values are mean± SD.

Kruskal–Wallis test was used to test the significance of different microbiota in four groups.

Dominant gut microbiota composition
between children living at di�erent
altitudes

We further analyzed differences in the microbiota

composition between the two different groups at the genus

level using the Metastat analysis method. First, between groups

from the same altitude, there were significant differences in the

abundances of Akkermansia, Streptococcus, Escherichia-Shigella,

Megamonas and Sarcina between the LN and LOB groups

(p < 0.05; Figure 4A), and there were significant differences

in the abundances of Akkermansia, Ruminococcus torques,

Holdemanella, Barnesiella, Fusicatenibacter, Megasphaera,

Subdoligranulum, Blautia, Eubacterium hallii, Alistiples,

Parabacteroides, Ruminococcus, Escherichia-Shigella and

Megamonas between the HN and HOB groups (p < 0.05;

Figure 4B). Second, between groups with the same BMI,

the abundances of Eubacterium hallii, Clostridium sensu

stricto, Akkermansia, Ruminococcus torques, Streptococcus,

Escherichia-Shigella, Holdemanella, Klebsiella, Romboutsia,

Lachnoclostridium, Parabacteroides, Citrobacter, Megamonas,

Sarcina, Catenibacterium, Alloprevotella, Succinlvibrlo

and Megasphaera were significantly different between

the HN and LN groups (p < 0.05; Figure 4C), and the

abundances of Blautia, Eubacterium hallii, Holdemanella,

Klebsiella, Romboutsia, Fusicatenibacter, Lachnoclostridium,

Ruminococcus, Streptococcus, Escherichia-Shigella, Sarcina,

Methanobrevibacter, Catenibacterium, Prevotella, Succinlvibrlo,

Megasphaera, Akkermansia, Paraprevotella and Alloprevotella

(p < 0.01) were significantly different between the HOB and

LOB groups (p < 0.05; Figure 4D). In conclusion, we found

that Akkermansia, Holdemanella, Streptococcus, Prevotella,

Escherichia-Shigella, and Megamonas were strongly associated

with BMI, and these six members of the microbiota plus Sarcina

and Catenibacterium were associated with altitude.

Di�erences in the gut microbiota
composition between the di�erent BMI
groups

LEfSe was performed to identify particular taxa with

significantly different abundances between groups. The results

of the UPGMA analysis showed that there were differences
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FIGURE 4

(A–D) MetaStats analysis, in which the abundances of the 35 most significantly di�erent taxa in the two groups are shown in heatmap. Purple

dot represents a high significant di�erence (p < 0.01), red dot represents a significant di�erence (p < 0.05), and yellow dot represents no

significant di�erence (p > 0.05). LN, low-altitude normal weight children; LOB, low-altitude obese children; HN, high-altitude normal weight

children; HOB, high-altitude obese children.

in the abundances of the genera Bifidobacterium, Escherichia-

Shigella, Blautia, Romboutsia, Streptococcaceae, Megasphaera,

and Prevotella in obese children living at different altitudes.

Bifidobacterium, Escherichia-Shigella, Blautia, Romboutsia, and

Streptococcaceae were highly abundant in children living at

low altitudes, while Megasphaera and Prevotella were abundant

in children living at high altitudes. These results indicated

that these microbes were closely related to altitude when

obesity conditions were the same. We further analyzed

intestinal differences in normal-weight children living at

different altitudes. Prevotella and Holdemanella were highly

abundant at high altitudes. It was interesting to further confirm

that Prevotella was positively correlated with high altitude

(Figure 5).

Correlations between the gut microbiota
composition and BMI, TC, TG, HDL-C,
and LDL-C levels

A Spearman’s correlation matrix was generated to analyse

correlations between BMI, TC, TG, HDL-C, and LDL-C levels

and the dominant genera in the gut microbiota in all children.

Significant relationships were observed between the gut

microbiota composition and BMI, TC, TG, and LDL-C levels.

