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Currently, there are no particularly e�ective biomarkers to distinguish

between latent tuberculosis infection (LTBI) and active pulmonary

tuberculosis (PTB) and evaluate the outcome of TB treatment. In this

study, we have characterized the changes in the serum metabolic profiles

caused by Mycobacterium tuberculosis (Mtb) infection and standard

anti-TB treatment with isoniazid–rifampin–pyrazinamide–ethambutol

(HRZE) using GC-MS and LC-MS/MS. Seven metabolites, including

3-oxopalmitic acid, akeboside ste, sulfolithocholic acid, 2-decylfuran (4,8,8-

trimethyldecahydro-1,4-methanoazulen-9-yl)methanol, d-(+)-camphor, and

2-methylaminoadenosine, were identified to have significantly higher levels

in LTBI and untreated PTB patients (T0) than those in uninfected healthy

controls (Un). Among them, akeboside Ste and sulfolithocholic acid were

significantly decreased in PTB patients with 2-month HRZE (T2) and cured

PTB patients with 2-month HRZE followed by 4-month isoniazid-rifampin

(HR) (T6). Receiver operator characteristic curve analysis revealed that the

combined diagnostic model showed excellent performance for distinguishing

LT from T0 and Un. By analyzing the biochemical and disease-related

pathways, we observed that the di�erential metabolites in the serum of

LTBI or TB patients, compared to healthy controls, were mainly involved in

glutathione metabolism, ascorbate and aldarate metabolism, and porphyrin

and chlorophyll metabolism. The metabolites with significant di�erences

between the T0 group and the T6 group were mainly enriched in niacin and

nicotinamide metabolism. Our study provided more detailed experimental

data for developing laboratory standards for evaluating LTBI and cured PTB.
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Introduction

Tuberculosis (TB) is one of the most common

communicable diseases worldwide, until the coronavirus,

TB was the main cause of death from a single infectious

agent. According to the WHO Global TB Report 2021, about

1.5 million people died from TB in 2020. A quarter of the

global population was latently infected with Mycobacterium

tuberculosis (Mtb) but remains asymptomatic, 5–15% of those

individuals are likely to develop active TB (1). Early diagnosis

has been recognized as the pillar to achieve the end of the TB

epidemic; thus, the development of accurate, rapid, and easy

diagnostic tools to improve diagnosis is required urgently.

Currently, the diagnosis of TB cases mainly depends

on medical history, physical examination, imageological

examination, and other laboratory tests. The traditional

methods demonstrate some limitations in determining whether

patients with TB are cured, as well as in identifying TB from

latent tuberculosis infection. About 85% of TB patients can

be successfully treated with a standardized 6-month anti-TB

treatment regimen (2-month intensive phase plus a 4-month

continuation phase) (2). However, due to the lack of a rapid

and accurate method to evaluate the anti-TB efficacy, ∼14% of

discharged patients are not completely cured (3). A major cause

resulting from interrupted treatment is the development of

drug-resistant TB, it also increases the risk of TB transmission

and spread in a community (4). Besides the cured TB patients,

no well-validated or specific biomarkers can differentiate

effectively latent tuberculosis infection from active TB. The

WHO recommends that an interferon (IFN)-γ release assay

(IGRA) or a tuberculin skin test (TST) can be used to screen for

TB infection (5). However, neither the IGRAs nor the TST can

discriminate between latent tuberculosis infection and active TB

(5–7). Consequently, a panel of rapidly measured biomarkers

with high diagnostic accuracy is crucial for global TB control.

Metabolites are small molecules that represent ongoing

biological processes and may provide insights into the

mechanisms that underlie the disease process as well as disease

progression (8). Due to their special characteristics, metabolites

have become potential disease biomarkers for disease (9, 10).

In recent years, metabonomics has been widely used in disease

research because it provides a more precise method to detect

changes in metabolism (11). In a recent study, a 4-differential

metabolite in combination can be used as a potential biomarker

to cure TB (3). In further a prospective multisite study across

Subsaharan Africa, a trans-African metabolic biosignature for

TB was found to predict the progression of TB at 69% sensitivity

and 75% specificity on blinded test samples and in external data

sets. Among the main analytical methods, mass spectrometry

(MS) displays its high sensitivity and high throughput and has

been widely used for identifying specific metabolites (13, 14).

Currently, metabolomics technology is still not perfect, it is

not yet possible to detect all compounds with one technology

and different detection platforms are required. LC-MS/MS is

commonly used for detailed analysis of natural compounds,

such as serum, plasma, urine, and disease samples. GC-MS has

an advantage over LC-MS/MS in the analysis of volatile and

thermally stable metabolites. Therefore, LC-MS/MS combined

with GC-MS could identify significantly altered metabolites as

comprehensively as possible.

Here, we performed a well-powered, untargeted TB-

associated serum metabolomics assessment by integrating the

GC-MS and LC-MS/MS assays. We investigated the impact of

Mtb infection on the serum metabolome and characterized the

changes induced by front-line TB antibiotics on the composition

of the serum metabolome at different time points, to provide

a set of candidates for predicting the Mtb infection and

potential outcome.

