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Objectives: Hormonal reproductive factors have been considered to play an

important role in the etiology of osteoarthritis (OA). We performed Mendelian

randomization (MR) to examine whether a causal e�ect existed between them.

Methods: MR was performed by using publicly released genome-wide

association study (GWAS) summary statistics to estimate the causal

associations of three relevant exposures, including age at menarche (AAM),

age at natural menopause (ANM) and age at first birth (AFB), with the risk of OA.

We employed several MRmethods, including inverse-variance weighted (IVW),

MR-Egger regression, weighted median and weighted mode, to estimate the

causality. We performed a sensitivity analysis by manually pruning pleiotropic

variants associated with the known confounder body mass index (BMI).

Results: The instrumental variables that achieved genome-wide significance,

including 349 AAM single nucleotide polymorphisms (SNPs), 121 AAM SNPs,

54 ANM SNPs, and 10 AFB SNPs, were incorporated into the operation. IVW

analysis indicated that each additional year in AFB was associated with a

decreasing risk of hip and/or knee OA and overall OA (hip and/or knee OA:

OR = 0.79, 95% CI: 0.64–0.93, P = 1.33 × 10−3; overall OA: OR = 0.80, 95%

CI: 0.68–0.92, P = 1.80 × 10−4). In addition, our results suggested that AAM

exerted a causal e�ect on knee OA in an unfavorable manner (OR = 0.86,

95% CI: 0.76–0.95, P = 1.58 × 10−3). After accounting for the e�ect of BMI,

the causal e�ect association between AFB and hip and/or knee OA was also

examined (IVW: OR = 0.78, 95% CI: 0.66–0.92, P = 3.22 × 10−3).

Conclusion: Our findings add a growing body of evidence surrounding the

unfavorable e�ects of early AFB onOA risk, suggesting the essential for relevant

health problem management in susceptible populations.
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Introduction

Osteoarthritis (OA) is the most common form of joint

disease around the world, and it is estimated that approximately

302 million individuals suffer from OA (1). Numerous studies

have shown that OA has been ranked as the leading cause of

disability and accounts for a heavy burden of disease (2, 3). As

the aging population and obesity pandemic increase, OA is more

prevalent and has become a major public health concern (4).

However, the exact mechanism underlying the pathogenesis of

OA has not been fully clarified.

Epidemiological studies indicate a distinct sexual disparity

in the incidence of OA in which females develop the disease

more frequently and more severely than males, particularly

after menopausal age (5). Individuals who had undergone

postmenopausal hormone therapy exhibited a higher risk of

developing OA than those who did not, revealing that hormonal

reproductive factors may play a critical role in the initiation and

progression of OA. There is a wealth of data concerning the

associations of hormonal reproductive factors, including age at

menarche (AAM), age at nature menopause (ANM) and age at

first birth (AFB), with incident OA. For example, findings from a

prospective cohort study suggested that an early AAM increased

the risk of hip and knee replacement for OA, while the ANMwas

not associated with the risk (6). Another cross-sectional study

demonstrated that women with ANM<45 years were associated

with a 2.60-fold risk of developing OA compared with those

with an ANM ≥ 45 years (7). These discrepancies may be due

to potential confounding factors (such as obesity and age) and

reverse causality. Reproductive behavior is shaped by biology

and environment, while AFB represents an accurate measure

of complex reproductive outcomes, are frequently recorded and

consistently measured. It is indicated that the heritability of AFB

shifted from 9% for women born in 1940 to 22% in 1965 (8).

Mendelian randomization (MR) is an epidemiological

method that utilizes genetic variants robustly associated with

exposure as instrumental variables (IVs) to estimate the causal

effect of exposure on an outcome (9, 10). Because of the bias

from confounders, reverse causation and measurement error,

even there was a significant statistical association between the

exposure and outcome, traditional analyses have limitations for

the assessment of causality, whileMR offers an alternative way to

probe it. It is considered important to target the management of

relevant health problems in OA susceptible individuals, which

requires us to first clarify the root causes of OA. In this study,

confounders including environmental factors and BMI could

Abbreviations: OA, osteoarthritis; MR, Mendelian randomization; GWAS,

genome-wide association studies; AAM, age at menarche; ANM, age

at natural menopause; AFB, age at first birth; IVW, inverse-variance

weighted; BMI, bodymass index; SNPs, single nucleotide polymorphisms;

MR-PRESSO, MR pleiotropy residual sum and outlier; TKR, total knee

replacement.

be excluded due to the application of MR. To the best of our

knowledge, the MR study focusing on this topic do not exist.