Correlation analysis revealed that the abundances of the genera

Methanobrevibac, Sarcina, Succinivibrio, Catenibacterium,

Alloprevotella, Lactobacillus, Megasphaera, Holdemanella

and Prevotella were positively correlated with BMI (p <

0.05; Figure 6), and the abundances of Citrobacter, Klebsiella,

Lachnoclostridum, Clostridium-sens, X. Eubacterium.-h,

Fusicatenibacter, Blautia, Streptococcus, Escherichia. Shige,

Romboutsia, Bifidobacterium and Megamonas were negatively

correlated with BMI (p < 0.05; Figure 6). The abundance of

Megasphaera was positively correlated with the TC level (p

< 0.05; Figure 6), and the abundances of Clostridium and

Paraprevotella were negatively correlated with the TC level (p

< 0.05; Figure 6). The abundances of Sarcina, Megasphaera

and Holdemanella were positively correlated with the TG level

(p < 0.05; Figure 6), and the abundances of Fusicatenibacter

and Romboutsia were negatively correlated with the TG level

(p < 0.05; Figure 6). The abundances of Citrobacter, Klebsiella,

Subdoligranulum and Romboutsia were positively correlated

with the HDL-C level (p < 0.05; Figure 6), and the abundances

of Sarcina, Scuccinivibrio, Catenibacterium, Holdemanella and

Prevotella were negatively correlated with the HDL-C level

(p < 0.05; Figure 6). The abundances of Succinivibrio and

Megasphaera were positively correlated with the LDL-C level (p

< 0.05; Figure 6), and the abundances of Clostridium_sens, X.

eubacterium._h, Akkermansia, Paraprevotella, Alistipes, Blautia,

and Romboutsiawere negatively correlated with the LDL-C level

(p< 0.05; Figure 6). In addition, the difference in the abundance

of Prevotella was positively correlated with the difference in the

LDL level between the obese groups from different altitudes

(Figure 6).
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FIGURE 5

Cladogram based on LEfSe analysis showing the di�erent abundance bacteria between two groups. Comparison between high-altitude obese

children (HOB) and low-altitude obese children (LOB) (A). Comparison between high-altitude normal weight children(HN) and low-altitude

normal weight children (LN) (C), with a linear discriminant analysis (LDA) threshold of 4 (B,D). The bacteria with significantly di�erent abundance

at di�erent taxonomic levels among groups were highlighted by colored circles and shadings.

FIGURE 6

Spearman’s association analysis of bacterial genera and BMI, TC, TG, HDL, and LDL. r indicates Spearman’s correlation coe�cient. Cells are

colored based on the value of r between significantly altered genera and body mass index (BMI), total cholesterol (TC), tri glyceride (TG),

high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). Red represents a significantly positive correlation,

blue represents a significant negative correlation, and yellow represents no significant correlation. *p < 0.05; **p < 0.01.
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FIGURE 7

Functional profiles of the fecal microbial communities in four groups. The 35 most-abundant pathways at the third level of KEGG pathways are

shown in the heatmap. LN, low-altitude normal weight children; LOB, low-altitude obese children; HN, high-altitude normal weight children;

HOB, high-altitude obese children.

Functional prediction of gut microbiota
in obese Tibetan children living at
di�erent altitudes

To further explore the function of gut microbes in children

at different altitudes, Tax4Fun was used to analyse the functional

prediction of the fecal microbiota in different groups. Figure 7

shows the 35 most abundant pathways at the third level of

KEGG pathways. Of these 35 pathways, 10 pathways (amino

sugar and nucleotide sugar metabolism; quorum sensing;

transcription factors; ABC transporters; transporters; two

component system; starch and sucrose metabolism; galactose

metabolism; secretion system, bacterial motility proteins.) were

enriched in the fecal microbial community of the LOB groups.

Eighteen pathways (ribosome biogenesis; prokaryotic defense

system; aminoacyl tRNA biosynthesis; transfer RNA biogenesis;

DNA replication proteins; purine metabolism; glycine, serine

and threonine metabolism; carbon fixation pathways in

prokaryotes; pyrimidine metabolism; amino acid-related

enzymes; ribosome; chromosome and associated proteins; DNA

repair and recombination proteins; mitochondrial biogenesis;

exosome; chaperones and folding catalysts; alanine, aspartate

and glutamate metabolism; peptidases.) were enriched in the

HOB groups, and three pathways (glycolysis/gluconeogenesis,

butanoate metabolism and pyruvate metabolism) were enriched

in the HN groups. The KEGG pathways for predicting

the function of gut microbiota were mainly expressed in

four aspects: metabolism, genetic information processing,

environmental information processing and cellular processes.