Materials and methods

Subjects in this study and sample
collection

The serum samples used in this study were collected

from the Major Infectious Disease Prevention and Control

of the National Science and Technique Major Project and

preserved by the Biobank of the Center for Tuberculosis Control

of Guangdong Province. The volunteers in this study were

enrolled and subjected to the analysis using the IFN-γ release

assay (QuantiFERON-TB Gold In-Tube (QFT), Qiagen, CA,

USA) along with clinical, microbiological, and radiographical

examinations. The criteria for enrollment were as follows: (1)

patients with active TB (ATB group in this study) showed clinical

and radiographical features of tuberculosis and were confirmed

by sputum smear or culture. Moreover, they did not receive

anti-TB treatment before sample selection. (2) Standard anti-

TB treatment includes RIF, INH, PZA, and EMB for 2 months,

followed by RIF and INH for additional 4 months. After 6

month-treatment, PTB patients were considered cured if they

meet the following conditions: chest X-ray or CT examination

of TB symptoms disappeared, negative sputum test or sputum

smear positive TB patients turned negative and symptoms

improved. All active TB patients receive periodic follow-up

appointments while on treatment. Exclusion criteria included

a history of antibiotic or probiotic treatment more than 1

week within the previous 8 weeks. (3) All the controls (IGRA-

and IGRA+) were with TB-resembling coughing symptoms

and normal X-rays but were culture-negative and without

other clinical TB symptoms and TB contact history. The

clinical characteristics of the groups are given in Table 1 and

Supplementary Table 1. All subjects with diabetes mellitus, HIV

infection, hepatitis B, metabolic diseases, autoimmune diseases,

and malignant tumors were excluded. Peripheral blood samples

were obtained by venipuncture from all subjects and collected
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in an aseptic vacuum blood collection tube and stored at

2∼8◦C. The serum was centrifugated, collected, and stored in

an −80◦C refrigerator for cryopreservation. This study was

performed in compliance with the Declaration of Helsinki. The

study was approved by the Ethics Committee of the Center for

Tuberculosis Control of Guangdong Province, China. Written

informed consent was obtained from all subjects before blood

sample collection.

LC-MS/MS metabolite extraction

Extraction of serummetabolites for LC-MS/MS analysis was

performed as previously described (15). Briefly, another 100 µL

of the above serum samples were taken and mixed with 400

µL prechilled methanol by well vortexing. The samples were

incubated on ice for 5min and then were centrifuged at 15,000

rpm, 4◦C for 5min. Some of the supernatants were diluted to a

final concentration containing 60% methanol by LC-MS grade

water. The samples were subsequently transferred to a fresh

Eppendorf tube with a 0.22µm filter and then were centrifuged

at 15,000 g, 4◦C for 10min. A total of 60 µL of each sample were

pipetted and mixed to form a QC sample. Finally, the filtrate was

injected into the LC-MS/MS system analysis.

GC-MS metabolite extraction

Metabolite extraction for GC-MS analysis was performed

according to previously published procedures with some

modifications (16). A total of 100 µL serum sample

was mixed with 300 µL prechilled methanol and 10 µL

fluorophenylalanine, followed by vortexing and ultrasound

concussion. The supernatant was carefully pipetted into a

1.5mL EP tube (5). All the samples were dried completely in

the vacuum concentrator without heating. A total of 60 µL

Methoxyamination hydrochloride (20 mg/mL in pyridine)

was added and incubated for 30min at 80◦C. A total of 80

µL of the BSTFA [N,O-Bis(trimethylsilyl) trifluoroacetamide]

regent (1% TMCS, v/v) (Trimethylchlorosilane) was added

and incubated at 70◦C for 1.5 h. All the samples were analyzed

by a gas chromatography system coupled with a Pegasus HT

time-of-flight mass spectrometer (GC-MS). A total of 60 µL of

each sample were pipetted and mixed to form a QC sample.

LC-MS/MS analysis

LC-MS/MS analysis was operated in both positive and

negative ion modes with the parameters optimized according

to previously published procedures with some modifications

(17). LC-MS/MS analyses were performed using a Vanquish

UHPLC system (Thermo Fisher) coupled with an Orbitrap Q

Exactive series mass spectrometer (Thermo Fisher). Samples

were injected into the Hyperil Gold column (100 × 2.1mm,

1.9µm) using a 16-min linear gradient at a flow rate of 0.2

mL/min. The eluents for the positive polarity mode were eluent

A (0.1% FA in Water) and eluent B (Methanol). The eluents for

the negative polarity mode were eluent A (5mM ammonium

acetate, pH 9.0) and eluent B (Methanol). The solvent gradient

was set as follows: 1.5min, 2% B; 12.0min, 100% B; 14.0min,

100% B; 14.1min, 2% B; 16min, 2% B. The flow rate was 0.2

mL/min. Q Exactive mass series spectrometer was operated in

positive/negative polarity mode with a spray voltage of 3.2 kV, a

capillary temperature of 320◦C, a sheath gas flow rate of 35 arb,

and an aux gas flow rate of 10 arb.

GC-MS analysis

Agilent 7,890 gas chromatograph system coupled with a

Pegasus HT time-of-flight mass spectrometer was used for

GC-MS analysis (16). The system utilized a DB-5MS capillary

column coated with 5% diphenyl cross-linked with 95%

dimethylpolysiloxane (30m × 250µm inner diameter, 0.25µm

film thickness; J&W Scientific, Folsom, CA, USA). A 1 µL

aliquot of the analyte was injected in splitless mode. Helium was

used as the carrier gas, the front inlet purge flow was 3 mL/min,

and the gas flow rate through the column was 1 mL/min. The

initial temperature was kept at 50◦C for 1min, then raised to

310◦C at a rate of 20◦Cmin−1, then kept for 6min at 310◦C. The

injection, transfer line, and ion source temperatures were 280,

280, and 250◦C, respectively. The energy was−70eV in electron

impact mode. The mass spectrometry data were acquired in full-

scan mode with them/z range of 50–500 at a rate of 12.5 spectra

per second after a solvent delay of 4.78 min.