Therefore, it is necessary to do the MR design to investigate it.

Materials and methods

Study design and data source

In our current study, a standard two-sample framework

was applied to explore the effect of three female hormonal

reproductive factors (AAM, ANM and AFB) on hospital-

diagnosed OA and its subtypes (OA at any site, hip OA,

knee OA, hip and/or knee OA). Individuals were restricted

to European ancestry to decrease the bias from population

stratification. As a milestone in the development of female

pubertal development, age at menarche varies markedly among

females. GWAS have identified tens of thousands of sequence

variant on a genome-wide scale in humans and from which

to determine the effect size of genetic variants statistically in

order to identify the risk factors of disease etiology in different

ethnic populations. GWAS gives us the opportunity to research

complex diseases by comparing SNPs loci detected genome-

wide in patients to controls for all variant allele frequencies,

obviating the need to presuppose causative genes as in a

candidate gene strategy. Genetic associations with AAM were

obtained from two large GWAS meta-analyses, including a total

of 329,345 individuals in AAM (11) and 182,416 in AAM (12).

Summary level statistics for ANMwere derived from the GWAS

of 69,360 women, identifying 44 genomic regions containing

54 independent signals, most of which were associated with

one or more DNA damage response pathway genes (13).

Biological processes, such as AFB, are indicated to partly cause

reproductive behavior. A recent GWAS of 251,151 women

examined the genetic architecture of reproductive rhythms

defined by AFB, and 10 AFB-associated loci were identified

(14). The full OA (OA at any site, hip OA, knee OA, hip

and/or knee OA) summary statistics were obtained from the

largest release GWAS meta-analysis across 16.5 million derived

from the UKB resource (15). Accounting for the confounding

effects of other traits that were genetically correlated with sleep

phenotypes, sensitivity analysis was performed after adjusting

for BMI-related genetic disorders. Summary statistics of BMI

were downloaded from a GWAS including 806,834 individuals

(16). A more detailed description of the included data sources

is available in Supplementary Table 1. No ethical approval

was required in this work, as all the data analyzed were

publicly available.

Selection of the genetic instruments

A valid IV estimator should meet the following three

assumptions: (1) reliably and strongly associate with the risk
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factor for interest (relevance assumption); (2) no unmeasured

confounders of the associations between genetic variants and

outcome (independence assumption); and (3) independent of

the outcome (exclusion restriction) (17). The qualified IVs

were selected as follows: After removing SNPs with missing

information, a list of SNPs passing the threshold of significance

P < 5 × 10−8 was first screened using a distance-based metric.

We performed PLINK to calculate r2 between all selected

SNPs in European ancestry samples from the 1000 Genomes

Project (18). To ensure that all the selected SNPs obeyed

the independence assumption, only those with the smallest P

value were retained among all pairs of SNPs with r2 > 0.01.

A proxy SNP in strong LD (r2 > 0.8) was included where

a specific instrument SNP was not available in the look-up

GWAS dataset. To ensure that all corresponding risk factors

and outcome alleles were on the same strand, we harmonized

the effect of these instrumental SNPs where possible. The

equation R2 = 2∗Beta∧2∗EAF∗(1-EAF)/(2∗Beta∧2∗EAF∗(1-

EAF)+2∗SE∧2∗SampleSize∗EAF∗(1-EAF), F= R2(SampleSize-

2)/(1 – R2) was used to calculate the F-statistic for all selected

instrument SNPs separately and synthetically to reject the weak

instruments with an F-statistic lower than 10 (19). R2 in the

equation represents the individual exposure variance explained

by each IV.

Mendelian randomization analysis

Subsequently, MR analyses were conducted with inverse

variance weighted (IVW), MR Egger regression, weighted

median and weighted mode. The primary calculation was run by

inverse variance weighted, which estimates the ratio from several

instruments. This method assumed that all SNPs were valid

instruments or were invalid with zero overall bias. However,

IVW may be overpraised in the presence of heterogeneity that

can occur due to, among other factors, horizontal pleiotropy or,

more simply, off-target genetic effects.

Consistency in results across methods builds confidence

in the obtained estimates, as they depend on different

assumptions and models of horizontal pleiotropy. MR-Egger

deemed uncorrelated associations between SNP exposure

and horizontal pleiotropic effects, which indicates instrument

strength independent of the direct effects assumption.