The differences in these pathways may be related to the

influence of altitude on the abundance of intestinal flora.

In addition, the prominence of the butyric acid metabolic

pathway in normal weight children at high altitude has attracted

our attention.
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TABLE 5 Comparison of SCFAs in the four groups.

SCFAs LN LOB HN HOB F p-value

Acetate 1,919.5± 76.5bcd 2,008.9± 61.7abd 2,121.70± 102.6acd 2,432.2± 88.5abc 113.10 0.000

Propionate 1,517.5± 274.5cd 1,181.8± 46.7ab 1,428.2± 239.9c 1,332.0± 252.7a 6.69 0.001

Butyrate 1,175.3± 67.6bcd 1,250.9± 123.2abcd 1,528.8± 82.4a 1,516.7± 87.8a 73.70 0.000

LN, low-altitude obese children; LOB, low-altitude obese children; HN, high-altitude normal weight children; HOB, high-altitude obese children.

Values are mean± SD. One-way ANOVA test was used to test the significance of different microbiota in four groups.
aCompared with LN group (p < 0.05).
bCompared with HN group (p < 0.05).
cCompared with LOB group (p <0.05).
dCompared with HOB group (p < 0.05).

TABLE 6 Correlation between SCFAs and blood lipids.

SCFAs TC TG LDL HDL

r p-value r p-value r p-value r p-value

Acetate 0.109 0.369 0.021 0.865 0.350 0.003 −0.124 0.306

Propionate −0.099 0.414 −0.167 0.167 −0.124 0.306 0.205 0.089

Butyrate 0.269 0.025 −0.292 0.011 0.361 0.002 0.026 0.831

Correlation analysis between KEGG
pathways and blood lipids

Through KEGG pathway annotation and enrichment

analysis, the results showed that the butyric metabolism pathway

was significantly different in the four groups, with the highest

abundance in the HN group, followed by the LN group, and the

lowest abundance in the LOB group (Figure 7). Combined with

this feature, we measured the short-chain fatty acids in the feces

of different groups, and the results showed that acetic, propionic

and butyric acid levels were significantly different among the

four groups (Table 5). We further carried out a correlation

analysis between blood lipids and the content of short-chain

fatty acids, and the results showed that acetic acid was correlated

with LDL, while butyric acid was correlated with TC, TG, and

LDL (Table 6).

Discussion

Obesity is linked to many chronic diseases (2–5). The

steadily increasing prevalence of excess body weight among

children and adolescents is currently one of the greatest

challenges for public health authorities worldwide (40–42).

Many studies have shown that obesity in childhood is associated

with an increased risk of obesity in adulthood. This situation

reminds us to pay attention to the problem of childhood obesity.

The potential link between obesity and the composition of the

gut microbiota has attracted the attention of many researchers.

Many studies have shown that disruption of the gut microbiota

composition may be an important cause of obesity (16, 43, 44).

However, the gut microbiota is also affected by altitude, and the

low prevalence rate of obesity in high-altitude areas is of interest

(45, 46). Short or chronic exposure of humans or animals

to hypoxic conditions (the most typical characteristic of high

altitude) can affect the composition of the intestinal microbiota

(47–50). In this study, we focused on the composition, structure

and diversity of the gut microbiota in obese Tibetan children

aged 7–12 years who lived at different altitudes. By exploring

the intestinal bacteria that affect weight change in high-

altitude areas, we have provided evidence to guide early obesity

prevention measures in the future. In addition, we also analyzed

correlations between the gut microbiota composition and lipid

metabolism indicators.