Data processing and analysis

The raw data files of LC-MS/MS and GC-MS were processed

by the software Compound Discoverer 3.1 (CD) (18) and

Chroma TOF (V4.3X, LECO) (19), respectively. Initially, the

data were performed peak alignment after filtrating by retention

time and mass-to-charge ratio. Next, the exact molecular mass

of the compounds utilized was determined by the mass-to-

charge ratio in the high-resolution XIC charts. Meanwhile,

the molecular formulas were predicted based on the mass

deviation and adduct ion information. The metabolites in the

biological system were identified by matching the fragment

ion, collision energy, as well as other information of each

compound, respectively, in the mzCloud database and LECO-

Fiehn Rtx5 database. Subsequently, the compounds in the

QC sample with a value of Coefficient of Variance (CV)

<30% were applied as the final identification results for

subsequent analysis. The Pearson correlation coefficient between
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TABLE 1 Characteristic of pulmonary TB patients during the therapy, latent tuberculosis infection and healthy controls.

Un LT T0 T2 T6 χ
2 P-value

Age, years range (mean± SD) 20–53 34.8± 10.35 18–57 38.0± 10.64 18–59 35.76± 12.61 18–59 35.76± 12.6 18–59 35.76± 12.6 0.710a

Total Subjects (male) 15 (8) 16 (11) 17 (13) 17 (13) 17 (13) 1.967 0.374b

Un, Healthy controls; T0, Untreated PTB; T2, PTB with anti-TB chemotherapy for 2 months; T6, Cured PTB with anti-TB chemotherapy for 6 months; LT, Latent tuberculosis infection.

Given that T0, T2, and T6 belonged to the same group of patients, the statistical analysis of age and sex differences among the multiple groups presented here was performed in Un, LT,

and T0.
aOne-way ANOVA test.
bChi-square test.

QC samples was calculated based on the peak area value, the

higher the correlation of QC samples, the better the stability

of the whole detection process and the higher the data quality.

The multivariate statistical methods, such as PCA and Partial

Least Squares Discrimination Analysis (PLS-DA), were used to

perform dimensionality reduction and regression analysis on

the multi-dimensional data based on preserving the original

information to the greatest extent. To annotate the function and

classification of the identified metabolites, the databases KEGG

(http://www.genome.jp/kegg/), HMDB (http://www.hmdb.ca/),

and LIPIDMAPS (http://www.lipidmaps.org/) (20) were used in

this study. Student’s t-test was performed for parametric data

between two groups. The statistical difference among multiple

groups was analyzed using analysis of variance (ANOVA) for

parametric data and the Kruskal-Wallis test for non-parametric

data. A Chi-square test was performed for the composition

ratios. The receiver operating characteristic curve (ROC) was

drawn using SPSS (version 26.0, USA) software. P ≤ 0.05 was

considered significant.

Results

In this research, we enrolled 17 pulmonary TB patients

without HRZE treatment (T0 group) and 31 healthy controls,

including 15 volunteers without Mtb (Un group) and 16

volunteers with latent Mtb infection (LT group), to study

the relationship between tuberculosis and serum metabolites.

Furthermore, to detect the effect of periodic HRZE treatment, we

tracked the serummetabolome changes in these TB patients with

standard anti-TB therapy for 2 months (T2) and 6 months (T6),

respectively. Detailed characteristics of recruited participants are

shown in Table 1 and Supplementary Table 1.

Raw data pre-processing

We adopted an untargeted metabolomic approach using

GC-MS and LC-MS/MS to cohorts of our serum samples.

To study the variation of metabolites among different groups,

we filtered out annotated peaks in the alignment table that

presented in <50 % of the samples in each group. After this

filtering, a total of 2,563 annotated peaks were commonly

detected by all three platforms, while 1,456 annotated peaks

by LC-MS/MS (+), 862 annotated peaks by LC-MS/MS (-),

and 245 annotated peaks by GC-MS. These peaks were

aligned using KEGG, HMDB, and LIPID MAPS databases

to annotate the functional characteristics and classification of

different metabolites. Data containing respective RT, relative log

intensities, the variable importance in projection (VIP), and

P-value was used for subsequent group comparisons.

Active TB can a�ect human serum
metabolome

To assess the effect of Mtb infection on serum metabolome,

the metabolites in serum samples were analyzed among the

Un, LT, and T0 groups. To separate the important features of

significant differences between these three groups, the PLS-DA

model was used to eliminate the overfitting of test models and

evaluate the statistical significance of the models. The PLS-DA

score plots showed that the characteristics of metabolites were

able to clearly distinguish the T0 group from the LT group

(Figures 1A,E,I) and the Un group (Supplementary Figure 1).

The results of the permutation test of the PLS-DA model

showed that the LT group and Un group (Figures 1B,F,J)

demonstrated a robust prediction performance and no over-

fitting phenomenon, as well as in the LT group and the T0 group

(Supplementary Figure 1).

To further determine which metabolites were significantly

affected by active Mtb, we integrated the LC-MS/MS and

GC-MS metabolomics data to investigate significant features

among the Un group, LT group, and T0 group. Differential

metabolites were defined as those that showed a fold change

>2.0 or <0.50 in relative abundance and a p-value < 0.05.