MR-Egger regression analysis, whose slope represents the

causal effect estimate, is robust to invalid instruments

against directional pleiotropy (20, 21). A weighted median

requires the weight of each SNP in the overall estimate

to depend on the precision of its ratio estimate, which

differs from a simple median estimate. More specifically,

50% of the weights come from valid IVs smaller than

or equal to the weighted median in this analysis (22),

while the weighted mode requires that the largest subset of

instruments which identify the same causal effect to be valid

instruments (23).

Pleiotropy and sensitivity analysis

Although MR is a potentially powerful technique for

strengthening causal inference, several issues, including

disequilibrium, pleiotropy and epigenetic effects, could

disturb instrumental variable assumptions. Funnel plots

were used as a visual test for horizontal pleiotropy, where

symmetry is indicative of a lower probability of pleiotropy

(24). As an additional control for pleiotropy, we applied

the global test, outlier test, and distortion test using the

MR pleiotropy residual sum and outlier (MR-PRESSO) to

identify and correct for outliers in IVW linear regression

(25). Furthermore, MR-Egger regression provides an estimate

of the average pleiotropy effect, and an intercept of the

regression equation of 0 proves the evidence of pleiotropy

(26). In the regression model, regression coefficients are

highly susceptible to an individual datapoint. Leave-one-out

sensitivity analysis was performed to identify whether the

association was disproportionately influenced by a single SNP.

An increased BMI is a well-known risk factor for OA (15).

To minimize the possibility of spurious causal associations

due to confounding factor BMI, we performed a sensitivity

analysis by manually pruning pleiotropic BMI-associated

instrumental variables.

Statistical analysis

We employed the packages “Two Sample MR” (24) and

“Mendelian Randomization” (27) to perform MR analysis.

Forest plots were produced using the “forestplot” package. The

Bonferroni method was utilized in the primary analysis to

indicate multiple comparisons. Correcting for 3 exposures and

4 outcomes, P value below 0.004 indicated strong evidence

of associations (0.05/12 = 0.004). All statistical analyses were

implemented in R project version 3.6.1.

Results

In total, after implementing the pruning strategy previously

described, there were 349 SNPs achieved genome-wide

significance for AAM (11) and 121, 54 and 10 IVs for AAM

(12), ANM and AFB, respectively. F-statistic values for

individual instrumental SNPs were all above the threshold

10, with means of 64.27, 58.00, 68.14 and 36.49 for AAM

(11), AAM (12), ANM and AFB, respectively (Table 1).

SNPs were excluded or substituted with highly correlated

(r2 > 0.8) proxy SNPs due to unavailability in outcome
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TABLE 1 Univariable MR results of hormonal reproductive factors on risk of OA and subtypes.

