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Background: To explore the methylation profiles in cumulus cells (CCs) of women

undergoing intracytoplasmic sperm injection–in vitro fertilization (ICSI–IVF) and establish

a prediction model of pregnancy outcomes using machine learning approaches.

Methods: Methylation data were retrieved from the Gene Expression Omnibus (GEO)

database, and differentially methylated genes (DMGs) were subjected to gene set

analyses. Support vector machine (SVM), random forest (RF), and logistic regression (LR)

were used to establish the predictionmodel, andmicroarray data fromGEOwas analyzed

to identify differentially expressed genes (DEGs) associated with the dichotomous

outcomes of clinical pregnancy (pregnant vs. non-pregnant). Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analysis provided multi-dimensional validation

for selected DMGs.

Results: A total of 338 differentially methylated CpG sites associated with 146 unique

genes across the genome were identified. Among the identified pathways, the prominent

ones were involved in the regulation of cell growth and oocyte development (hsa04340,

hsa04012, hsa04914, hsa04614, hsa04913, hsa04020, and hsa00510). The area under

the curve (AUC) of machine learning classifiers was 0.94 (SVM) vs. 0.88 (RF) vs. 0.97

(LR). 196 DEGs were found in transcriptional microarray. Mapped genes were selected

through overlapping enriched pathways in transcriptional profiles and methylated data of

CCs, predictive of successful pregnancy.

Conclusions: Methylated profiles of CCs were significantly different between women

receiving ICSI-IVF procedures that conceived successfully and those that did not

conceive. Machine learning approaches are powerful tools that may provide crucial

information for prognostic assessment. Pathway analysis may be another way in

multiomics analysis of cumulus cells.

Keywords: intracytoplasmic sperm injection-in vitro fertilization, differentially methylated genes, pregnancy,

cumulus cells, machine learning model
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BACKGROUND

There is a rising consciousness in the field of reproductive
medicine that oocyte quality is a vital limiting factor in female
fertility, especially given the steadily rising age of first conception
in mothers. Poor oocyte quality results in either polyspermy,
arrested embryonic development, or spontaneous abortion. At
present, the evaluation of oocytes mainly relies on morphological
features that focus little on these cells’ quality and competence
(1). In addition, despite controlled ovarian stimulation, the
current techniques of in vitro oocyte maturation (IVM) are
still not efficient enough in cases of multiple immature oocytes.
Therefore, more insights into non-invasive biomarkers for oocyte
maturation and competence are required.

In pre-antral follicles, the oocyte grew accompanied by
relatively undifferentiated granulosa cells (GCs). The follicular
antrum formed approximately in the end of the oocyte growth
phase, when the GCs differentiate into two anatomically and
functionally distinct lineages: mural GCs (MGCs) that line
the wall of the follicle, playing principally a steroidogenic
role, and cumulus cells (CCs), which establish bidirectional
functional interaction with oocytes through gap junctions and
paracrine factors (2, 3). Herein, CCs provide somatic support for
mature oocytes, and together they form a functional unit called
cumulus-oophorus complex (COC), responsible for nuclear and
cytoplasmic maturation of oocytes.

Studies have shown the age-related genetic and epigenetic
alterations in cumulus cells (4). Likewise, there were documents
demonstrating epigenetic changes in cumulus cells and its
correlation with infertility in endometriosis (5). Therefore, the
exploration of epigenetic and transcriptional profiles in cumulus
cells and its relevance with infertility is important and necessary.

