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The COVID-19 pandemic left its unique mark on the twenty-first century as

one of the most significant disasters in history, triggering governments all

over the world to respond with a wide range of interventions. However, these

restrictions come with a substantial price tag. It is crucial for governments

to form anti-virus strategies that balance the trade-o� between protecting

public health and minimizing the economic cost. This work proposes a

probabilistic programming method to quantify the e�ciency of major initial

non-pharmaceutical interventions. We present a generative simulation model

that accounts for the economic and human capital cost of adopting such

strategies, and provide an end-to-end pipeline to simulate the virus spread

and the incurred loss of various policy combinations. By investigating the

national response in 10 countries covering four continents, we found that

social distancing coupled with contact tracing is the most successful policy,

reducing the virus transmission rate by 96% along with a 98% reduction in

economic and human capital loss. Together with experimental results, we

open-sourced a framework to test the e�cacy of each policy combination.

KEYWORDS

COVID-19, probabilistic programming, SEIRD model, non-pharmaceutical
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1. Introduction

The ongoing COVID-19 pandemic is one of the most challenging pandemics in

human history, infecting more than 170 million people worldwide with more than 3.5

million fatalities as of May 30, 2021 (1). Rapid and easy transmission of COVID-19 leads

to a high and fast-growing caseload, overwhelmingly straining the healthcare systems of

many countries. Governments are pushed to apply prompt and effective interventions

to protect public health. Such policies include lockdown, social distancing, contact

tracing, hygiene, and mask mandates. However, countries differ on these measures

and their stringency due to differences in public acceptance, the political climate, or

government priority. Thus, many interventions were applied considering the individual

socioeconomic status of countries. Furthermore, most countries lacked experience in

handling the pandemic, only a handful have successfully brought the pandemic under

control. The world has witnessed how the initial response to the virus dictated the

trajectory of the virus spread.

Apart from its health impact, coronavirus has affected the economic state of the

world with various restrictions imposed by governments to mitigate the virus spread.
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The pandemic already caused a bigger recession than the Great

Depression (2). As reported by Mandel et al. (3) lockdown

generates more than a 33% drop in global output at its peak

and more than a 9% drop in annual GDP. Furthermore,

adverse economic effects of lockdown could even diffuse to the

neighboring countries by supply chains (4). Thus, governments

should carefully take economic context into account when

making policy decisions.

This paper proposes a probabilistic programming method

to evaluate the strategies imposed by different countries and

point out which policies are the most successful in the initial

response to the crisis. To provide insights on the effectiveness

of initial responses to the pandemic, we analyzed data from

10 countries covering four continents. Moreover, we present

a method to balance economic trade-offs of adopting specific

policies by providing a generative model that considers the

economic context of a given country. Given the recent focus

on vaccination efforts, we also examine the effect of vaccination

in the containment of the coronavirus in Israel and the

United States.

To quantitatively express and analyze the success and failure

of different countries, we utilize a probabilistic approach to

FIGURE 1

Project pipeline. First, we infer COVID-19 related parameters such as basic reproduction number R0, incubation rate σ , recovery rate γ , and

mortality rate µ using the compartmental model. Second, we apply the change-point model to infer policy e�ciencies from di�erent countries.

Finally, using inferred parameters from previous steps and economic parameters from real-world data, we run the generative model in artificial

country simulation to estimate the economic cost for di�erent policy combinations.

tackle the COVID-19 transmission dynamics. As illustrated in

Figure 1, our approach has three major components:

1. Infer COVID-19 statistics by the compartmental

model (Section 4).

2. Estimate policy strengths by the change-point

model (Section 5).

3. Simulate virus in the context of policy combinations

considering the economic loss by the generative

model (Section 6).

The compartmental model is to understand the

representative statistics of the virus transmission dynamics,

including recovery time, incubation time, reproduction number

(R0), and mortality rate. We infer the baseline statistics by fitting

the SEIRD compartmental model on the Swedish data before

the Swedish government imposed any policies. We assume that

these statistics represent the original virus features unaffected

by any human interventions.

With change-point models (5, 6), we estimate the strength

of the policies applied to curb the virus spread. Countries

around the world impose various interventions with different

degrees. Furthermore, the populations worldwide are largely not
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homogeneous; therefore, the same policy could have different

outcomes in different populations. Instead of capturing all these

complicated factors, we choose cases where a particular policy

can viably represent the upper bound of these policy’s efficiency,

i.e., the maximum reduction in infection rate. This provides

a good idea of how effective each policy would be if applied

in full force. To find these upper bounds, we investigate the

countries with a successful initial response to the pandemic that

stringently applied a given measure, such as China for lockdown

or Singapore for social distancing. As these countries curbed the

first wave of the spread by firmly applying a particular measure,

we can consider the effect in these countries as the maximum

effect the measure could perform. The measure will introduce

an abrupt change in caseload growth with a significant drop

in growth rate, starting from a change point in the timeline.

We utilize the growth rate before and after this change-point to

detect the effect of each measure. We run several experiments

on countries with different initial responses to the pandemic.

The efficiency of the initial policies is represented in terms

of the transmission rate change after the policy establishment.

Inference result suggests that all major interventions are effective

in reducing the virus spread. For example, contact tracing

coupled with social distancing yields a 96% reduction in the virus

transmission rate, achieving the same effect as lockdown and

outperforming all other policies.

The last part of our study includes simulating the virus in

an imaginary country that follows all virus and policy statistics

inferred from the previous parts. Our generative model is to

support decision-makers to solve optimization problems having

opposing objectives: public health and the economy. Stringent

measures indeed incur economic collapse, but loosening the

measures could lead to a devastating crisis. Therefore, the

trade-off should be considered carefully. Our model predicts

the trajectory of the pandemic, including cases, deaths, and

recoveries. Moreover, we incorporate the economic cost into

the simulation to address the economic trade-off of policy

establishments. By controlling parameters, we estimate how the

pandemic plays out in different scenarios and conclude which

policy combination can effectively mitigate the virus in public

health and economic dimensions. Simulation results suggest

contact tracing coupled with social distancing incurs the lowest

economic and human capital loss.

With all these analyses, we provide a simple but insightful

model to analyze several features of a pandemic: severity of

the disease, policy efficiency, and economic impact. This will

help to understand the success and failure of each country in

its response to the pandemic. It could be used as a playbook

to better prepare for a possible pandemic in the future. For

reproducibility, the code and datasets used in the paper are

available at: https://git.io/JGcPW.

The rest of this paper is organized as follows. In Section 2,

we review related work. In Section 3, we introduce the dataset.

In Sections 4 and 5, we propose our compartmental model and

estimate policy strength by change-point model, respectively.

With this model and economic viewpoint, we simulate an

artificial country by changing policies in Section 6. We conclude

the paper in Section 7.

2. Related work

2.1. Compartmental models

Most of the epidemic models divide the target population

into a certain number of compartments, consisting of

individuals with identical statuses concerning a given disease.

The foundations of the entire approach to epidemiology

based on compartmental models were laid by public health

physicians in the early 1900s. One of the first applications of the

compartmental model was made by R. Ross, who demonstrated

the dynamics of the transmission of malaria betweenmosquitoes

and humans and consequently was awarded the Nobel Prize

in Medicine in 1902 (7, 8). Since then, compartmental models

are still widely used to simulate the spread of a variety of

infections (9).