Based on these criteria, there were 160 metabolites with

different abundance between the LT group and the T0 group

(Supplementary Table 2), and 254 metabolites between the T0

group and Un group (Supplementary Table 3), respectively. In

comparison between the LT group the and T0 group, 77

metabolites were upregulated (>2-fold) and 83 metabolites

were downregulated (<0.50-fold) in the LT group. There were
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FIGURE 1

Identification of serum metabolites between latent tuberculosis infection (LT) and the untreated PTB group (Un). The PLS-DA model for the

LT/Un group in GC-MS (A), LC-MS/MS (–) (E), and LC-MS/MS (+) (I). The permutation test results for the LT/Un group in GC-MS (B), LC-MS/MS

(–) (F), and LC-MS/MS (+) (J). Volcanic map of di�erential metabolites for the LT/Un group in GC-MS (C), LC-MS/MS (–) (G), and LC-MS/MS (+)

(K). The abscissa: the fold change of LT/Un group (base 2 logarithm). The ordinate: the P-value of LT/Un group (base 10 logarithm). Red:

significantly upregulated metabolites. Green: significantly downregulated metabolites. Gray: non-significant di�erential metabolites. Pathway

analysis of di�erential metabolites for the LT/Un group in GC-MS (D), LC-MS/MS (-) (H), and LC-MS/MS (+) (L).

124 upregulated metabolites (>2-fold) and 128 downregulated

metabolites (<0.5-fold) in the T0 group when compared with

the Un group. The differential metabolites between the LT group

and the T0 group (Figures 1C,G,J), the Un group, and the T0

group (Supplementary Figure 1) were further illustrated in a

volcano plot. Finally, we performed the pathway enrichment

analysis for the selected metabolites. Metabolic pathway analysis

[GC-MS, LC-MS/MS (+) and LC-MS/MS (–)] shows that

differential metabolites are grouped in glutathione metabolism

(p-value = 0.0145), ascorbate and aldarate metabolism (p-value

=0.0279), and porphyrin and chlorophyll metabolism (p-value

= 0.0004) between LT group and T0 group (Figures 1D,H,K,L

and Supplementary Table 8). Besides, porphyrin and chlorophyll

metabolism, bile secretion (p-value = 0.0006), primary bile

acid biosynthesis (p-value = 0.0307), and mineral absorption

(p-value = 0.0453), cholesterol metabolism (p-value =0.0453)

were also significantly enriched between Un group and T0

group (Supplementary Figure 2 and Supplementary Table 8).

These results further confirm that differential metabolites in

serum have the potential to predict Mtb infection.
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Anti-TB therapy results in some
significant changes in serum
metabolome

To explore the relevance of serum metabolome with HRZE

treatment, and the temporal evolution of the selected predictors,

longitudinal data were acquired from 17TB patients with

standard therapy. Similarly, the PLS-DA score map (Figure 2)

revealed that the T6 group can be demarcated from the T0

group. The permutation test showed that the performance of

PLS-DA model data of the T0 group and the T6 group was

consistent with that of the standard parameters (Figure 2), as

well as the T0 group and the T2 group (Supplementary Figure 2).

Therefore, it can be effectively and reliably applied to detect

differences in metabolic profiles related to the potential

outcome. Student’s t-test was used to screen differential

metabolites between T0 groups and T6 groups. Comparing

the T0 group to the T6 group, we found that 18 features

were screened by GC-MS, 216 features by LC-MS/MS (+),

and 127 features by LC-MS/MS (–) (Supplementary Table 4),

including 150 upregulated and 211 downregulated compounds.

Selected compounds were displayed in the form of volcano plots

(Figures 2C,G,K). Between the T0 groups and T2 groups, 13

FIGURE 2

Identification of serum metabolites between the cured PTB group (T6) and the untreated PTB group (T0). The PLS-DA model for the T0/T6

group in GC-MS (A), LC-MS/MS (–) (E), and LC-MS/MS (+) (I). The permutation test results for theT0/T6 group in GC-MS (B), LC-MS/MS (–) (F),

and LC-MS/MS (+) (J). Volcanic map of di�erential metabolites for the LT/Un group in GC-MS (C), LC-MS/MS (–) (G), and LC-MS/MS (+) (K). The

abscissa: the fold change of LT/Un group (base 2 logarithm). The ordinate: P-value of T0/T6 group (base 10 logarithm). Red: significantly

upregulated metabolites. Green: significantly downregulated metabolites. Gray: non-significant di�erential metabolites. Pathway analysis of

di�erential metabolites for the T0/T6 group in GC-MS (D), LC-MS/MS (–) (H), and LC-MS/MS (+) (L).

Frontiers in PublicHealth 06 frontiersin.org

https://doi.org/10.3389/fpubh.2022.962510
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2022.962510

features were screened by GC-MS, 70 features by LC-MS/MS

(+), and 63 features by LC-MS/MS (–) (Supplementary Table 5),

among which, 76 were upregulated and 70 were downregulated.

Metabolic pathways enrichment is shown in Figure 2 between

the T0 group and the T6 group, differential metabolites were

mainly enriched in nicotinate and nicotinamide metabolism

and bile secretion pathway. Besides, some amino acids, such as

tyrosine metabolism, and phenylalanine metabolism were also

significantly enriched.

Screening of di�erential metabolites as
potential biomarkers

Next, the abnormally abundant metabolites in the T0 group

compared with the other two groups were sought through

screening all differential metabolites (FC > 2.0, VIP > 1.0,

and P < 0.05) in the Un group, the LT group, and the T0

group. Comparison of T0 with the other two groups (LT vs.

T0 and Un vs. T0) showed that the relative amount of 72

overlapping metabolites had changed dramatically in the serum

of T0 patients. Table 2 shows the top 20 differential metabolites

between the three groups, and these are listed in order of

fold change and significance level. The total list of metabolites

can be found in Supplementary Table 6. Furthermore, we

screened seven metabolites that presented the same trends when

compared with three groups, including sulfolithocholic acid,

2-decylfuran, (4,8,8-trimethyldecahydro-1,4-methanoazulen-9-

yl)methanol, D-(+)-camphor, 2-methylaminoadenosine, 3-

oxopalmitic acid, and akeboside Ste (Figure 3).