Although genetic and transcriptional factors reflecting the
development and movement of cumulus GCs have been
extensively studied (6–9), the recognition of potential epigenetic
factors related to oocyte competence remains elusive. Sagvekar
et al. (10) used high-throughput next-generation bisulfite
sequencing to assess the methylation and transcript expression
profiles of differentially methylated genes (DMGs) in 20
women with polycystic ovary syndrome (PCOS) and 20
healthy individuals, finding that the assessed DMGs matched
the transcript expression profiles and were closely related to
defective follicles in women with PCOS (10). Nevertheless, the
role of epigenetic aberrations in CCs in pregnancy outcomes

Abbreviations: ACTA1, actin-α1, skeletal muscle; AGT, angiotensinogen;

ATP14A4, ATPase Na+/K+ transporting subunit α4; AUC, area under the

curve; BMP, bone morphogenic protein; CaMK, calcium/calmodulin kinase;

CCs, cumulus cells; COC, cumulus–oophorus complex; CASR, calcium-sensing

receptor; DEG, differentially expressed gene; DMG, differentially methylated

gene; FC, fold change; FP, false positive; GC, granulosa cell; GEO, Gene

Expression Omnibus; HSD17B7, hydroxysteroid 17β dehydrogenase 7; ICSI–

IVF, intracytoplasmic sperm injection–in vitro fertilization; KEGG, Kyoto

Encyclopedia of Genes and Genomes; LR, logistic regression; MGAT5, α-

1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase; MGC, mural

granulosa cell; PCA, principal component analysis; PCOS, polycystic ovary

syndrome; RF, random forest; ROC, receiver operating characteristic; RSK,

ribosomal S6 kinase; SVM, support vector machine; TNF, tumor necrosis factor;

TP, true positive; WNT, Wnt family member.

after undergoing intracytoplasmic sperm injection–in vitro
fertilization (ICSI–IVF) remains unknown. As a result, more
research into the relationships between the methylation state of
CpG sites and associated gene expression in cumulus cells, as well
as their relationship with pregnancy outcomes, is required.

In this study, bioinformatics analyses were initially performed
to identify the methylation status and transcriptional profiles of
CCs and their relationship with pregnancy outcomes in patients
undergoing ICSI, as well as to analyze the predicted functions
and pathways of the DMGs. We also applied multiple machine
learning approaches that have been used for cancer genomic
classification or subtyping to predict pregnancy outcomes based
on selected DMGs. Furthermore, multiomics analysis based on
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis of DMGs and differentially expressed genes (DEGs)
was performed.

METHODS

The pipeline used in bioinformatic analysis and building the
machine learning model was provided in Figure 1.

Data Collection
All microarray data were downloaded from the Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/).
The methylation microarray (GSE144664) included 12 IVM-
conceived CC samples and 12 IVM-unconceived CC samples
based on the HumanMethylation450 BeadChip (GPL13534
platform; Illumina, San Diego, CA, USA). For the same gene
corresponding to multiple probes, probes with the largest median
absolute deviation were selected as representatives. This study
was a second analysis of GEO data; therefore, patient consent was
not required.

Gene Enrichment Analysis
In this study, the Q–Q graph was used to detect whether the
sample data followed a normal distribution, and then Student’s
t test was applied to generate a p-value. A p ≤ 0.05 and a fold
change (FC) ≥ 2 were set as the significance thresholds. DMGs
related to pregnancy outcomes were analyzed using the Gene
Ontology (GO) resource via the ClusterProfiler package (https://
bioconductor.org/packages/release/bioc/html/clusterProfiler.
html) and KEGG pathway analysis. Only terms with a p < 0.05
were considered significant.

Machine Learning Classifiers
Machine learning methods have been widely applied to
many types of pattern-recognition problems. First, principal
component analysis (PCA) was applied to the methylated profiles
of DMGs, showing a remarkable separating plane between
different methylated patterns. Based on the methylation features
of CCs, three types of machine learning classifiers, namely
support vector machine (SVM), random forest (RF), and logistic
regression (LR), were developed for prognosis assessment of
pregnancy outcomes following ICSI-IVF procedures.