Exposure Outcome No. of SNPs F-Statistic OR (95% CI) P

AAM (11) Overall OA 336 64.27 0.91 (0.85–0.98) 5.95E-03

Hip OA 337 1.01 (0.89–1.13) 8.56E-01

Knee OA 337 0.86 (0.76–0.95) 1.58E-03

Hip and/or knee OA 337 0.92 (0.84–1.00) 3.64E-02

AAM (12) Overall OA 119 58.00 0.94 (0.86–1.03) 2.09E-01

Hip OA 119 1.16 (0.97–1.34) 1.23E-01

Knee OA 119 1.02 (0.85–1.19) 2.31E-01

Hip and/or knee OA 119 1.02 (0.85–1.19) 6.99E-01

ANM Overall OA 51 68.14 1.00 (0.97–1.03) 9.05E-01

Hip OA 51 0.98 (0.92–1.03) 4.43E-01

Knee OA 51 1.00 (0.96–1.04) 9.46E-01

Hip and/or knee OA 51 1.00 (0.97–1.04) 7.95E-01

AFB Overall OA 10 36.49 0.80 (0.68–0.92) 1.80E-04

Hip OA 10 0.76 (0.51–1.00) 2.65E-02

Knee OA 10 0.81 (0.63–0.98) 1.57E-02

Hip and/or knee OA 10 0.79 (0.64–0.93) 1.33E-03

AAM (11) no BMI Overall OA 285 62.99 0.96 (0.90–1.03) 3.01E-01

Hip OA 286 1.09 (0.96–1.24) 1.86E-01

Knee OA 286 1.01 (0.88–1.16) 8.90E-01

Hip and/or knee OA 286 0.96 (0.86–1.06) 4.15E-01

AAM (12) no BMI Overall OA 90 58.44 1.01 (0.92–1.10) 9.04E-01

Hip OA 90 1.23 (1.01–1.49) 4.28E-02

Knee OA 90 1.06 (0.92–1.22) 4.10E-01

Hip and/or knee OA 90 1.09 (0.97–1.22) 1.60E-01

AFB no BMI Overall OA 8 34.02 0.83 (0.72–0.94) 4.91E-03

Hip OA 8 0.77 (0.59–1.02) 6.85E-02

Knee OA 8 0.80 (0.65–0.98) 2.83E-02

Hip and/or knee OA 8 0.78 (0.66–0.92) 3.22E-03

OA: osteoarthritis; AAM: age at menarche; ANM: age at natural menopause; AFB: age at first birth; BMI: body mass index; SNPs: single nucleotide polymorphisms.

datasets or palindromic with ambiguous A/T or G/C. Detailed

information for incorporated instrumental SNPs is presented in

Supplementary Tables 2–4.

The MR analysis indicated that genetically determined

each additional year in AAM (11) was associated with a

decreasing risk of knee OA after correcting for multiple

testing (IVW: OR = 0.86, 95% CI: 0.76–0.95, P = 1.58 ×

10−3). The causality between AAM (11) and overall OA (P

= 5.95 × 10−3) and hip and/or knee OA (P = 3.64 ×

10−2) was only normally significantly positive, with IVW

ORper−SDincrement(95%CI) of 0.91 (0.85–0.98) and 0.92 (0.84–

1.00), respectively. To the best of our knowledge, such causality

was not observed in another AAM (12) exposures, with P

values above the threshold and OR of 0.94, 1.16, 1.02 and

1.02 for OA and three subtypes, respectively. The available

evidence also made it difficult to explain the causality of

ANM to OA and subtypes. Furthermore, the IVW method

indicated that AFB exerted a causal effect on OA and all

subtypes in an unfavorable manner, with OR of 0.80 and

0.79 for overall (95% CI: 0.68–0.92, P = 1.80 × 10−4) and

hip and/or knee OA (95% CI: 0.64–0.93, P = 1.33 × 10−3),

respectively. However, as shown in Table 1 and Figure 1, some

nominally significant positive causality correlations with OA

did not pass multiple-testing correction for the Bonferroni

method (hip OA: OR = 0.76, 95% CI: 0.51–1.00, P = 2.65

× 10−2; knee OA: OR = 0.81, 95% CI: 0.63–0.98, P = 1.57

× 10−2). Additional methods, including weighted median,

weighted mode and MR-Egger section, validate the uniformity

conclusion (Supplementary Table 5).

To effectively control pleiotropy, we next investigated

the MR-PRESSO and p value for the MR-Egger intercept

test. The sensitivity analysis revealed the absence of

outliers (Supplementary Table 7) and horizontal pleiotropy

(Supplementary Figure 2). As shown in Supplementary Figure 2,

symmetry in funnel plots did not show any evidence of

publication bias. In addition, the leave-one-out analysis
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FIGURE 1

Forest plot of hormonal reproductive factors on the risk of OA

and subtypes in IVW estimates.

FIGURE 2

Forest plot of hormonal reproductive factors on risk of OA and

subtypes in IVW estimates adjusting for BMI.

showed that none of the individual genetic markers

drove the majority of the association signal. The scatter

plots for effect sizes of SNPs for three hormonal related

exposures and those for OA and subtypes are shown in

Supplementary Figure 1.

BMI is a known modifiable risk factor that plays an

important role in the etiology of OA and shapes reproductive

exposures. A total of 82 SNPs were found to be associated

with BMI (P < 5 × 10−8), including 51 in AAM (11), 29

in AAM (12) and 2 in AFB. SNPs associated with BMI have

been annotated with ∗ in the Supplementary Tables 2–4. As

shown in Table 1 and Figure 2, no casualty between AAM

(11) no BMI and keen OA were found when we performed

MR again (IVW: OR = 1.01, 95% CI: 0.88–1.16, P =

0.89), which indicates that BMI-associated SNPs confounded

causality in our initial calculation. The negative result was

confirmed in AAM (12) no BMI. Similarly, after deleting

two BMI-associated SNPs, there was not enough evidence to

indicate the causal relationship between AFB no BMI and

overall OA (IVW: OR = 0.83, 95% CI: 0.72–0.94, P =

4.91 × 10−3). However, a similar causal effect association

between AFB and hip and/or knee OA could still be measured

(IVW: OR = 0.78, 95% CI: 0.66–0.92, P = 3.22 × 10−3).