The discriminative ability of these selected metabolites was

evaluated by ROC curves. The seven differential metabolites

mentioned above were used as input variables for multiple

logistic regression analysis. The ROC curves of seven differential

metabolites for distinguishing LT from T0 or Un are shown

in Figure 4. When distinguishing the LT group from the T0

group, except that 2-methylaminoadenosine exhibited excellent

efficiency with AUC values of 0.860 (95% CI 0.729–0.991), the

remaining six differential metabolites had limited efficacy (AUC

< 0.8) as a biomarker. When distinguishing the LT group

from the Un group, 2-decylfuran, d-(+)-camphor, akeboside

ste, and sulfolithocholic acid showed excellent performance with

AUC of 0.900 (95% CI 0.795–1.000), AUC of 0.900 (95% CI

0.794–1.000), AUC of 0.958 (95% CI 0.883–1.000), and AUC

of 1 (95% CI 1.000–1.000), respectively. Then, we further used

multiple logistic regression to analyze the efficacy of the seven

metabolite combination. ROC analysis showed that results were

very good, indicating that these seven combinations could be

used to represent the most suitable biomarker group for the

differentiation of PTB patients from the healthy controls.

In the same way, we are looking forward to screening

differentially abundant metabolites as potential biomarkers for

the cured PTB group and the untreated PTB group. We

sought the metabolites which expressed abnormally in T0 but

recovered after anti-tuberculosis treatment by investigating all

differential metabolites among the Un/T0 group, the T0/T2

group, and the T0/T6 group. A total of 18 overlapping

metabolites were significantly differentially expressed in the

serum of T0 patients (Table 3). In addition, we also noticed

that after treatment, especially 6-month anti-TB therapy, the

seven serum metabolites expressed abnormally in T0 (Figure 3)

significantly decreased and were close to the level of the healthy

group, further demonstrating the potential of these metabolites

as TB-related biomarkers (Supplementary Figure 3).

Discussion

WHO’s End TB Strategy calls for the early diagnosis of TB,

highlighting the critical role of laboratories in the post-2015

era in rapidly and accurately detecting TB (21). However, there

is a lack of a gold standard for diagnosing latent tuberculosis

infection, nor is there a uniform laboratory specification for the

discharge of TB patients (6). Consequently, the screening of new

diagnostic biomarkers has the potential to improve diagnostic

accuracy and may provide unified diagnostic criteria for latent

tuberculosis infection and the discharge of TB patients.

It is worth noting that metabolites represent the effects of

cell viability and external exposure; therefore, the wealth of

small-molecule metabolite data represented by individual

metabolomes can generate key pathological insights.

Metabolomics has also been widely used in TB over the

past few years (12, 22–24). In 2014 and 2015, Mrinal et al.

(25) and Sebabrata et al. (26) reported the application of liquid

chromatography–mass spectrometry and gas chromatography

mass spectrometry methods to identify the metabolites in

urine samples of TB patients, respectively. Subsequently, many

studies based on LC-MS approaches reported small molecule

metabolites can be used as biomarkers for pulmonary TB

in plasma, such as L-Histidine, arachidonic acid, biliverdin,

L-cysteine-glutathione disulfide, Xanthine, 4-Pyridoxate, and

D-glutamic acid (3). However, these studies only used LC-MS to

explore the role of differential metabolites in plasma in PTB, it

is not yet possible to detect all compounds with LC-MS.

To identify more metabolites, we screened differential

metabolites in the serum of untreated PTB patients, 2-month-

treated PTB patients, cured TB patients, latent tuberculosis

infection, and healthy controls by GC-MS and LC-MS/MS.

The GC-MS method has increased sensitivity to detect

very small volatile or semi-volatile compounds in biological

samples. To our knowledge, there have been few previous

untargeted metabolomics studies of serum samples from TB

patients that combined GC-MS and LC-MS/MS, especially for

evaluating the efficacy of anti-TB treatment. Seven previously

unreported metabolites were observed in latent tuberculosis
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FIGURE 3

Relative abundance of seven di�erential metabolites 3-oxopalmitic acid, akeboside ste, sulfolithocholic acid, 2-decylfuran,

(4,8,8-trimethyldecahydro-1,4-methanoazulen-9-yl) methanol, d-(+)-camphor, and 2-methylaminoadenosine. The relative abundance of each

metabolite in the serum from the untreated PTB (T0) and latent tuberculosis infection (LT) was significantly higher than that of the healthy

control (Un) using the Kruskal–Wallis test and corrected for multiple comparisons by controlling the False Discovery Rate. *q < 0.05; **q < 0.01;

****q < 0.0001.
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TABLE 2 Top 20 di�erential serummetabolites of T0 patients identified by LC-MS/MS and GC-MS, compared to LT and Un individuals.

No Name_des Un/T0 LT/T0 Trend

Fold change p-value VIP Fold change P-value VIP

1 2-

Methylaminoadenosine

0.08869288 7.6354E-10 4.01165828 0.32183336 0.00014766 3.15312305 ↑

2 Carmustine 0.08972882 6.1405E-07 5.36149848 0.10362071 2.9201E-07 6.7564025 ↑

3 2-

Mercaptobenzothiazole

0.09599409 4.2994E-08 4.79467767 0.1142865 2.0319E-08 5.98713527 ↑

4 2-Decylfuran 0.11522464 7.6919E-10 3.85942897 0.47028435 0.00494403 2.08491179 ↑