An SVM is a non-probabilistic supervised learning approach
that creates a multidimensional hyperplane to divide the
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FIGURE 1 | Pipeline showing the approach used for bioinformatic analysis and building the machine learning predictor.

covariate space into two groups that allow for classification.
It has been widely used in the analysis of binary results. As
originally developed, these models are based on a linear decision
surface (hyperplane) that differentiates between two classes of
observations andmaximizes the distance between the hyperplane
and single observations (11). If the classes cannot be separated
by a linear surface, a non-linear transformation can be acquired
by mapping the data onto a higher-dimensional space (feature
space). With the kernel function, this non-linear transformation
can be obtained without explicit mapping of the feature space.
The SVM classifier we applied was based on a radial basis
function kernel. As the kernel parameter is tuned in multiple
stages, the SVM classifier can make coarse-to-fine evaluations of
the importance of the selected features.

An RF classifier contains a set of decision trees and is based
on two modules: bagging and random feature selection. In the
bagging step, each tree is trained with a round of bootstrapping
from the training data. During the training process, the predictive
effect of the RF classifier is tested in out-of-bag samples that
were not selected in the bootstrap sample. When a tree is
growing, the RF classifier randomly selects a subset of features
in each split node. The RF classifier circumvents overfitting
and stratifies samples by calculating the complex interactions
between variables.

In this study, we applied a hybrid feature-selection method.
The key proteins in oocyte–CC paracrine signaling and the
sex-hormone-regulation axis were selected and used for
searches in Biological General Repository for Interaction
Datasets (BioGRID; https://thebiogrid.org/) for matching
genes. Subsequently, 32 BioGRID-matched genes and
DMGs were selected as the molecular bases for the machine
learning classifiers.

Using test data, a trained machine learning model yields a
vector of scores (between 0 and 1) that represent negative or
positive prediction results. The receiver operating characteristic
(ROC) curve was plotted to display the false-positive (FP; 1-
specificity) values on the X-axis, and the true-positive (TP;
sensitivity) values were plotted on the Y-axis. Thus, the ROCplots
display the direct association between the FP and TP rates. The
total area under the curve (AUC) for the ROC plots was applied
to evaluate the predictive performance of the classifiers.

The predictive classifiers based on 32 DMGs were developed
using the Python programming language and the scikit-learning
package (Python v3.7; https://www.python.org/). A 50–50%
train-test data split was used. In SVM, The RBF kernel (K)
was selected since it is a Gaussian function that maps the
original feature map to a non-linear space (12), based on data
distribution. The number of estimators of RF was optimized as
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FIGURE 2 | The volcano map of DMGs.

twenty-five in the prediction model according to the efficacy
of the RF model. The L2 regularization was applied in LR
model and the penalty parameter was set as 1.0. ROC curves
were plotted, and AUC values were calculated to describe the
predictive efficacy.

Multi-Omics Analysis Using Transcription
Profiles
The transcription file GSE113239 (GPL18451) from the GEO
database was used to provide multi-dimensional validation data
for the selected DMGs. The prospective clinical trial included
10 women (age: 23–35 years) with idiopathic infertility. Over
a period of 14 months, CC gene expression in 10 CC clusters
associated with each oocyte was individually evaluated by
microarrays using a NimbleGen human gene expression 12 ×

135K microarray kit (Roche, Penzberg, Germany). Microarray
data from the sequencing of 10 CCs were analyzed to identify
DEGs associated with the dichotomous outcomes of clinical
pregnancy (pregnant vs. non-pregnant). Data were preprocessed
to generate a standard preprocessing structure. Significant genes
from these analyses (p < 0.05) were selected, and statistical
analyses of differential gene expression was performed using
the Python programming language and the scikit-learning
package (Python v3.7). KEGG analyses were performed using the
ClusterProfiler package in R.

RESULTS

Result 1 Identification of DMGs
The Q–Q graph showed that the sample data followed a
normal distribution (Supplementary Figure 1). Genes above the
significance threshold (p < 0.05, FC ≥ 2) were established
as DMGs. Methylation capture bisulfite sequencing of CCs
from women receiving ICSI–IVF identified 338 differentially
methylated CpG sites that correlated with 146 unique genes
across the genome. Among them, 164 CpG sites were
hypomethylated, and 174 CpG sites were hypermethylated. A

total of 71 genes matched with hypomethylated CpG sites
(Supplementary Table 1), whereas the hypermethylated sites
were representative of 78 genes (Supplementary Table 2). Of
these DMGs, three (PQBP1, SEPT6, and TIMM17B) contained
both hypermethylated and hypomethylated CpG sites. The
volcano map (Figure 2) was visualized for these DMGs.