One of the most popular extensions of the SIR model is

the SEIR model (10), a traditional method used to simulate

infectious disease that incubates inside the hosts for a while

before the hosts become infectious. The SEIR model considers

the incubation period by introducing a new compartment E

(Exposed) to the compartmental system. This model and its

modifications were already adapted to simulate the COVID-19

virus inmany countries (11–13). In this work, we adopt a widely-

used modification of the model—SEIRD (14) with the death

compartment D. More recently, a SEIRD model with relaxed

parameters has also been proposed to consider the rapidly

changing social scenario arising from the period of the COVID-

19 (15). Likewise, ameliorating compartment models according

to the scenario would be a promising direction to study.

2.2. Probabilistic algorithms

The Markov chain Monte Carlo (MCMC) is a large class

of sampling algorithms widely used for probabilistic problems.

MCMC was first introduced in 1953 as a new method to

simulate the distribution of states for the system of idealized

molecules (16). However, the application of the algorithm did

not limit itself to the physics field. It was later adapted and

generalized by Hastings (17) to focus on statistical problems,

opening its application to a wide range of domains. Due to its

ability to handle complex types of analyses, theMCMC approach

was widely used in finance (18, 19), communication (20, 21),

computational biology (22), linguistics (23, 24), and other fields

with probabilistic settings. By no surprise, these methods are

widely popular for estimating effects in complex epidemiological
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analyses as well (25–27). For example, Cauchemez et al. (28)

has shown how to model influenza transmission using the

Bayesian MCMC approach, and lots of variations of MCMC

methods were used to infer features of an Ebola virus and analyze

its transmission mechanism (29, 30). Recent reports are also

benefited from the Bayesian MCMC methods to infer COVID-

19 virus transmission dynamics. Zhou et al. (31) implemented

such inference based on a probabilistic compartmental model

using daily confirmed COVID-19 cases and applied it to six

states of the United States.

MCMC algorithms are also successfully applied to change-

point models. The objective is to detect the abrupt property

changes lying behind the time-series data (32). Recent work

showed that MCMC algorithms with Bayesian parameter

inference could be used to detect change-points in COVID-

19 spread using SIR and SEIR epidemiological models of

South Africa (33). According to their results, South Africa

experienced two change-points: the first at the time of the

national lockdown and the second after the massive screening

and testing program. Dehning et al. (34) adopted a similar

approach to the case study of coronavirus spread in Germany

by utilizing SIR models with MCMC sampling for detecting

change-points in effective growth rate that correlates well with

the times of publicly announced interventions. Following these

examples, we applied the change point model with an extended

SEIRD epidemiology model to identify where policies affected

the COVID-19 virus transmission rate in 10 countries with

different interventions.

2.3. Policy strength estimation

Awide range of work was done to estimate the efficiencies of

the policies imposed by different countries to prevent COVID-

19. Many of them were focused on the individual country cases

considering their unique demographic features (35–37), while

other reports compared many countries by the independent

effects of a single category of policy (38–40). For instance,

Iwata et al. (41) used Bayesian method analysis. They did not

reveal the effectiveness of school closures that occurred in Japan

in mitigating the risk of coronavirus infection in the nation.

Another recent work by Sharov et al. (42) used a modified

SIR model to compare the effectiveness of lockdown measures

introduced during the coronavirus pandemic in 13 European

countries, comparing them to two baseline countries (Sweden

and Iceland) that did not implement the lockdown policies.

For evaluation, this work used the herd immunity level and

time of formation to indicate the effectiveness of lockdown

measures (42). According to Sharov’s results, lockdown

and no-lockdown modes of containment led to roughly

similar results.

There are also reports considering multiple policies across

the globe (43, 44). One example is work by Flaxman et al.

(45), which investigates effects of applied non-pharmaceutical

interventions (NPIs) across 11 European countries for the

period from the start of the COVID-19 epidemics. According

to their results, major non-pharmaceutical interventions, like

lockdowns, have had a significant effect on reducing the

transmission of the virus. However, a subsequent study by

Haug et al. (46), which assessed the efficacy of 6,068 NPIs

across 226 countries and gave a detailed analysis of the

country-specific “what-if ” scenarios, showed different results.

They analyzed the impact of government interventions on

the effective reproduction number Rt by combining several

analytical approaches. By utilizing statistical, inference, and

artificial intelligence tools, they concluded that combinations

of some less disruptive and less costly NPIs could be as

effective as more expensive and harsh ones like national

lockdowns. Brauner et al. (47) came to the same conclusion by

analyzing 41 countries during the first wave of the pandemic.

According to their study, less harsh NPIs can be more effective

in mitigating COVID-19 transmission than more strict stay-

at-home orders (47). Singh et al. (48) exploited the spatial

and temporal variation in the introduction and lifting of

non-pharmaceutical interventions (NPIs) across counties using

a staggered difference-in-differences (DID) approach. They

compared US counties with NPIs in place (treated) with

counties that do not have NPIs in place (control) before and

after implementation. Enabled by datasets with rich population

characteristics, they stratified the datasets into several groups

and analyzed the impact of implementing and lifting NPIs by

the population groups they target. However, as we will discuss

in Section 5, it takes a certain amount of lagging time to see the

effects of NPI implementations. More meaningful analysis can

be obtained with DID by considering the delay.

However, one of the significant limitations of recent studies

is that none of them perform a comprehensive analysis

considering the economic factors that affect the efficiencies of

the policies. There were some reports regarding the economic

cost of the pandemic situation across the globe (49). For

example, McKibbin and Fernando (50) simulated a global

economic model to explore seven scenarios, which differ in

the proportion of the population who become infected or

dead. According to their estimations, in a scenario where

COVID-19 develops into a global pandemic, the cost of lost

economic output begins to escalate into trillions of dollars (51).

However, they do not include the effect of policy interventions

in their simulations. To address this limitation, we propose

another method of cost estimations by involving policy effects

in Section 6.

3. Dataset

For our analysis, we used virus data from two sources

that are available online. The first dataset is taken from
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FIGURE 2

Daily number of confirmed cases of eight countries. Vertical red lines indicate the date when a certain policy was established. In the case of

Sweden and Japan, we consider the time period before the policy establishment. For Canada, the policy was established gradually. Thus, the

exact dates of policy start for this country are not determined. (A) Sweden, (B) Japan, (C) China, (D) Australia, (E) Korea, (F) New Zealand, (G)

Canada, (H) Singapore.

Kaggle. This COVID-19-related dataset1 was collected

from the John Hopkins University dashboard2 and

Worldometers website3. The data for Israel and the US

was taken from the COVID-19 Data Repository by the

Center for Systems Science and Engineering (CSSE) at

Johns Hopkins University4. Both datasets report the number

of confirmed, death, and recovered cases for each day

since the first confirmed case across the globe, divided by

countries, regions, and provinces. The plots of daily confirmed

1 https://www.kaggle.com/imdevskp/corona-virus-report?select=

full_grouped.csv

2 https://coronavirus.jhu.edu/map.html

3 https://www.worldometers.info/coronavirus/

4 https://git.io/Jvoxz

cases for 10 countries used for analysis can be found in

Figures 2, 3.

4. Analyze COVID-19 statistics by
compartmental model

In this section, we will introduce the proposed methodology

to infer SARS-CoV-2 virus statistics. We will first present

the SEIRD epidemiological compartmental model and the

corresponding probabilistic programmingmodel to infer several

virus statistics. Then, we perform inference on the Sweden data

to infer the important virus parameters5.

5 This work does not involve any human participant, thus not subject

to the IRB approval.
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FIGURE 3

The daily number of confirmed cases of the countries in a timeline in which we investigate the e�ect of vaccines. (A) United States, (B) Israel.