5 (4,8,8-

trimethyldecahydro-1,4-

methanoazulen-9-

yl)methanol

0.12689437 5.1544E-09 3.50374746 0.49206327 0.01133179 2.00191124 ↑

6 D-(+)-Camphor 0.13339036 8.9712E-10 3.47389398 0.49728562 0.00673748 1.95060669 ↑

7 3-oxopalmitic acid 0.14779064 8.9333E-07 3.10115364 0.41789084 0.00686639 2.40303662 ↑

8 Pivagabine 0.15975548 0.03742746 1.41310153 0.13634797 0.0153759 2.26464813 ↑

9 Thiolutin 5.76453916 1.1133E-06 4.72982861 4.86432478 3.3855E-06 6.19438115 ↓

10 Akeboside Ste 0.17761794 5.0832E-07 2.72736425 0.39555739 0.00583788 1.56591184 ↑

11 Benzquinamide 5.43411528 0.00023544 2.28109023 9.63323124 0.00013558 4.18646907 ↓

12 (9cis)-Retinal 0.19175918 0.00014079 2.39998295 0.3651436 0.04168866 1.81045086 ↑

13 Vitamin C 4.85885066 2.1287E-05 3.37433699 3.66201592 2.3383E-05 4.36822211 ↓

14 2,3,-

dihydroxybenzoylserine

0.20816884 2.7158E-06 2.63686566 0.27423189 5.4365E-05 3.04325781 ↑

15 Dcebio 4.72077327 4.1241E-07 3.46112538 3.916837 1.4456E-06 4.4541779 ↓

16 Dexamethasone tebutate 4.61437664 1.4492E-11 2.72745654 4.24282632 3.7766E-07 3.25382949 ↓

17 Maleic acid 4.37259767 6.7671E-05 2.8486705 3.83535948 1.5916E-05 3.99476391 ↓

18 Methyprylon 0.23096774 0.03419834 1.21199933 0.21277934 0.02037897 1.79394108 ↑

19 Seratrodast 4.1954909 0.00421687 1.79337805 8.50637327 5.1876E-05 4.29763145 ↓

20 Methional 0.2479882 1.7002E-08 2.68873807 0.26589941 8.9786E-09 3.51678769 ↑

infection, including 3-oxopalmitic acid, akeboside Ste,

sulfolithocholic acid, 2-Decylfuran, (4,8,8-trimethyldecahydro-

1,4-methanoazulen-9-yl)methanol, D-(+)-Camphor, and

2-methylaminoadenosine. In this study, seven metabolites

were increased in the serum of latent tuberculosis infection

and untreated TB patients. It has been reported that in the

inflammatory response, the palmitic acid and its derivatives in

the endoplasmic reticulum (ER), on the one hand, can increase

the reactive oxygen species (ROS) generation, leading to cell

death; on the other hand, they also drive the activation of NF-κB

and NLRP3, facilitating the release of proinflammatory cytokine

by monocytes/macrophages (27, 28). José Marcos Sanches

et al. had also shown that certain potential lipid biomarkers

in macrophages, such as palmitic acid and PE (16:0/0:0),

are released after NLRP3 activation that can modulate

the inflammatory responses in the damaged tissue (29).

3-oxopalmitic acid is oxo-fatty acid comprising palmitic acid

(PA) having an oxo group at the 3-position, an intermediate in

fatty acid biosynthesis, and has functional parent palmitic acid.

Our study also showed that 3-oxopalmitic acid was upregulated

after Mtb infection, further indicating that Mtb may depend on

fatty acid metabolism to maintain chronic infection.

Two secondary metabolites (2-methylaminoadenosine and

2-decylfuran) showed higher expression in latent tuberculosis

infection and untreated TB patients compared with the

healthy group. 2-methylaminoadenosine is a purine nucleoside.

Currently, the natural products and derivatives of purine

nucleosides have been developed as drugs for their unique

biochemical properties and capabilities (30). 2-decylfuran is

a member of the class of furans that is furan in which the

hydrogen at position 2 is replaced by a decyl group. Furan

exerts its antibacterial activity through selective inhibition of

microbial growth and modification of enzymes (31). Our study

showed that the 2-methylaminoadenosine and 2-decylfuran

content increased rapidly after Mtb infection, but recovered

after 2/6 months of anti-tuberculosis treatment. In most cases,

secondary metabolites are metabolically or physiologically non-

essential metabolites that may serve a role as defense or signaling
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FIGURE 4

ROC curves are used to identify di�erential metabolites. The curve analysis of the seven metabolites shows that the combined diagnostic model

performed well in distinguishing LT from T0 (AUC = 0.978) (A) and Un (AUC = 1.000) (B). Compared with group T2 (C), the combined diagnostic

model could better distinguish T0 from T6 (AUC = 0.979) (D).

molecules. This indicated that 2-methylaminoadenosine and 2-

decylfuran are closely related to the survival of Mtb; therefore,

we suspect that these two metabolites reflect the concentration

of Mtb, in vivo after the intensive treatment phase. Camphor

is a cyclic monoterpene ketone, which has been widely used

as a chiral, enantiopure starting material in natural product

synthesis (32). The study reported that a series of new

amidoalcohols and amido diols were designed on the base of

the camphor scaffold and evaluated for their in vitro activity

against Mtb strains, and they showed 25 times higher activity

than the classical anti-TB drug ethambutol (33). Our study

showed that the D-(+)-camphor content increased rapidly

after being infected with Mtb, indicating that camphor as

a carrier has a strong bactericidal effect. Akeboside Ste is

a triterpenoid, the studies reported that triterpenoids have

various pharmacological activities, including anti-inflammatory,

anti-allergic, anti-microbial, anti-angiogenic, etc. (34). Mtb

stimulates the body’s metabolism to produce akeboside Ste. As

an anti-bacterial active substance, akeboside Ste would fight

against tuberculosis quickly once Mtb is released from the body.