Result 2 Enrichment Analysis of DMGs
GO analyses of the hypomethylated, hypermethylated, and
combined gene lists revealed that 14 (9.6%), 11 (7.5%), and
13 (8.9%) genes from the three respective groups could
not be annotated. DMGs were mainly enriched in negative
regulation of growth and organ morphogenesis (Figures 3A,B).
For pathway analysis, most involved in Hippo signaling
pathway and neurotrophin signaling pathway (Figure 3C). In
the Figure 3D, the functional protein association network was
obtained from the String database (https://string-db.org). KEGG
analysis identified prominent pathways that included Hedgehog
signaling (hsa04340), ErbB signaling (hsa04012), progesterone-
mediated oocyte maturation (hsa04914), the renin–angiotensin
pathway (hsa04614), ovarian steroidogenesis (hsa04913), calcium
signaling (hsa04020), and N-glycan biosynthesis (hsa00510)
(Figure 4).

Result 3 Selection of Key Genes and
Establishment of Machine Learning
Classifiers
Literature review identified four regulatory proteins secreted by
oocytes (BMP6, BMP15, TGFβ, and GDF9) and that act on
CCs, with seven maternal upstream regulatory proteins (FSHR,
LHCGR, IGF1, ESR1, AR, INHBE, and ACVR1B) were selected
as search keywords in BioGRID. The results returned a total of
2,962 related records and 851 non-repetitive interactive genes
(Table 1). The 32 intersected genes from among the BioGRID-
matched genes and DMGs were then selected as the molecular
bases for the machine learning prediction models (Table 2).
Figure 5A shows the result of ROC curve analysis, with AUC
values for the machine learning classifiers of 0.94 (SVM), 0.88
(RF), and 0.97 (LR) (Figure 5B).

Result 4 Correlation Between
Transcriptional and Methylation Files
Additionally, we identified 190 DEGs in the transcription
microarray, of which 57 were upregulated and 133
downregulated (Supplementary Table 3). KEGG pathway
analysis revealed DEG functions significantly enriched (p< 0.05)
in signaling pathways that included ovarian steroidogenesis and
Hedgehog signaling, which also overlapped with the methylation
data (Supplementary Table 4).

The enriched KEGG pathways in the transcription profiles
that matched the feature pathway of the methylation
profiles are listed in Table 3 along with their correlated
genes. These pathways included the Hedgehog signaling
pathway, ovarian steroidogenesis, progesterone-mediated
oocyte maturation, ErbB signaling pathway/regulation of
actin cytoskeleton, the calcium signaling pathway, N-glycan
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FIGURE 3 | Continued
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FIGURE 3 | (A) GO enrichment analysis of DMGs. The color intensity of the bars represents the number of enriched genes. (B) GO enrichment analysis of DMGs

divided into BP, CC and MF. BP, Biological Process; CC, Cellular Component; MF, Molecular Function. (C) KEGG enrichment analysis of DMGs. (D) The functional

protein association network of DMGs obtained from the String database.

biosynthesis/proteoglycans in cancer, and renin–angiotensin
pathway/renin secretion. To illustrate relationships between
the transcription and methylation profiles, we mapped the
indicated DEGs in the Figure 4. For example, in the N-glycan
biosynthesis, Alpha-1,6-mannosylglycoprotein 6-beta-N-
acetylglucosaminyltransferase (MGAT5) was negatively
methylated in the clinical pregnancy group, while protein
kinase cAMP-activated catalytic subunit beta (PRKACB) was
negatively expressed (Supplementary Table 3). Figure 6 shows
the transcription levels of the mapped DEGs for the positive
and negative pregnancy groups. Multi-omics analysis provided
biological validation of the selected DMGs used in the machine
learning models.