4.1. Compartmental SEIRD model

The most basic compartmental model, namely the SIR

model, uses three compartments of Susceptible (S), Infectious

(I), and Recovered (R). Each individual can move from a

compartment to another compartment, resembling the progress

of the disease. We could use S, I, and R to denote the

number of individuals in their respective compartments. For

the COVID-19 case, there is an incubation period in which

people are infected but not yet infectious. Hence, we adapted

the epidemiological SEIRD model (14) for our simulations,

extending the SIR model with the E compartment of exposed

individuals and the D compartment for deaths.

• Susceptible (S): Individuals in the compartment are neither

infected nor immune to the diseases and, hence, could

contract the disease. If the susceptible individuals contract

the disease (via contact with an infectious individual), they

progress to the Exposed compartment.

• Exposed (E): Individuals in the compartment are infected

but unable to pass the disease to susceptible individuals.

If the Exposed individuals finish their incubation

period and can infect others, they progress to the

Infectious compartment.

• Infected (I): Individuals in the compartment are infected

and pass the disease to susceptible individuals. If

the Infectious individuals recover from the disease

and carry immunity or die from the disease, they

progress to the Recovered (or Resistant) and Dead

compartments, respectively.

• Recovered (R): Individuals in the compartment

are immune to the disease. If the Recovered

individuals lose their immunity, they progress to the

Susceptible compartment.

• Dead (D): Individuals in the compartment cannot progress

to any other compartment.

The below differential equations (Equations 1–5) describe

the transition between compartments (14).

dS

dt
= −

Reγ S

N
I + αR, (1)

dE

dt
=

Reγ S

N
I − σE, (2)

dI

dt
= σE− γ I, (3)

dR

dt
= γ (1− µ)I − αR, (4)

dD

dt
= γµI, (5)

N = S+ E+ I + R+ D, (6)

where the effective reproduction number (Re) is the expected

number of people that each infected individual can transmit the

virus to during the outbreak, the basic reproduction number

(R0) is the natural reproduction number when there is no

intervention, the incubation time (tE = 1
σ ) is the average time

in which an individual is exposed but not yet infectious, the

recovery time (tI = 1
γ ) is the average time after which an

the infected case become concluded (recovered/dead), the case

fatality proportion µ is the proportion of fatal cases among all

concluded cases, and the waning time (tR = 1
α ) is the time that

recovered individuals retain immunity. Since we deal with the

initial stages of the pandemic, we assume people carry immunity

to the disease upon recovery (α = 0) and the population stays

constant over time and is equal to N.

Substantial amounts of COVID-19 cases are not reported

due to testing availability and testing strategy. Hence, the exact

total number of COVID-19 cases is unknown and typically not

uniquely determined from the number of confirmed cases (52–

54). Korolev (53) emphasizes that neglecting unreported cases

leads to biased parameter estimation, so it is important for our

model to address this issue.
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To distinguish observable cases among all possible cases, we

use a parameter called response rate ρ, which is the probability

of a case being reported. At each timestamp (in our case, each

day), if the SEIRD model estimates the number of new cases

(transition from S to E) to be S2E and the number of recovered

cases (transition from I to R) to be I2R, ourmodel, the number of

reported confirmed cases and recovered cases will be corrected

by the response rate:

Newly reported confirmed cases ∼ Binomial(S2E, ρ) (7)

Newly reported recovered cases ∼ Binomial(I2R, ρ), (8)

where Binomial(n, p) is the discrete probability distribution of

the number of successes in a sequence of n experiments. Here,

a reported case can be understood as a success, and each case

can be understood as an experiment. Response rate ρ is inferred

together as a parameter for our SEIRD model. Since it varies

widely across countries, the estimated value is used internally

within the country and is not generalized for others.

4.2. Scaling up with probabilistic
programming

To implement the probabilistic models, we used the

probabilistic programming language Pyro (55). For this

particular inference task, we adopted Pyro’s Epidemiology

framework (56) for scaling up our experiments with a restricted

class of stochastic discrete-time discrete-count compartmental

models. This framework uses the Markov Chain Monte Carlo

(MCMC) algorithm to fit the SEIRD model to infer COVID-

19-related parameters: reproduction number R0, recovery time,

incubation time, transmission rate, and mortality rate.

4.2.1. Summary of the method

MCMC is a stochastic algorithm that repeatedly generates

random samples describing the distribution of parameters of

interest (in our case, COVID-19 related parameters), where a

new sample is generated based on the previous sample, thereby

creating a Markov chain. The Markov chain has a stationary

probability pS(x) such that if the chain ever arrives at pS(x), it will

keep sampling from pS(x) forever. Therefore, the goal of MCMC

is to design a transition probability to make the stationary

distribution equate the target probability [i.e., pS(x) = p(x)].

Starting from an initial random sample, the algorithm guides the

Markov chain to the stationary distribution, which we force to be

the same as the target distribution (57).

A popular instance of the MCMCmethod is the Metropolis-

Hastings algorithm that uses sampled proposal probability

distribution (also called the kernel), followed by an acceptance

criterion that chooses to accept or discard the new sample

by comparing how likely the proposal distribution is to differ

from the true next-state probability distribution. This criterion

is implemented by an acceptance ratio, the probability for

which we accept the new sample. If the proposal distribution

is closer to the true distribution, we set a higher ratio to

accept the new sample. For optimizing the sampling process,

we used an instance of the Metropolis-Hastings algorithm,

namely the Hamiltonian Monte Carlo (HMC) algorithm with

the No-U-Turn Sampler (NUTS). The HMC algorithm avoids

random walk behavior by taking steps informed by the first-

order gradient information (58). It utilizes an approximate

Hamiltonian dynamics simulation, which is then corrected

by a Metropolis acceptance step (59, 60). HMC reduces the

correlation between successive sampled states, allowing the

algorithm to converge much faster with fewer Markov chain

samples. However, since HMC is highly sensitive to two

hyper-parameters: step size and the number of steps, the

No-U-Turn Sampler (NUTS) is used to adaptively set these

parameters (58). Thus, we can perform HMC without any

manual hyperparameter tuning.

Assumption: The pandemic trajectory y (representing number of

confirmed cases, recovered cases, fatalities over time) is generated

from a SEIRD model f2 from Section 4.1, parameterized by

2 = {1/γ , 1/σ ,R0,µ, ρ} with prior p(2):

y = [y1, y2, . . . , yT ], where yt = f2(t, yt−1)

Input: Observed pandemic trajectory y

Output: The posterior distribution p(2|y) of each parameter in 2

and its expected value E[2]

for i = 1, 2, 3, . . . until convergence do
Sample a set of parameters 2i from prior p(2);

Get the SEIRD model f2i corresponding to the set of

parameters 2i;

Predict the pandemic trajectory ŷ from the model f2i :

ŷ = [ŷ1, ŷ2, . . . , ŷt], where ŷt = f2i (t, ŷt−1);

Get the acceptance ratio κ using HMC-NUTS algorithm:

κ = HMC-NUTS(y, ŷ);

Accept the sample 2i with probability κ and put it into the chain;

If the number of divergent transitions (61) is zero:

convergence = True → exit the loop;

return Get the posterior distribution p(2|y) from the chain and use

its expected value E[2] as the parameters of the SEIRD model f2.

Algorithm 1. Estimating parameters of the SEIRD model using HMC-

NUTS algorithm.