Obesity is a health problem among children that contributes

to the occurrence of lipid disorders and abnormal blood

pressure. It is often accompanied by increases in TC, TG, and

LDL-C levels and decreases in HDL-C levels (51). We obtained

similar results in our study. Obesity can also cause changes in the

gut microbiota composition. In recent years, changes in bacterial

strains in the human intestine have been proposed to play a

causative role in obesity (52–54). Research by Ley et al. (55)

showed that obesity affects the diversity of the gut microbiota,

and the relative proportion of Bacteroidetes is decreased in

obese people compared with that in lean people (16). These

authors also obtained the same results in mice (55), and we

drew the same conclusion. We found that at the phylum level,

the relative abundance of Firmicutes (F) was higher than that

of Bacteroides (B) in the obese groups. The F/B ratios were

significantly different between the obese groups. Megamonas is

a genus of Firmicutes. In our study, Megamonas was present

in only the obese groups, and the relative abundance in the
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LOB group was higher than that in the HOB group and was

positively correlated with BMI and negatively correlated with the

LDL-C level. A study conducted in Nanjing (sea level), China,

showed that height, weight, age, BMI, TG levels and creatinine

levels in children were positively correlated with the relative

abundance of Megamonas and that TC, HDL-C and LDL-C

levels were negatively correlated with the relative abundance

of Megamonas (56). Otoniel Maya-Lucas’ research also showed

that the relative abundance of Megamonas in obese Mexican

people living at an altitude of 2,200mwas correlated with height,

weight and BMI (57). Therefore, we concluded thatMegamonas

is associated with obesity. In addition, it has been reported that

Megamonas can ferment glucose to form acetate and propionate,

which have been shown to be substrates for lipogenesis and

cholesterol formation as energy sources for the host (58). This

further explains the high relative abundance of Megamonas in

obese subjects. These findings are consistent with our findings.

The results of Ma (59) showed that the relative abundance of

Megamonas in people in the plains area was higher than that in

people in the high-altitude area, consistent with the conclusion

of our study. The reason may be related to the impairment of

gastrointestinal mucosal barrier function caused by hypoxia, but

research on the mechanism is still incomplete.

The gut microbiota is affected by altitude. A high-altitude

environment is characterized by low pressure, hypoxia, strong

radiation, cold temperatures, etc. Hypoxia can affect the

behavior and activities of human beings (60). Hypoxia may

also alter the composition of the gut microflora (61), and

substantial evidence has implicated both aerobic and facultative

anaerobic intestinal bacteria in the dynamic configuration and

stability of the anaerobic environment inside the gut (62,

63). Li et al. (25) compared the gut microbiomes of people

living at different altitudes and found that the composition

of the gut microbiota in individuals living at high altitudes

was lower than that in individuals living on the plains. In

our study, we found that the abundances of Akkermansia,

Holdemanella, Streptococcus, Prevotella, Escherichia-Shigella,

Megamonas, Sarcina and Catenibacterium were associated with

altitude. Akkermansia, Holdemanella, Prevotella, Sarcina, and

Catenibacterium were highly abundant in those living at

high altitudes, while Streptococcus, Escherichia-Shigella, and

Megamonas were present at significant levels in those living at

low altitudes. Of these, Prevotella deserves additional attention.

The relative abundance of Prevotella in the high-altitude groups

was significantly higher than that in the low-altitude groups.

However, when comparing the groups with different BMIs at

the same altitudes, the abundance of Prevotella was higher in

the HOB group than in the HN group, while the opposite

was observed between the low-altitude groups. This study has

shown (64) that the Tibetan microbiome is characterized by a

relative abundance of Prevotella in individuals living at high

altitudes (3,600m). This difference is likely related to dietary

structure. The distribution and prevalence of Prevotella in the

human gut is influenced by a variety of factors, including

body condition, lifestyle, sex and age (65). Some scholars (66)