DISCUSSION

Tissue-specific DNA-methylation alterations caused by
variations in the physiological environment can lead to
significant alterations in gene and protein expression, resulting in
disease pathogenesis. Increasing evidence suggests that genomic

methylation in CCs plays an important role in oocyte maturation
through functional interaction with oocytes. Therefore, we
screened the methylation profiles of CCs during IVM cycles. GO
and KEGG enrichment analyses of DMGs revealed that genes
regulating cell growth, adhesion, differentiation, proliferation,
apoptosis, signal transduction, transcription, posttranslational
modification, metal and non-metal ion binding, ATP binding,
protein binding, and vesicular transport were differentially
methylated in the TP group.

Defective Oocyte
Meiosis/Maturation/Ovulation and COC
Matrix Expansion
The enrichment of pathways for regulation of focal adhesion
elements and cytoskeleton in our analysis indicated deviation of
cellular architecture in CCs of women with different pregnancy
test results. In this study, calmodulin-binding transcription
activator 1 (CAMTA1) was significantly hypermethylated in
pregnant women; thereby possibly influencing the activity of
Ca2+/calmodulin kinase (CaMK). Ca2+ signaling pathways play
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FIGURE 4 | Altered gene methylation and expression and the associated pathways. The figure summarizes some of the processes that could be dysregulated in the

follicular compartment, including altered methylation (squares) and expression of genes in cumulus GCs. Differentially methylated genes: ACTA1, AGT,

calmodulin-binding transcription activator 1 (CAMTA1), COC, germinal vesicle breakdown (GVBD), HSD17B7, MGAT5, RSK, and WNT5A. Differentially expressed

genes: protein kinase cAMP-activated catalytic subunit beta (PRKACB), prostaglandin-endoperoxide synthase 2 (PTGS2), follicle-stimulating hormone receptor

(FSHR), BMP6, patched 2 (PTCH2), Hedgehog-interacting protein (HHIP), integrin subunit beta 8 (ITGB8), integrin subunit alpha L (ITGAL), G protein subunit alpha 13

(GNA13), Rho guanine nucleotide exchange factor 4 (ARHGEF4), ret proto-oncogene (RET), neurotrophic receptor tyrosine kinase 2 (NTRK2), and fms-related

receptor tyrosine kinase 1 (FLT1).

TABLE 1 | Interactive genes identified via BioGRID according to regulatory

proteins secreted by oocytes and maternal upstream regulatory protein.

Regulatory

genes

Aliases Interactive

genes

BMP6 8

BMP15 5

TGFB1 CED, DPD1, LAP, TGFB, TGF-β 264

GDF9 53

FSHR FSHRO, LGR1, ODG1 35

LHCGR HHG, LCGR, LGR2, LH/CG-R, LH/CGR,

LHR, LHRHR, LSH-R, ULG5

4

IGF1 IGF-I, IGF1A, IGFI 22

ESR1 ER, ESR, ESRA, ESTRR, Era, NR3A1,

RP1-130E4.1

2155

AR AIS, DHTR, HUMARA, HYSP1, KD, NR3C4,

SBMA, SMAX1, TFM, RP11-383C12.1

342

INHBE Inhibin, beta E 18

ACVR1B Activin A receptor, type IB 56

a crucial role in the development and maturation of healthy
oocytes and are amplified by the activation of the CaMK cascade
through successive phosphorylation events (13). In addition, the
expression and localization of calcium-sensing receptor (CASR)
have been reported in human oocytes and CCs, wherein it
mediates an increase in the pronuclear formation rate. The

TABLE 2 | Overlapping genes between BioGRID and DMGs.