4.2.2. Algorithmic presentation

From the observed COVID-19 trajectory (number of

cumulative confirmed cases, recovered cases, fatalities over

time), we apply HMC-NUTS to infer the right parameters to

describe the development of the pandemic. Considering the

pandemic follows the SEIRD model, Algorithm 1 describes how
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TABLE 1 Estimation results of COVID-19 virus parameters without any

interventions.

Parameter Abbreviation Value

Recovery time 1/γ 16.33 days

Incubation time 1/σ 5.27 days

Basic reproduction number R0 2.64

Case-fatality rate µ 2.5%

According to model’s estimations it takes around 16 days to recover after being infected,

5 days for symptoms to develop after the exposure and mortality rate is equal to 2.5%.

the HMC-NUTS algorithm estimates the model parameters.

Here, y = [y1, y2, . . . , yT] is a pandemic trajectory with its

statistics yt at time t.

4.3. Fitting SEIRD model to Sweden—The
reference country

We ran the model to estimate the parameters of the Swedish

data before April 1st, 2020. We chose this early stage of

the COVID-19 pandemic since Sweden did not impose any

strict policies and aimed to achieve herd immunity (62). We

assumed that the virus transmission rate was unaffected by any

interventions, so we used Sweden as a baseline case and perform

the experiments to infer unaffected COVID-19 parameters.

To run our probabilistic model, we set the prior according

to the estimations of the World Health Organization (63). It

was reported that mild cases typically recovered within two

weeks, the incubation period was on average 5–6 days, and R0

was typically around 2. Mortality and recovery rates differed

depending on the region and stage of the virus spread, but the

case-fatality rate was roughly 2.5%. Prior of the response rate ρ

is given as Beta(10, 10), which favors the initial value around 0.5,

then converges in the range of 0 to 1.

The obtained posterior virus-related statistics for Swedish

data are shown in Table 1. For more accurate results, we ran the

model six times and reported the averaged values. The results are

reasonable enough to use in our further simulations.

5. Estimation of policy strength by
the change-point model

Change points in time series denote abrupt variations, and

such changes represent transitions that occur between states (5).

Change-point detection concerns whether or not a change has

occurred or identifying the time of any such change. It is useful

in modeling and predicting time series in diverse applications

such as human activity analysis, speech and image analysis,

medical monitoring, and anomaly detection (6).

This section introduces a change-point detection

methodology to quantify the efficiency of the major

interventions applied worldwide to mitigate the COVID-

19 spread. First, we briefly introduce the concept of estimating

the policy strength by referring to the compartmental model and

its formula. Second, we describe a probabilistic programming

model that detects change-points in the course of the caseload

after the country applied NPIs. In the process of detecting

change points, a probabilistic programming model can

estimate the policy strength together. Next, we elaborate

on several countries’ data to conclude the efficiencies of

investigated policies and give a summary of our findings in the

final subsection.

5.1. Concept: Policy strength and the
change-point

There are several works that explain and compare the

transmission of viruses under various situations by using the

slope of the log-transformed instances. Both the rate of change

of the log-transformed case incidence and the instantaneous

reproduction number, Re, are considered important for the

investigation of the virus (64). For example, Caspi et al. (65)

modeled replication rate (RR) as the slope of the logarithmic

curve of confirmed cases to compare the coronavirus spread

in different climates. Another study by Gebski et al. (66)

observed changes in the slopes of log-transformed incidents

of Staphylococcus aureus (MRSA) infections in hospitals to

evaluate the success of interventions. In this work, we adopt

similar strategy by evaluating effectiveness of the interventions

by comparing the slopes of the confirmed cases before and after

the policy establishment.

We will first explain how to measure the policy strength by

referring to the SEIRD compartmental model (see Section 4.1)

with some simple assumptions and new terms we describe

below. The transmission rate β is the number of susceptible

individuals that an infected individual can infect in a day,

which is calculated as β = Reγ . At the very beginning, almost

everyone in our setting is in the Susceptible compartment, so

we can assume that S is equal to the total population size N, or

S = N. With this approximation, Equation (1) can be rewritten

as follows:

dS

dt
= −Reγ I = −βI (9)

Additionally, since the incubation period is much shorter

than the recovery time, we can ignore the E, R, and D

compartments at the initial stage of the simulation. Thus, we

can approximate the total population size as N = S + I and

Equation (3) becomes:

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2022.953472
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhunis et al. 10.3389/fpubh.2022.953472

FIGURE 4

Graphical representation of estimating policy strength. The

green line represents a log-scaled cumulative case counts. Due

to some interventions, the graph bends at the change-point, as

indicated by the black dotted line. The change-point divides the

graph into two intervals: blue and red. Both lines have di�erent

slopes, w1 and w2, respectively, which represent the virus

transmission rates before and after the intervention came into

e�ect. To calculate the e�ciency of the intervention, we use the

formula 1−w2/w1. The data for early Chinese cases was used

for this example. Here, the calculated 1−w2/w1 value

represents the e�ciency of the lockdown policy of China back

in early 2020.

dI

dt
= βI (10)

The size of the Infected compartment rises exponentially

with the rate w = β (that is, on day t, the number of infected

cases is calculated as eβt). Due to the exponential nature, it is

appropriate to investigate the case counts using a log scale. In

the log scale, the exponential spread is represented as a linear

line, with the transmission rate of the virus β represented by the

slope w.

Consider an example in Figure 4. In the beginning, the

graph is a steep line with the slope w1 (representing a rapid,

exponential spread). After a corresponding policy is applied, the

graph bends and becomes less steep with the slope w2 ≪ w1

(slower spread). Therefore, the graph roughly consists of two

lines of different slopes, w1 and w2, with a separation point

in-between, which we call a change-point (the black dotted

vertical line in the graph). The slope w1 and w2 represent the

transmission rates before and after the change-point. Since w1

and w2 represent the transmission rates before and after the

policy takes its effect, we can define the strength of the target

intervention in terms of their ratio:

Policy efficiency = 1−
β2

β1
= 1−

w2

w1
(11)

Given the incubation period, we expect the policy will show

effect after around 2–4 weeks after the policy establishment.

In the next subsection, we will introduce a probabilistic

programming approach to find the change-point when the

policy takes effect.

5.2. Implementation: Change-point
detection with policy strength estimation

As was mentioned in the related work (see Section 2.2),

probabilistic models were successfully used to detect change-

points in transmission rates of coronavirus. In the present

subsection, we describe the probabilistic programming approach

to detect change-points as well as estimating policy strength.

Algorithm 2 sketches how the change-point detection model

based on the probabilistic programming operates. From the

case trajectory of the COVID-19 pandemic, we used the HMC

algorithm with NUTS (58) to estimate the change-point τ and

slopes w1 and w2.

Assumption: The logarithmic case trajectory y is generated from the

change-point model g2 (described in Section 5.2.1), parameterized by

2 = {w1, b1,w2, b2, τ , σ } with prior p(2) (described in Section 5.2.2):

y = [y1, y2, . . . , yT ], where yt = g2(t)

Input: Observed cases trajectories y

Output: The posterior distribution p(2|y) of each parameter in 2

and its expected value E[2]

for i = 1, 2, 3, . . . until convergence do
Sample a set of parameters 2i from prior p(2);

Get the change-point model f2i corresponding to the set of

parameters 2i;

Predict the case trajectory ŷ from the model f2i :

ŷ = [ŷ1, ŷ2, . . . , ŷt], where ŷt = f2i (t);

Get the acceptance ratio κ using HMC-NUTS algorithm:

κ = HMC-NUTS(y, ŷ);

Accept the sample 2i with probability κ and put it into the chain;

If the number of divergent transitions (61) is zero:

convergence = True → exit the loop;

return Get the posterior distribution p(2|y) from the chain and use

the expected value of each parameter (i.e., E[w1],E[b1],E[τ ], . . . ) to

describe the spread of pandemic y = w1t + b1, y = w2t + b2 before

and after the change point τ and the policy efficiency 1− w2
w1

.