Additional methods section validate the uniformity conclusion

(Supplementary Table 6).

Discussion

In the current study, we performed two-sample MR to

investigate the causality between three hormonal reproductive

factors and the risk of OA. The concern was that 1 year later in

AFB was associated with a reduced risk of OA. These findings

support the hypothesis that AFB may play a causal role in the

pathway of developing OA. The adverse causal effects were

robust in our MR after pruning potential confounder BMI.

Several observational studies confirm the causal association

of hormonal reproductive factors with OA, while current

results on this topic from conventional epidemiological studies

remain controversial. A large cohort study with 30.727 cases

is consistent with our conclusions, affirming the role of AFB

in OA etiology (15). Other studies also point toward some

positive association, and a prospective cohort study containing

over 30,000 women found that older age at menarche was

associated with a decreased risk of total knee replacement

(TKR) due to primary OA (28). Researchers proposed that

one possible explanation could be that lower AAM may be

a marker of other factors, such as higher BMI when young

(6). High BMI is known as a risk factor for OA, but it is

unlikely that BMI would explain the casualty found here, as

we adjusted our analyses for BMI, and our findings were

consistently observed within subgroups of no BMI. However,

the assumed relationship between the female hormonal aspects

and OA was not clinically significant in another cohort study

(29). Since hormonal reproductive factors are prone to bias due

to interference from potential confounders which difficult to be

excluded by traditional epidemiology, MR estimates reflect the

causality at the genetic level.

Given the complexity of these confounders, the underlying

mechanism of hormonal reproductive factors in the

development of OA remains to be elucidated. Estrogen is

considered to strongly associate with the female hormonal

reproductive cycle, in which receptors are found on bone and

chondrocyte cells (30). Several studies show evidence of the

associations between radiographic changes in OA and high

bone density since considering estrogen could prevent bone

loss (31, 32). Consequently, greater exposure to estrogen,
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while preventing bone loss, may plausibly promote OA. Gao

et al. studied estrogen and estrogen metabolites in Chinese

women with OA. Compared to the controls (healthy and

rheumatoid arthritis women), premenopausal women with OA

had a significantly lower concentration of 2-hydroxyestrone

and free estrogen in serum. In postmenopausal women, the

serum concentration of 2-hydroxyestradiol was increased

compared to that in controls, while free and total estrogen

were significantly decreased. Apart from estrogen deficiency,

rapidly elevated serum levels of 2-hydroxyestrone in the

perimenopausal period may correlate with the pathogenesis

of OA (33, 34). Furthermore, it has been reported that

estrogen may have different effects on the initiation and

progression of OA. Hence, it is difficult to ratiocinate the

biological mechanisms that underlie this study due to these

heterogeneous effects. However, the effects of female hormones

on OA can be further explored in animal models and in

vitro studies.

Our study has several strengths. The large sample size and

richness of the data set for reproductive variables of interest

led the estimated effects to be close to the truth. In addition,

three different reproductive traits (AAM, ANM, and AFB) were

incorporated to reflect the length of the reproductive period and

complementing each other well. To reduce the interference of

potential factors, we examined OA directly rather than proxies

of OA, such as hospitalization or joint replacement. Moreover,

we were able to adjust for not only hormonal reproductive

factors but also reported confounders of OA, such as BMI.

Notwithstanding, we must acknowledge several limitations.

Firstly, there was no stratification of sex in the existing GWAS

data set, while our selection of hormonal reproductive factors

was female specific. However, since most cases in the GWAS

dataset were from females (63.7% in overall OA), we thought

the estimated effects would be close to the truth. Secondly, to

diminish population stratification, our samples were restricted

to the European population, which leads our findings to be

applicable for European populations. Finally, the design of our

study precluded us from considering other factors, such as

environmental effects and hormone use, in addition to the only

confounder BMI regarded in the current study.

In summary, our findings add to a growing body of

evidence surrounding the unfavorable effects of early age at first

birth on OA risk, suggesting the essential for relevant health

problem management in susceptible populations. Further large-

scale studies or longitudinal studies are required to validate

our findings.
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