Genes Log2 FC Genes Log2 FC

ACTA1 1.08 MECP2 −1.41

AGT 1.04 MGAT5 −1.84

BCOR 1.09 MORF4L2 −1.48

CAMTA1 1.58 NCAPH −2.69

CASZ1 −2.06 PMF1 1.80

CETN2 1.30 PQBP1 −1.03

CITED1 −1.02 RBMS1 1.24

CTNNA2 −1.26 RPS6KA6 1.05

DARS 1.18 SAT1 −1.07

FLNA 1.29 TAF1B 1.20

HDAC4 −1.73 TDGF1 −1.71

HOXD9 −1.08 TNS1 −1.31

HSD17B7 −1.42 UBAP2L 1.26

LGALS8 2.17 UQCRC1 −1.00

MAGED1 −1.47 WNT5A 1.12

MAGT1 −1.13 ZMYM3 −1.28

inhibition of CaMK activity could reverse the increase in CASR
expression, thus affecting calcium signaling pathway and oocyte
development (14).

Ribosomal S6 kinase (RSK) is a pivotal downstream molecule
of the mitogen-activated protein kinase (MAPK) cascade,
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FIGURE 5 | (A) PCA of the methylation profiles of DMGs, showing a

remarkable separating plane between different methylation patterns. (B) Area

under the curve (AUC) of the machine learning classifier.

and its activation positively regulates the G2/M transition in
mammalian cell lines (15). Several studies have demonstrated its
role in progesterone-mediated oocyte meiosis and maturation
(16). Madogwe et al. showed that constant ERK1/2 signaling
is essential for follicular rupture during ovulation in RSK3-
knockout mice (17). Hence, hypermethylated RSK3 may
promote clinical pregnancy in infertile women receiving ICSI-
IVF through its established positive role in oocyte meiosis,
maturation, and ovulation.

Tumor Necrosis Factor Receptor
Superfamily Member 18 and Ovulation
Tumor necrosis factor-alpha (TNF-α) is present in the follicular
fluid while its receptors are expressed by GCs. In a group of
IVF-ICSI-treated women, TNF-α level in both follicular fluid

and serum was found to be higher in good responders than in
poor responders (18). Another clinical trial on PCOS showed
that lower levels of endogenous TNF-α in GCs contribute to
decreased oocyte competence due to a drop in its downstream
effector as well as conceded ovulation and GC proliferation
in ovarian follicles (10). Thus, lower TNF-α levels in the
CCs of women associated with hypermethylation and may
affect oocyte competence by hindering COC expansion and
hampering ovulation.

Actin Alpha 1, Skeletal Muscle and Oocyte
Meiosis
Several cellular processes are crucial for oocyte meiosis I and
II, including nuclear positioning, germinal vesicle breakdown,
spindle migration, spindle rotation, chromosome segregation,
and polar body extrusion. Several studies, mostly using the
mouse oocyte model, have shown that actin filaments are pivotal
for these processes, particularly for the formation of bipolar
spindles (19–22). In our study, ACTA1 in CCs was significantly
hypermethylated in women with positive pregnancy test results,
thus it probably influences oocyte meiosis via the bipolar spindle
formation pathway.

MGAT5 and COC Matrix Expansion
CCs produce extracellular matrix (ECM) molecules, resulting
in cumulus expansion that is essential for ovulation and
fertilization, and is predictive of oocyte quality (23). As a
byproduct of N-glycan biosynthesis, the level of MGAT5
might reflect the status of cumulus expansion that is stabilized
by binding N-glycan to matrix proteins and proteoglycans.
In addition, a double mutant mouse model revealed that
oocyte-specific ablation of core 1 synthase glycoprotein-N-
acetylgalactosamine 3-β-galactosyltransferase 1 (C1GALT1)
and MGAT1 may reduce Smads 1/5/8 phosphorylation
and hyaluronic acid (HA) production by affecting bone
morphogenetic protein 15 synthesis or bioactivity, thereby
hampering COC matrix expansion (24). Therefore, altered
MGAT5 methylation, as discovered in this study, might
contribute to alterations in COC expansion dynamics in women
treated with ICSI-IVF.

Angiotensinogen
Pan et al. found changes in the protein and methylation levels
of AGT in the renal tissue of adult IVM mice, suggesting an
association between IVMmanipulation and epigenetic regulation
of the RAS system (25). In our analysis, the association
between methylated levels of AGT and pregnancy outcomes was
significant, supporting the importance of AGT in the predictive
model for pregnancy results.