Algorithm 2. Change-point detection using HMC-NUTS algorithm.

5.2.1. Likelihood choice

In our probabilistic setting, the likelihood corresponds to the

log-scaled line of accumulated confirmed cases. We chose piece-

wise linear regression and added the StudentT noise, which is

more robust w.r.t the outliers than conventional Gaussian noise

(67). We define τ as the change-point in the range [0, 1], with
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0 and 1 being the start and end of the simulation time period,

respectively. The likelihood can be modeled as follows:

y = wt + b+ ǫ, (12)

where

w, b =







w1, b1, if t < τ

w2, b2, if t > τ

ǫ ∼ StudentT(2, 0, σ 2).

Note that the weights w1 and w2 correspond to slopes before

and after the change-point in Equation (11) and Figure 4. To

sum up, the change-point model is parameterized by six factors:

w1, b1,w2, b2, τ , and σ .

5.2.2. Prior choice

Here we illustrate the choice of parameters’ priors used as

input for our probabilistic model to draw samples from. For

weights, we use the normal distribution, with w2 having the

mean equal to zero as we expect the slope to drop significantly

after the change-point.

w1 ∼ N(0.5, 0.25)

w2 ∼ N(0, 0.25)
(13)

For bias terms, we set the priors to be from normal

distributions. However, this time, we adjust the bias priors for

each country adaptively since bias is sensitive to each country’s

course of the caseload. We assign the mean of y in the first

and fourth quartiles to m1 and m2, respectively. For b1 to be

relatively flat the standard deviation s1 is set to 1 and s2 is set to

0.25m2.

b1 ∼ N(m1, s1)

b2 ∼ N(m2, s2)
(14)

We use Beta distribution as a prior for the change-point

τ and assume that the change is more likely to occur in the

second half of the date range. We choose the parameter of the

Beta distribution so that the peak of Beta(4, 3) falls to the 60th

percentile of the date range.

τ ∼ Beta(4, 3) (15)

The magnitude of the noise is quantified by the standard

deviation σ . We put a simple uniform prior for σ .

σ ∼ Uniform(0, 3) (16)

Using the prior defined above and the actual case trajectory,

we can finally estimate the parameters to measure the policy

efficiency with the change point (see Algorithm 2).

5.3. Inferring maximum e�ciencies of
major policies with the change-point
method

We investigate major initial interventions applied by several

countries to mitigate the virus spread. For more accurate

results, we chose nine countries presented in Table 2 that

strongly imposed corresponding policies, assuming that they

were applied to the fullest extend. By investigating the countries

that applied a policy most stringently, we find a meaningful

upper bound for each policy’s efficacy. This upper bound is

helpful for policymakers to determine the most appropriate

intensity of the policy (more details in Section 6). In this

experiment, we focused on five main policy categories:

• Lockdown: A lockdown is an intervention that forces people

to stay where they are. It includes a gathering ban, closure of

non-critical services, and strict transportation restrictions.

People cannot freely enter or exit their designated areas,

and economic activities are essentially suspended.

• Social distancing: Social distancing includes interventions

or measures intended to maintain a physical distance

between people, including a gathering limit or closure of

non-essential services. It can be considered as a partial or a

soft lockdown.

• Contact tracing and social distancing: Contact tracing is

the policy that investigates the close contacts of infected

cases and then tests and quarantines them. Investigating

the countries with successful contact tracing campaigns

revealed that they coupled the contact tracing intervention

with social distancing (e.g., South Korea, Australia, and

Vietnam). For this reason, instead of addressing contact

tracing separately, we merged it with social distancing to

be closer to the real-world scenario.

• Mask and hygiene mandate: Almost every country imposed

a mask mandate sometime in their COVID-19 timeline

response. Since it is always coupled with other restrictions,

separating the effect of mask mandate from other

interventions is a challenging task. Because the change-

point method cannot be applied in this case, we proposed a

different approach to this issue, discussed in Section 5.4.4.

• Vaccine: With the recent roll-out of vaccines worldwide,

we also examine the effect of recent vaccination campaigns

in Israel and the US. The effectiveness of the vaccines

depends on several factors, including the time it takes

to approve, manufacture, and deliver them to the

population, as well as improvements, and the development

of other vaccine variations, and the proportion of the

population vaccinated.While there are many reports on the

effectiveness of several vaccines in laboratory settings (68,

69), the early effects of the vaccinations on a large scale have

yet to be studied in more detail. Assuming that vaccination
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TABLE 2 Countries and policies used for analysis.

Policy Country Started from Strength Take effect

Lockdown China Jan 2020 0.98 16 days

Lockdown New Zealand Mar 2020 0.95 8 days

Contact tracing and distancing South Korea Feb 2020 0.96 8 days

Contact tracing and distancing Australia Mar 2020 0.96 10 days

Social distancing/soft lockdown Canada Mar 2020 0.70 –

Social distancing/soft lockdown Singapore Mar 2020 0.78 20 days

Mask and hygiene Japan Feb 2020 0.30 –

Vaccine US Dec 2020 0.73 35 days

Vaccine Israel Dec 2020 0.88 59 days

No intervention (Herd immunity) Sweden Mar 2020 0 –

Policy strength and time to take effect are inferred by change-point model. Countries and their major policies are listed according to the starting time and strength. In extreme policies

such as lockdowns, the effect comes quickly, but there are side effects to be described later in Section 6.3.

FIGURE 5

Posterior for China. As the initial epicenter of the outbreak, cases in China skyrocketed in January 2020. China started applying a swift and

stringent lockdown from January 23, 2020 (70), starting with the city of Wuhan, and managed to largely bring the outbreak under control in

February, 2020. The growth rate was suppressed staggeringly from 0.2806 to a mere 0.0065, with the change-point estimated around February

8, 2020. (A) Fitted graph for China with change-point on February 8, 2020. (B) Posterior distribution of weights (transmission rate) before and

after change-point.

campaigns can result in the same effects on virus mitigation

as any other policy that the government may enact, we also

analyze the effectiveness of the vaccination programs by

applying the same change-point model.

By using the probabilistic programming model described in

the previous section, we detected the amount of time the policy

needed to take effect after establishment, the change-point, and

policy strength for each case. Since we focused on the initial stage

of the pandemic, the time frame we simulated is 3–6 months

from the first recorded case, including the date that the policy is

enforced and its effect could be seen. In all experiments, results

have converged to the values consistent with our priors. The

posteriors also fit well with the actual data (Figures 5–12). The

summary of policy efficiencies is shown in Table 2. In the next

section, we discuss the results in more detail by investigating

each policy separately by country.

5.4. Discussion of the results of the
change-point method

5.4.1. Lockdown

We investigate the lockdown interventions imposed in

China and New Zealand. Both countries applied a strict

lockdown as their initial strategy to combat the virus spread. The

COVID-19 pandemic emerged in China, with the very first case

confirmed on December 10, 2019 (70). New Zealand recorded

its first case on February 28, 2020 (71).