Sulfolithocholic acid is the sulfated product of lithocholic acid,

a secondary bile acid produced by microbiota (35). Recent

reports suggest that sulfolithocholic acid is a potential marker

for pancreatic fat (36). Our study showed that the level of

akeboside Ste and sulfolithocholic acid significantly increased in

latent tuberculosis infection and untreated TB patients, but both

returned to a normal level after 2/6 months of TB treatment.

This indicated that akeboside Ste and sulfolithocholic acid may

be associated with the severity of Mtb infection and could

reflect the change in the body’s immunity to Mtb. Based on a

literature review very few articles have been published on (4,8,8-

trimethyldecahydro-1,4-methanoazulen-9-yl)methanol. Studies

showed that through physiological and metabolic clearance

mechanisms, methanol remains at a low physiological level in

healthy people, but increased levels of methanol were detected

in the blood of patients with nervous systems disorders and the
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TABLE 3 Metabolites with significant changes in the relative amount identified by LC-MS/MS and GC-MS among the Un group, T0 group, T2 group,

and T6 group.

No. Differential

Metabolites

Un/T0 T0/T2 T0/T6

FC p-value VIP FC p-value VIP FC p-value VIP

1 (2R)-2-Hydroxy-3-

(phosphonooxy)propyl

(11Z)-11-docosenoate

2.23074 4.00E-11 1.48559 0.48008 0.01504 1.00738 0.26091 0.00981 1.62940

2 Akeboside ste 0.17762 5.08E-07 2.72736 2.23626 0.020102 1.27419 2.88922 0.00117 1.22118

3 Alpha-ketoglutaric acid 0.00919 0.0004 5.63162 80.47541 0.00060 6.11196 108.83 0.00040 5.01282

4 Benzylamine 0.41113 2.88E-05 1.54977 2.19781 7.67E-05 1.63210 2.4323 2.88E-05 1.44356

5 Cellobiose 0.09573 1.03E-05 3.59862 10.44709 1.03E-05 4.04631 10.44666 1.03E-05 3.32044

6 Dehydrocholic acid 0.35737 0.01569 1.580281 3.09395 0.002455 2.65723 3.78539 0.00337 2.26530

7 Guanidinosuccinic acid 0.22328 1.43E-06 2.65049 2.72994 7.46E-05 2.39798 4.47863 1.43E-06 2.47196

8 Levoglucosan 0.16025 0.00827 1.94374 6.24032 0.00827 2.14569 6.2403 0.00827 1.71159

9 Lyxonic acid, 1,4-lactone 0.31000 2.58E-06 2.06159 3.22580 2.58E-06 2.36436 3.2258 2.58E-06 1.90368

10 Medroxyprogesterone

17-acetate

2.32418 0.00807 1.49834 8.76635 3.20E-10 6.07807 7.59242 6.58E-10 4.51366

11 Monostearin 0.22807 4.95E-09 2.833215 2.07154 0.00015 2.29247 4.3846 4.95E-09 2.59887

12 Onapristone 0.38163 0.00130 1.65142 7.81206 3.15E-09 5.08336 10.66641 1.29E-10 4.48954

13 Oxamide 0.11328 0.00415 2.49446 8.82767 0.00415 2.82369 8.8278 0.00415 2.29857

14 Oxibendazole 0.02766 2.06E-16 6.29175 0.04339 0.00041 3.81391 0.02537 1.99E-05 3.30990

15 Paliperidone 0.39303 0.03442 1.24023 4.20549 0.00045 2.41296 3.35587 0.00211 2.05907

16 Sulfolithocholic acid 0.28332 7.03E-05 1.75722 2.55579 0.00303 1.58137 2.83680 0.00071 1.16347

17 Sunitinib 6.41533 0.04036 1.92767 2.75971 0.00555 2.27649 3.13116 0.00191 1.66104

18 Tributyl citrate acetate 4.02752 0.03744 1.67060 2.28837 0.00515 1.87899 2.08951 0.02348 1.08023

elderly (37). Our study showed that (4,8,8-trimethyldecahydro-

1,4-methanoazulen-9-yl)methanol was upregulated after Mtb

infection and recovered after curing TB, suggesting a disruption

of the genetic and biochemical mechanisms that are responsible

for maintaining low methanol levels.

In conclusion, comparative serum metabolome analysis

using GC-MS and LC-MS/MS demonstrated that differences

do exist among untreated TB patients, two-month treated PTB

patients, cured TB, latent tuberculosis infection, and healthy

subjects. 3-oxopalmitic acid, akeboside Ste, sulfolithocholic acid,

2-decylfuran, (4,8,8-trimethyldecahydro-1,4-methanoazulen-9-

yl)methanol, D-(+)-camphor, and 2-methylaminoadenosine

may serve as potential biomarkers for latent tuberculosis

infection and cured TB patients. These metabolites may reflect

the severity of MTB infection in patients with TB and the

strength of the body’s immune defense. New metabolites from

latent tuberculosis infection presented in this study, to our

knowledge, have not been reported before. Moreover, these

metabolites may also provide a promising approach to predict a

good therapeutic outcome. Whether these metabolites add value

to the prediction of latent tuberculosis infection and cured TB

patients will require further study and validation in separate

cohorts. Our study provided more detailed experimental

data for developing laboratory standards for evaluating latent

tuberculosis infection and cured PTB.
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SUPPLEMENTARY FIGURE 1

Identification of serum metabolites between uninfected healthy control

(Un) and the untreated PTB group (T0). The PLS-DA model for the Un/T0

group in GC-MS (A), LC-MS/MS (+) (E) and LC-MS/MS (–) (I). The

permutation test results for the Un/T0 group in GC-MS (B), LC-MS/MS

(+) (F) and LC-MS/MS (–) (J); Volcanic map of di�erential metabolites for

the Un/T0 group in GC-MS (C), LC-MS/MS (+) (G) and LC-MS/MS (–) (K).