Hydroxysteroid 17-Beta Dehydrogenase 7
Hydroxysteroid 17-beta dehydrogenase 7 (HSD17B7) belongs
to the hydroxysteroid (17β) dehydrogenase superfamily and
acts as a steroidogenic enzyme for the synthesis of arachidonic
acid, a precursor of prostaglandins, as well as the conversion
of androstenedione to biologically active testosterone in non-
testicular tissues and the conversion of estrone to estradiol.
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TABLE 3 | Overlapping KEGG pathways and pathway-associated genes derived from the GSE113239 (geneID.G11 and SYMBOL.G11) and GSE144664 datasets

(geneID.G14 and SYMBOL.G14).

Description geneID.G14 SYMBOL.G14 geneID.G11 SYMBOL.G11

cAMP signaling pathway 480 ATP1A4 5567/64399/9568/2492/1387 PRKACB/HHIP/GABBR2/FSHR/CREBBP

Cytokine-cytokine receptor interaction 8784 TNFRSF18 4050/10344/7066/654/9547/56477 LTB/CCL26/THPO/BMP6/CXCL14/CCL28

GABAergic synapse 2752/2560 GLUL/GABRB1 5567/9568/3763/2558 PRKACB/GABBR2/KCNJ6/GABRA5

Leukocyte transendothelial migration 1496 CTNNA2 3683/394/9076/653361 ITGAL/ARHGAP5/CLDN1/NCF1

Morphine addiction 2560 GABRB1 5567/9568/3763/2558 PRKACB/GABBR2/KCNJ6/GABRA5

Ovarian steroidogenesis 51478 HSD17B7 5567/5743/2492/654 PRKACB/PTGS2/FSHR/BMP6

PPAR signaling pathway 2180/2170 ACSL1/FABP3 51129/5105/5346 ANGPTL4/PCK1/PLIN1

Retrograde endocannabinoid signaling 2560/54539 GABRB1/NDUFB11 5567/5743/3763/2558 PRKACB/PTGS2/KCNJ6/GABRA5

Rheumatoid arthritis 525 ATP6V1B1 3683/2321/4050 ITGAL/FLT1/LTB

Transcriptional misregulation in cancer 5081/8842/7849 PAX7/PROM1/PAX8 4211/2321/1050/861/8091 MEIS1/FLT1/CEBPA/RUNX1/HMGA2

FIGURE 6 | (A–D) Genes associated with pathways overlapping between methylation and transcriptional profiles.

The role of HSD17B7 in ovarian function was revealed in
HSD17B12+/– ovaries in a female mouse model, in which
meiotic spindle formation in immature follicles, polyovular
follicles, and oocytes trapped inside the corpus luteum were
observed (26). Therefore, hypermethylation of HSD17B7 may
result in subfertility through negative effects on meiotic arrest,
oogenesis, and ovulation of ovaries.

WNT
WNT5A is a crucial mediator of the Hedgehog and Wnt
signaling pathways that may regulate the formation of primordial
germ cells. Akino et al. showed that the transcription levels of
WNT9B/WNT10B/ Frizzled-7/ AXIN2, which are involved in the
Wnt signal/β-catenin pathway, were significantly lower in human
dysmature CCs than in control cells (27). Habara et al. revealed

that Wnt signaling is pivotal for primordial follicle activation
due to regulation of the differentiation of pre-granulosa cells
and subsequent oocyte maturation, which is another indicator
of how Wnt signaling exerts an effect on oocyte quality and
subfertility (28).

Oxidative Stress
ATPase Na+/K+ transporting subunit alpha 4 (ATP1A4) is
involved in generating the plasma membrane electrical potential,
resulting in an intracellular pool of functional enzymes, which
might be re-expressed during early development in response
to physiological needs (29). Upregulated ATP1A4 expression in
oocyte maturation and hydration has been previously reported
in marine teleost fish (29). The significant methylation levels of
ATP1A4 between IVM-treated women that conceived and those
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that did not conceive further indicated the association ofATP1A4
and fertility.