Both countries experienced a swift reduction in infection

after the application of lockdown. With a strong centralized

government, China could force a lockdown from January 23,

2020, starting with the epicenter of Wuhan city and Hubei

province. The lockdown was overwhelmingly stringent, with a

travel ban, a stay-at-home order, and transportation suspension.

Other Chinese cities quickly followed suit with similar measures.

Frontiers in PublicHealth 11 frontiersin.org

https://doi.org/10.3389/fpubh.2022.953472
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhunis et al. 10.3389/fpubh.2022.953472

FIGURE 6

Posterior for New Zealand. After confirming the first case, New Zealand experienced a rapid spread of the diseases. The government imposed a

strong lockdown from March 25, 2020 (71) and brought the outbreak under control in February, 2020. The growth rate declined from 0.2406 to

0.0125. The change-point was around April 2, 2020. (A) Fitted graph for New Zealand with change-point on April 2, 2020. (B) Posterior

distribution of weights (transmission rate) before and after change-point.

FIGURE 7

Posterior for Canada. Canada recorded a total of more than 10,000 cases up to early April. The government imposed various restrictions in

March-April (72) and reduced the transmission rate from 0.0551 to 0.0163. The change-point point was around April 28, 2020. (A) Fitted graph

for Canada with change-point on April 28, 2020. (B) Posterior distribution of weights (transmission rate) before and after change-point.

Our model shows that the policy took its effect around February

8, 2020, with a 98% reduction in the transmission rate.

New Zealand recorded its first case on February 28, 2020.

The New Zealand government introduced a four-tier alert level

system and imposed a lockdown on most of the country’s

population and economy from March 25, 2020 (71). The policy

seemed to take effect around April 2, 2020, with a 95% reduction

in the infection rate.

From these observations, we can conclude that a lockdown

is capable of quickly curbing infections. We took the average

efficacy of the two mentioned countries, 96% as the efficacy of

the lockdown for our further experiments.

5.4.2. Social distancing

We investigated the social distancing imposed in Canada

and Singapore. Both countries applied social distancing or soft

lockdown mandates in their initial strategy to combat the virus

spread. The first COVID-19 case in Canada was confirmed on

January 25, 2020 (72). AroundMarch–April, 2020, the Canadian

government started to apply several restrictions to maintain

social distancing (72).

The first COVID-19 case in Singapore was confirmed

on January 2, 2020 (76). The government introduced a soft

lockdown (dubbed a circuit-breaker), which included a stay-

at-home order and cordon sanitaire6. Contact tracing was not

extensively utilized until a later stage of the pandemic (73, 79).

Both countries saw a considerable drop in the infection rate.

Canada applied the restriction from around March to April,

and the policy had an effect on around February 8, 2020, with

a 70% reduction in the infection rate. Singapore applied the

6 A cordon sanitaire is the restriction ofmovement of people into or out

of a defined geographic area, such as a community, region, or country.
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FIGURE 8

Posterior for Singapore. Singapore saw a rapid growth of the caseload among migrant workers around April 2020, and a “circuit-breaker” was

imposed on April 7 (73) that brought the outbreak under control in late April, with the growth rate declining from 0.1212 to 0.0261. The

change-point point was around April 27, 2020. (A) Fitted graph for Singapore with change-point on April 27, 2020. (B) Posterior distribution of

weights (transmission rate) before and after change-point.

FIGURE 9

Posterior for Australia. After confirming the first case, Australia recorded almost 10,000 cases before the end of March. With social distancing

and contact tracing e�orts from March 21, 2020 (74), Australia contained the spread, with a decline in the growth rate from 0.1928 to 0.0086.

The change-point point was around March 31, 2020. (A) Fitted graph for Australia with change-point on March 31. (B) Posterior distribution of

weights (transmission rate) before and after change-point.

circuit-breaker on April 7, 2020, and the change-point was

determined to be on April 27, 2020, with a 78% reduction in the

infection rate.

It is evident that social distancing had a considerable

effect on reducing the infection rate. We took the average

efficacy of the two mentioned countries, 74%, as the efficacy of

social distancing.

5.4.3. Contact tracing and social distancing

Australia and South Korea both utilized a contact tracing

strategy coupling with social distancing as their initial strategy

to combat the virus spread.

The first COVID-19 case in Australia was confirmed on

January 25, 2020. OnMarch 21, 2020, the Australian government

imposed social distancing rules, with the closure of “non-

essential” services. Swift recruitment of a large contact tracing

workforce took place in March 2020 (74).

In South Korea, the first COVID-19 case was confirmed

on January 20, 2020 (75). The government raised the alert

level to “Serious” on February 25, 2020, announced guidelines

to limit trips and outdoor activities and imposed emergency

safety measures from basic hygiene rules to self-quarantine and

social distancing (76). Health officials implemented extensive

movement and contact tracing to identify and inform exposed

individuals (76).

Both countries experienced a swift reduction in infection

after applying their social distancing coupling with contact

tracing. In Australia, the policy seemed to take effect after 10

days (around March 31, 2020), with a 96% reduction in the
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FIGURE 10

Posterior for South Korea. South Korea was the second epicenter of the outbreak after the super-spreader event of Patient 31. The government

relied on social distancing and extensive contact tracing to avoid a stringent lockdown, starting shortly after the Patient 31 event (around

February 25, 2020) (75, 76), and brought the outbreak under control in March, with a decline in the growth rate from 0.2587 to 0.0106. The

change-point point was around March 4, 2020. (A) Fitted graph for South Korea with change-point on March 4, 2020. (B) Posterior distribution

of weights (transmission rate) before and after change-point.

FIGURE 11

Posterior for the US. The US recorded more than 20 million cases when they start vaccine program on December 14, 2020 (77), US sees the

growth rate declined by 73%, from 0.0126 to 0.0034. The change-point point was around January 18, 2021. (A) Fitted graph with change-point

on January 18, 2021. (B) Posterior distribution of weights (transmission rate) before and after change-point.

infection rate. In South Korea, the policy showed effects on

March 4, 2020, 8 days after the policy establishment, with an

identical reduction in the infection rate.

It is evident that social distancing when coupled with

contact tracing can quickly curb the spread of infection. We

take the average efficacy of the two mentioned countries,

96%, as the overall efficacy. Thus, contact tracing could

push the efficiency of social distancing to the same level as

the lockdown.

5.4.4. E�ect of mandating masks and hygiene

We could not use the Changing-point model for masks and

hygiene because they are hard to separate from other policies.

However, we can indirectly represent the transmission rate

via effective reproduction numbers. The transmission rate is

proportional to reproduction number:

w = γRe

Therefore, we can use the reproduction number ratio.

Policy efficiency = 1−
β2

β1
= 1−

w2

w1
= 1−

Re2
Re1

We compared the effective reproduction number Re of Japan

before policies were applied with the basic reproduction number

R0 of Sweden from Table 1, which is equal to 2.64.

The reason why we chose Japan lies in its cultural practices,

which list the culture of wearing masks, very little physical
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FIGURE 12

Posterior for Israel. Israel recorded more than 30,000 cases when they started the vaccination program on December 20, 2020 (78). After the

vaccination took its a�ect, the growth rate declined by 88%, from 0.0120 to 0.0014. The change-point point was around February 17, 2021. (A)

Fitted graph with change-point on February 17, 2021. (B) Posterior distribution of weights (transmission rate) before and after change-point.

contact (such as hugging or shaking hands), and not wearing

shoes in the house (80). We expect the reproduction number in

Japan to be lower even if there is no strict policy applied. The

average effective reproduction number Re for Japan after 6 runs

was equal to 1.84. Thus, the efficiency of the hygiene and masks

mandates is equal to 1− 1.84/2.64 = 0.30.