have stated that the abundance of Prevotella is associated

with the consumption of a diet rich in carbohydrates. The

Qinghai-Tibet Plateau is rich in highland barley (a high-fiber

wheat), which is the main source of carbohydrates among local

people. Other studies have shown (67) that the abundance of

Prevotella is positively correlated with the consumption of high-

fiber foods. However, in our study, to focus on the effect of

hypoxia on the gut microbiome, we standardized the diets of the

study subjects. High-altitude environments may place greater

energy demands on mammals due to thermoregulatory stress

than low-altitude environments (68–70). Many anaerobic gut

bacteria produce short-chain fatty acids (SCFAs) as end products

of polysaccharide fermentation (71). A greater abundance

of SCFA-producing obligate anaerobes has been reported in

populations who live at high altitudes (25, 64, 72–74) A hypoxic

environment leads to the enrichment of facultative anaerobic

bacteria (Prevotella) that produce SCFAs and enhances the

ability of intestinal bacteria to produce SCFAs to provide more

energy, regulate blood pressure, and maintain the stability of

the intestinal environment in people who live in high-altitude

regions (75). The relative abundance of Prevotella increases

with altitude, and this change could be explained by differences

in diet, climate, atmospheric oxygen, or any other variable

correlated with altitude. Moreno’s study (76) provided strong

evidence that reduced atmospheric oxygen alone caused an

increase in Prevotella abundance. A previous study found

that high-altitude exposure altered the gastrointestinal system,

causing pathological conditions such as upper gastrointestinal

bleeding, ulcers, vomiting, diarrhea, and anorexia. This may be

the cause of hypobaric hypoxia-induced gut microbial dysbiosis,

which can be ameliorated by prebiotic/probiotic treatment

(77). Another study explored the relationship between the

hypothalamic-pituitary-thyroid (HPT) axis and gut microbiota

composition under hypoxic conditions by simulating the effects

of 5,500m altitude on the HPT axis and gut microbiota

in rats. The study found that compared with those in the

normoxia group, there were significant differences in the relative

abundances of 12 genera in the chronic hypoxia exposure group;

thyrotropin-releasing hormone (TRH) and thyroid-stimulating

hormone (TSH) concentrations were significantly lower in the

hypoxia group than in the control group, and TT4 and TT3

concentrations were significantly higher in the hypoxia group

than in the control group. There were significant correlations

between the differential bacteria and HPT axis hormones in

serum, and Prevotella was significantly negatively correlated

with TSH (78). These results provide evidence that the increase

in Prevotella abundance at high altitudes may be driven by

lower atmospheric oxygen levels. Previous studies have shown

that the biodiversity and abundance of the microbiota in obese

individuals often differ from those in normal individuals. Our

study found that the relative abundance of Prevotella in the
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obese group was lower than that in the normal group on the

plain, but the opposite was true at high altitudes. Duan et al.

(79) used 16S rRNA sequencing to compare the intestinal flora

compositions of 21 obese individuals from Shandong Province

(China) and 21 normal individuals from Beijing to study the

characteristics of the intestinal flora in the obese population.

The team found that at the species level, there were significant

differences in nine species between the control and obese groups.

The abundance of Prevotella was significantly increased in the

obese population. This was consistent with our results in the

groups at high altitudes. Barczyńska R studied the relationship

between intestinal bacterial composition and weight in 20 obese

children and 20 normal weight children and found that the

Prevotella abundance was lower in the fecal microflora of obese

children, with an average 30% higher abundance of Prevotella

in normal weight children than in obese children. However,

the difference was significant in only obese children and not

in overweight children (80). Fernández-Navarro et al. (81)