Machine Learning Models
KEGG pathway analysis and extensive literature review revealed
several candidate genes in CCs that can serve as markers of
oocyte quality; however, a reliable method for selecting oocytes
with pregnancy potential remains a challenge. In this study, we
applied three machine learning approaches, namely SVM, RF,
and LR, to predict pregnancy outcomes of ICSI procedures. The
model applies a hybrid feature selection method that combines
the biological process and filter method to find the suboptimal
features for the original input features. In the ROC curve
analysis, the areas under the ROC curve were 0.94 (SVM)
vs. 0.88 (RF) vs. 0.97 (LR). Together, this study demonstrates
that machine learning approaches can provide insights into
pregnancy outcomes following ICSI-IVF procedures.

Comprehensive Analysis Combining
Transcriptomics and Methylation Profiles
Previous studies aimed to identify transcription biomarkers
indicative of pregnancy outcomes as compared with methylation
features. In the omics era, different methods including
proteomics, metabolomics, and transcriptomics, have been
applied for marker identification (Supplementary Table 5).
Although some overlaps between transcription and methylation
data could be identified in results obtained from CC global
expression, others could not. Iager et al. (30) identified 12
markers as the top DEGs between positive and negative samples
after microarray analysis, with these subsequently validated in
an independent set of CC samples. Additionally, Feuerstein
et al. (31) found that three genes (EFNB2, RGS2, and VCAN)
proposed as biomarkers of pregnancy could not be validated
in their CC samples. Xu et al. (32) identified a signature of 30
genes expressed in CC that was predictive of live birth, but the
classifier signature could not be applied on external datasets with
an accuracy above the confidence level of random chance.

Nevertheless, an increasing number of studies using pathway
analysis have reported common affected pathways. In those
studies, KEGG pathway analyses identified pathways associated
with DEGs and others capable of distinguishing positive samples
from negative samples. And more recent studies focused on the
validation of pathway-related genes. Artini et al. (33) screened
11 phosphoinositide 3-kinase/AKT pathway-associated genes in
human CCs and predictive of clinical pregnancy. Testing of the
screened DEGs in a mouse model revealed that these DEGs
were significantly downregulated in CCs from oocytes capable
of producing a pregnancy as compared with those in CCs
associated with a negative outcome (33). In this respect, the
present data identified several correlated pathways, including
those from the intersection of enriched KEGG analysis using
DEGs and DMGs, according to pregnancy outcomes of post-ICSI
non-pooled CCs. The transcriptional levels of genes regulating
the common affected pathways are shown in Figure 6.

Limitations
The principle limitation of this study is the small sample
size that may not account for women that receive IVM–ICSI
treatment and might present various etiologies and disparities
in demographics. Additionally, the machine learning models
require validation using other datasets with a similar background.
Moreover, further experimental validation in human trials
or suitable animal models will be necessary to confirm
these findings.

CONCLUSIONS

Oocyte quality is a critical limiting factor in female fertility, and
current evaluation of oocytes mainly relies on morphological
features that focus little on cell quality and competence.
Moreover, current techniques for in vitro oocyte maturation
remain inadequately efficient in cases of multiple immature
oocytes, suggesting the need for additional non-invasive
biomarkers of oocyte maturation and competence. Previous
studies focused on genetic and transcriptional factors reflecting
the development and movement of cumulus (4–7), the
recognition of potential epigenetic factors related to oocyte
competence remains elusive. Our study analyzed methylation
data in cumulus cells from women undergoing intracytoplasmic
sperm injection–in vitro fertilization and further, developed
machine learning prediction model based on selected key DMGs.
In this study, we performed bioinformatics analyses to identify
the methylation status and established a prediction model
of pregnancy outcomes using machine learning approaches
including SVM, RF and LR based on DMGs. Additionally,
independent transcriptional data was applied to illustrate
the underlying mechanism of selected DMGs through Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis
of differentially expressed genes (DEGs).
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