5.4.5. Vaccine

The US and Israel both have a sweeping and widespread

vaccination program. The results obtained by ourmethod for the

US and Israel are plotted in Figures 11, 12, respectively. The US

started the vaccine program on December 14, 2020 (77), while

Israel started their campaign on December 20, 2020 (78). These

two countries experienced a swift reduction in infection after

the vaccine program started. In the US, the policy seemed to

show effect around January 18, 2021, with a 73% reduction in the

infection rate. In Israel, the policy produced effects on February

18, 2021, with an 88% reduction in transmission rate. According

to our results, in both cases, vaccination successfully mitigated

the virus spread.

However, most countries lack a swift and large-scale

vaccination due to different reasons, including delay in vaccine

production, financial difficulties, or vaccine hesitancy (81). Thus,

in most countries, the fraction of the vaccinated population falls

far below the herd immunity threshold according to the current

data7. The start of vaccination programs can also lead to some

incautiousness and fatigue that may have already driven up cases

in many countries like India and Thailand. From Figure 13,

we can see that after the vaccination campaign started (82, 83)

7 https://ourworldindata.org/grapher/share-people-fully-

vaccinated/~covid

the number of cases increased drastically. It is possible that

the reason for such an outcome lies in weakening awareness of

coronavirus in the population after the vaccination campaigns

start. People may have developed a more relaxed attitude toward

restrictions, which consequently may have caused these spikes

in confirmed cases. We conclude that large-scale campaigns and

accountability of the population in vaccination establishment

play a key role in its success.

5.5. Discussion

5.5.1. Policy overview

In Section 5, we evaluated the effectiveness of major policies

based on the observed statistics.We found that social distancing,

lockdown, and contact tracing are all effective in controlling

the pandemic, with lockdown having the highest impact on

the transmission rate (on average 96% efficacy for China and

New Zealand). It was also found that a combination of social

distancing with contact tracing was shown to have an effect

comparable to the lockdown (also 96% efficacy for South Korea

and Singapore). The policy usually takes effect from 8 to 20 days

after enforcement.

We also estimated the vaccination campaigns’ efficiency.

We found that although in countries like Israel and the US,

vaccination effectively mitigated the virus spread (on average

81% efficacy for Israel and the US), other countries like Thailand

and India failed to bring virus spread under control. Moreover,

it seems that vaccination programs were followed by a rapid

increase in the confirmed case statistics in such countries. We

suppose that reason for such controversial behavior lies in the

lack of a large-scale vaccination program, as well as differences

in public responsibility awareness.
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FIGURE 13

Vaccine fails to mitigate virus in Thailand and India. (A) Thailand after vaccination on Feb 28. (B) India after vaccination campaign on Jan 16.

5.5.2. Limitations

This analysis was based on assumptions, where we ignore

the inherent differences between countries and populations.

Complex factors such as the acceptance or awareness of the

general public could affect the policy’s effectiveness. It is

evident that some Asian countries tend to perform better in

containing the diseases, which we attribute to the collectivist

nature and (usually) centralized government. For example,

countries with experience with previous epidemics (China and

Vietnam with SARS and South Korea with MERS) also tended

to perform better thanks to previous experience in handling

similar outbreaks.

However, it is too early to conclude that stringent

policies like lockdowns are the most successful at mitigating

the COVID-19 pandemic since the side effect of applying

the policy should also be considered. Considering that

the most efficient policies by our estimations may

not be the most effective ones in terms of economic

cost, we conducted additional experiments to address

this issue.

5.5.3. Potential confounding factors

The decrease in caseload is most probably driven by the

policy’s effect, but it can be due to the shrink of the susceptible

population (84). However, since we investigate the policy effect

in the initial stage of the pandemic, we assume that the

susceptible cases remain relatively stable. The change-point

experiments are subjected to the time frame of January to May

2020, and the reported cumulative confirmed cases on May

31, 2020, were about 6 million, which is 0.1% of the global

population. Phipps et al. (85) estimated that the number of actual

cumulative cases could be 5–6 times larger than the reported

number; it does not affect the number of susceptible of the

initial stage of the pandemic. The change in transmission rate

is principally driven by the policy efficiency, not because of the

change of susceptible population.

6. Simulation by generative model

Having the virus statistics and policy capacities, we

are ready to run our simulation experiments. Our pipeline

is flexible enough to handle simulations with different

sets of parameters. Since all variables are already inferred,

we can use a simple generative model to predict how

pandemic plays out in different scenarios. To address

the trade-off between public health protection and

economic loss, we estimate the cost of the policies and

the total loss for given caseloads and death tolls. We

tried out multiple policy combinations to figure out what

might be the best policy to fight the pandemic in our

experimental setting.

6.1. Model

To simulate the infection and fatality cases, we used the

SEIRD (see Equation 5). We follow the differential equations

Equations (1)–(6) and the virus and policy statistic derived in

Sections 4, 5. However, the fatality rate will not stay constant as

we considered the hospital capacity.

Apart from the parameters related to virus statistics

and policy efficiency, we also need the input of the

economic effect of the policies as well as the hospital

statistics (hospital capacity, percentage of cases requiring
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hospital admission, and the death rates with and

without hospital treatment). Our model gives flexibility

to each country to input its own parameters into

the model.

6.2. Assumption

We illustrate the operation of our model on an imaginary

country with a population of 1 million. In addition to the

parameters we inferred from previous results, we applied some

additional assumptions:

• The hospital capacity is 60 per 100,000 capita (0.06%).

Among OECD countries, the number of critical care beds

ranges from 3.3 to 33.9 beds per 100,000 capita (86), and

the number of hospital beds ranges from 50 to 1,300 beds

per 100,000 capita (87). Since countries might adapt normal

beds into critical care beds to treat COVID-19 patients

amid the health crisis, we use 60 critical care beds per

100,000 capita, which is already double the figure for the

most resourceful country (33.9 for Germany).

• 6% of the total cases are required to stay in the intensive

care units (ICU).

Preliminary data on a subset of 7,162 COVID-19

patients age 19 and older with known health history in the

US, fromNovember 12, 2020, toMarch 28, 2020, found that

6% requires ICU treatment8.

• ICU-required cases will die without ICU treatment. With

treatment, the death rate for cases admitted to ICU is 60%.

Data fromWashington, Seattle, and California suggests

mortality rates reported in patients with severe COVID-19

in the ICU range from 50 to 65% (88).

We also estimate the economic and human capital cost for

each policy:

• Lockdown: 10% of GDP per year

• Distancing: 5% of GDP per year

• Hygiene and masks: $2 per day per capita.

• Infection: $300 per infection per day (until recovered).

• Contact-tracing: $6,400 per new case.

• Death: $7 million per death.

These estimations are reasonably set based on the

following facts:

• Research suggests that global output shrinks by about 33%

at the peak of a lockdown, with an annual impact of over

9% of the annual GDP (3).

8 https://www.tfah.org/wp-content/uploads/2020/04/

COVIDunderlyingconditions040320.pdf

• The value of one human life is estimated to be A$5.0 M

($3.48 M) in Australia in 2020 (89) and $10 M in America

in 2017 (90).

• In South Korea, the treatment’s average daily cost for a mild

patient is 180,000–260,000 ($158–$229), and for severe

patients is 650,000 ($572) (91).