analyzed the interrelationships among obesity, diet, oxidative

stress, inflammation and the intestinal flora composition in

68 healthy adults and found that the lower abundance of

Prevotella in the obese group was associated with elevated

proinflammatory and pro-oxidative states. Many other studies

have also confirmed the effect of obesity on the intestinal flora

composition and the low abundance of Prevotella in obese

individuals (82–84). In our study, we found that the abundance

of Escherichia-Shigellawas also related to altitude. A comparative

analysis of the four groups revealed that Escherichia-Shigella

exhibited the lowest relative abundance in the HN group and the

highest relative abundance in the LOB group, and the difference

was statistically significant. Escherichia-Shigella is a member

of the gram-negative Enterobacteriaceae family and causes

enterobacteriosis, usually resulting in diarrhea and dysentery

(85). Escherichia-Shigella is transmitted via the fecal-oral route

(86), and poor water supply, lack of basic sanitation and

unhygienic behavior have all been associated with Escherichia-

Shigella infection. The low economic level and harsh climatic

conditions of the Tibetan Plateau result in conditions that

are favorable for the spread of Escherichia-Shigella. However,

our results showed a low relative abundance of Escherichia-

Shigella at high altitudes. Successful invasion of Escherichia-

Shigella requires overcoming two gut-specific barriers: the

microbiota and the mucus layer. Related studies have suggested

that a Prevotella-rich microbiota may have a protective effect

against Escherichia-Shigella infection (87). This explains the

low Escherichia-Shigella abundance in high-altitude populations.

In addition, the higher the inflammation score is, the higher

the Escherichia-Shigella abundance (88). In a mouse study,

Escherichia-Shigella abundance was positively correlated with

blood lipid, glucose and insulin levels (89). This finding indicates

that in theHOB group, a greater abundance of Prevotella reduces

the inflammatory response caused by obesity. All of these

results suggest that the Escherichia-Shigella abundance is higher

in obese people than in normal-weight people. Therefore, we

believe that the reason for the low prevalence of obesity in high-

altitude areas may be related to the abundance of Prevotella.

Finally, we found a correlation between the gut microbe

composition and blood lipid levels. Our results showed that the

abundances of Sarcina, Megasphaera and Holdemanella were

positively correlated with the TG level, while the abundances

of Fusicatenibacter and Romboutsia were negatively correlated

with the TG level. The abundances of Succinivibrio and

Megasphaera were positively correlated with the LDL-C level,

while the abundances of Clostridium_sens, X. eubacterium._h,

Akkermansia, Paraprevotella, Alistipes, Blautia and Romboutsia

were negatively correlated with the LDL-C level. Fu et al.

(90) showed that the abundances of Bacteroides, Akkermansia,

Desulfovibrio and Parabacteroides were negatively correlated

with GLU, TG, TC and HDL-C levels and positively correlated

with the LDL-C level. The abundance of Ruminiclostridium

was positively correlated with GLU, TG, TC and HDL-C levels

but negatively correlated with the LDL-C level. Our results are

somewhat similar. In this study, we found that although obese

children living at a high altitude also had an abnormal BMI

and LDL-C level, their blood lipid levels were lower than those

in children living at a low altitude. What is the relationship

between blood lipid levels and gut microbe composition in

populations who live at high altitudes? In our study, we found

that the abundance of Faecalibacterium was higher in the high-

altitude groups, especially in the HOB group. Faecalibacterium

belongs to Firmicutes, which is fermented and metabolism

to produce butyric acid in the intestine. Butyrate provides

energy for the body through fatty acid oxidation (91). In

this study, we conducted a study on the correlation between

butyrate and blood lipids and found that butyrate was correlated

with TC, TG, and LDL and negatively correlated with TC,

indicating that butyrate has a certain regulatory effect on blood

lipids. A study has shown that butyrate is involved in diet-

induced obesity and insulin resistance (92) by downregulating

the expression and activity of PPAR-γ, promoting a change

from lipogenesis to lipid oxidation (93). This is consistent with

our results. At the same time, we found that the butyric acid

metabolic pathway has a high abundance in normal weight

children through the KEGG metabolic pathway and the highest

abundance in normal weight children who live in high altitude.

Therefore, we inferred that altitude changed the abundance

of Faecalibacterium, which further affected the production

of butyrate.

Conclusions

In this study, we found that the TG and LDL-C levels in

the obesity groups were higher than those in the normal-weight

groups, and those in the high-altitude obesity groups were lower

than those in the low-altitude obesity groups. Altitude affects
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the composition and relative abundance of the gut microbiota.

Groups living at different altitudes and with different body

weights have their own dominant bacterial genera. Megamonas

was closely related to obesity, and Prevotella was associated with

altitude. Prevotella had an inhibitory effect on the abundance

of Escherichia-Shigella. There were correlations between the gut

microbiota composition and lipid metabolism indicators, and

short-chain fatty acids play an important role in lipid regulation.
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