The abscissa: the fold change of Un/T0 group (base 2 logarithm). The

ordinate: the P-value of Un/T0 group (base 10 logarithm). Red:

significantly upregulated metabolites. Green: significantly

downregulated metabolites. Gray: non-significant di�erential

metabolites. Pathway analysis of di�erential metabolites for the Un/T0

group in GC-MS (D), LC-MS/MS (+) (H), and LC-MS/MS (–) (L).

SUPPLEMENTARY FIGURE 2

Identification of serum metabolites between the untreated PTB group

(T0) and the 2-month treated PTB group (T2). The PLS-DA model for the

Un/T0 group in GC-MS (A), LC-MS/MS (+) (E), and LC-MS/MS (–) (I). The

permutation test results for the T0/T2 group in GC-MS (B), LC-MS/MS

(+) (F), and LC-MS/MS (–) (J). Volcanic map of di�erential metabolites

for the T0/T2 group in GC-MS (C), LC-MS/MS (+) (G), and LC-MS/MS (–)

(K). The abscissa: the fold change of the T0/T2 group (base 2 logarithm).

The ordinate: the P-value of the T0/T2 group (base 10 logarithm). Red:

significantly upregulated metabolites. Green: significantly

downregulated metabolites. Gray: non-significant di�erential

metabolites. Pathway analysis of di�erential metabolites for the T0/T2

group in GC-MS (D), LC-MS/MS (+) (H), and LC-MS/MS (–) (L).

SUPPLEMENTARY FIGURE 3

Changes in relative quantitative values of seven di�erential metabolites

3-oxopalmitic acid, akeboside ste, sulfolithocholic acid, 2-decylfuran,

(4,8,8-trimethyldecahydro-1,4-methanoazulen-9-yl)methanol,

d-(+)-camphor, and 2-methylaminoadenosine in the serum from

healthy controls (Un and LTBI), the untreated PTB (T0), 2-month treated

PTB (T2) and 6-month treated PTB. The q-value was calculated using

the Kruskal–Wallis test and corrected for multiple comparisons by

controlling the False Discovery Rate. ∗q < 0.05; ∗∗q < 0.01;
∗∗∗q < 0.001.

SUPPLEMENTARY FIGURE 4

The flowchart of the subjects’ screening and enrolling in this study. To

study the relationship between tuberculosis and serum metabolome, we

recruited 147 subjects that include 52 uninfected (Un), 40 LTBI, and 55

active TB patients without anti-TB therapy (T0). In addition, to detect the

e�ect of periodic HRZE treatment on the serum metabolome, we tried

to track TB patients in the T0 group over the course of anti-TB

treatment, and finally succeeded in obtaining serum samples from 17

patients with complete standard treatment nodes, viz. 2 months (T2) and

6 months (T6). Next, we screened 17 volunteers of similar age to these

17 patients in each of the Un and LTBI groups. Two serum samples from

the Ungroup and one serum from the LTBI group were found to have

hemolysis during metabolite extraction and were discarded. Finally, 82

serum samples were used for the metabolome experiment.

SUPPLEMENTARY TABLE 1

Characteristics of the individuals in this study.

SUPPLEMENTARY TABLE 2

Serum metabolites identified between the LT group and the T0 group.

The Variable Importance in the Projection (VIP) value of the first principal

component of the PLS-DA model is used, and the VIP value represents

the contribution rate of metabolite di�erences in di�erent groups; The

ratio of the mean values of all biological replicates in the comparison

group; combined with the P-value of T-test to find di�erentially
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expressed metabolites, set the threshold to VIP > 1.0, the di�erence fold

FC ≥ 2 or FC ≤ 0.5, and P-value < 0.05.

SUPPLEMENTARY TABLE 3

Serum metabolites identified between the Un group and the T0 group.

The Variable Importance in the Projection (VIP) value of the first principal

component of the PLS-DA model is used, and the VIP value represents

the contribution rate of metabolite di�erences in di�erent groups; The

ratio of the mean values of all biological replicates in the comparison

group; combined with the P-value of T-test to find di�erentially

expressed metabolites, set the threshold to VIP > 1.0, the di�erence fold

FC ≥ 2 or FC ≤ 0.5, and P-value < 0.05.

SUPPLEMENTARY TABLE 4

Serum metabolites identified between the T0 group and the T6 group

(FC > 2.0, VIP > 1.0 and P < 0.05).

SUPPLEMENTARY TABLE 5

Serum metabolites identified between the T0 group and the T2 group

(FC > 2.0, VIP > 1.0 and P < 0.05).

SUPPLEMENTARY TABLE 6

The total list of di�erential serum metabolites of T0 patients identified by

LC-MS/MS and GC-MS, compared to LT and Un individuals (FC > 2.0, VIP

> 1.0 and P < 0.05).

SUPPLEMENTARY TABLE 7

The relative amount of seven potential biomarkers shown in Figure 3

and Supplementary Figure 3.

SUPPLEMENTARY TABLE 8

KEGG pathway enriched by di�erential metabolites.

SUPPLEMENTARY TABLE 9

The function and classification of identified metabolites in this study

were annotated by the HMDB database.

SUPPLEMENTARY TABLE 10

The function and classification of identified metabolites in this study

were annotated by the KEGG database.

SUPPLEMENTARY TABLE 11

The function and classification of identified metabolites in this study

were annotated by the LIPID MAPS database.
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