• The costs of a contact tracing policy include the

administrative (monetary) cost and the total quarantine

days of the second-generation contacts. The standard

contact tracing policy, where all close contacts are

requested to quarantine for 14 days from the day of

exposure, is estimated to cost 62.1 quarantine days and

$189 per index case (92).We assume contact tracing is done

on every confirmed case, and each quarantine day costs

$100 (South Korea’s government quarantine facility costs

100,000–150,000==W ($88–$130) per day)9. The total costs

can be estimated as about $6,400 per case ($6,210 for 62.1

quarantine days and $189 for administrative cost).

• Price of a mask in South Korea is normally set around $2

and $1.2 under the government rationing scheme (93).

6.3. Lockdown only delays the virus
spread

We ran the model without any policy and with the lockdown

applied from day 30 to 60. As you can see from Figure 14,

applying lockdown for 1 month simply postpones the virus

spread. Another problem is that it significantly hits the country’s

economy, so it cannot be applied for a long time. Thus, even

though lockdown is estimated to have the highest efficiency

of 0.96, it might not be the best policy to apply. So further

experiments are required to identify how, when, and for how

long the policies should be applied.

6.4. Best initial response: Social
distancing with contact tracing

Finally, we want to devise the best initial response to the

virus. Using the inferred statistics, we conducted experiments on

the policies and performed simulations to develop the optimal

policy with minimal loss (both economic loss and life loss). We

designed an imaginary country with a population of 1 million

and a GDP of $30,000 per capita. The country had a population

of 1 million, and the simulation spanned three months. We

assume that policy-makers revised the policy every month, and

a policy is applied exhaustively, partially (50% efficacy), or not

applied at all. Policies could be applied together. The goal was to

minimize the cost.

9 https://kr.usembassy.gov/022420-covid-19-information/
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FIGURE 14

A lockdown delays the virus spread, but cannot prevent it. In this simulation, the lockdown policy was imposed from day 30 to day 60 (total 1

month). The gray graph represents the baseline situation with no policy applied, the green graph indicates the case when a lockdown is applied.

The blue and red lines mark the start and end of the lockdown, respectively. We can see that although lockdown sharply decreases the number

of exposed and infected cases, it cannot prevent the virus from spreading after the lockdown is lifted on day 60. The number of exposed and

infected cases rises again. Given the cost of the lockdown, it is impossible to maintain it for long periods of time, making it less preferable to less

costly policies. Thus, the conclusion is in alignment with those of prior works (42, 46). (A) Susceptible cases, (B) Exposed cases, (C) Infected

cases, (D) Recovered cases, (E) Death cases.

6.4.1. Results

Then results after three months for some important policy

combinations are shown in Table 3. The full loss trajectories of

important policies are shown in Figure 15.

The best policy identified so far is contact tracing with social

distancing, with a loss of around 2 billion dollars. Without

intervention, the loss in the imaginary nation is $197.9 billion.

Scaling up to the US population, the simulated economic loss

reaches $65 trillion which is nearly equivalent to theWorld GDP

of $85 trillion, implying that intervention must be enforced in

the initial stage of the pandemic.

Generally, social distancing coupling with contact tracing

incurs less loss than lockdown or social distancing. They are all

strong interventions compared to masks and hygiene mandates.
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TABLE 3 Loss regarding some applied policies, full results are

available in our repository.

Policy combination Total

cases

Total

deaths

Total loss

(billion $)

Optimal policy* 10,734 577 4.526

Contact tracing and distancing 11,003 591 4.569

Lockdown 11,003 591 4.933

Social distancing 22,478 1,138 8.437

Mask and hygiene mandate 201,929 8,941 63.400

No policy 592,136 28,018 197.927

*Optimal policy: Contact tracing and distancing for threemonths with additional hygiene

and mask mandate for the first month.

FIGURE 15

The (daily) accumulated loss incurred in each intervention.

Social distancing coupled with contact tracing incurred the least

loss, followed by lockdown, social distancing, masks and

hygiene mandates, and no policy incurring the biggest loss.

However, they all significantly save a tremendous loss compared

to doing nothing or only doing the mask and hygiene mandates.

The human cost for mild intervention seems to be significantly

lower than the economic cost of the strong intervention.

Nonetheless, the masks and hygiene mandates still halved the

loss that we suffer when we do nothing.

Contact tracing coupled with social distancing reduces the

economic and human capital loss by 98% compared to doing

nothing. Although as efficient as lockdown (Section 5), the

economic and human capital costs are at least 8% less in a

3 month period. The optimal policy in our setting is contact

tracing and social distancing for three months with additional

hygiene and masks mandates for the first month. Hygiene and

masks mandates play some role in minimizing the loss, albeit

the improvement is marginal.

Therefore, we can conclude that quarantine and contact

tracing are the most efficient policies in our setting. Indeed,

we can see that countries that enjoyed the initial success in

controlling the virus cases, e.g., South Korea, Vietnam, or

Australia applied social distancing and contact tracing as their

primary policies.

6.5. Limitations and implications

Due to the challenge of separating the policy effects, our

study has some limitations within which our findings need

to be interpreted carefully. First, we have investigated major

policies applied in relatively wealthy countries. For economic

loss estimations, we utilized policies’ costs reported from various

developed countries using different sources. Depending on the

parameters adjusted for a particular country, the results might

be different. Second, the estimated efficiency of each policy in

Section 5 is measured on the most successful cases. Although it

provides a meaningful upper bound for each policy’s efficiency,

we cannot simply assume that every country can achieve this

maximum efficiency. Therefore, the “best” initial response in

Section 6.4 should be understood under the context that every

policy can be feasibly applied to its fullest extent. Third, future

work can utilize our model and extend it by considering the

confounding effects of other interventions or changes in the

susceptible population size. Such amodel can be used to estimate

the efficiencies of the policies applied in the later stages of

the pandemic.

Given the unique socioeconomic state, each country has

its own feasible stringency and the price tag for each measure.

Many factors contribute to this variability, such as public

acceptance, political climate, and government priority. To cope

with that, we provide a flexible end-to-end pipeline, which can

be tailored to each country’s specific needs. Decision-makers can

adjust the corresponding parameters or apply their country’s

cost estimation to adapt to their own situation. They can also

exclude infeasible policy settings in their country when running

the simulation. The resilience to control model’s parameters

allows countries to see how the pandemic will play out under

different scenarios and build their own strategies based on the

model’s output.

7. Conclusion

Recent research on COVID-19 propagation analysis has

provided a deeper understanding of the transmission processes

occurring during the past 1.5 years. Epidemiological models

point out the key factors that affect the spread of the virus,

including the basic reproduction number, virus incubation

period, and daily infection number. In the present study, we

have moved one step further to gauge the efficacy of the early-

stage policy to respond to the pandemic, with economic factors

related to the policy itself and its benefits of slowing down

the virus. Detailed analysis from 10 countries suggests that

social distancing, coupled with contact tracing, is the most
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efficient policy among major initial interventions. From the

data of Asian countries, we derive meaningful results that close

contact tracing could provide protection to citizens from the

pandemic comparable to lockdowns, without inducing as much

cost. Going one step further, we carefully designed a simulated

country and gauged the efficacy of each policy combination.

Our testbed allows end-users to control various parameters

suitable for their country’s situation. Through the process of

overcoming COVID-19, we are gaining a clearer understanding

of the trade-off between virus prevention and economic loss. As

we have seen in many countries, it is crucial to identify each

policy’s efficiencies and costs and to estimate the best time and

intensity to impose them before it is too late. We hope that

our research will assist every nation in responding to possible

future pandemics.
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