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Objective: Over the past decade, scarlet fever has caused a relatively

high economic burden in various regions of China. Non-pharmaceutical

interventions (NPIs) are necessary because of the absence of vaccines and

specific drugs. This study aimed to characterize the demographics of patients

with scarlet fever, describe its spatiotemporal distribution, and explore the

impact of NPIs on the disease in the era of coronavirus disease 2019

(COVID-19) in China.

Methods: Using monthly scarlet fever data from January 2011 to

December 2019, seasonal autoregressive integratedmoving average (SARIMA),

advanced innovation state-space modeling framework that combines Box-

Cox transformations, Fourier series with time-varying coe�cients, and

autoregressive moving average error correction method (TBATS) models were

developed to select the best model for comparing between the expected and

actual incidence of scarlet fever in 2020. Interrupted time series analysis (ITSA)

was used to explore whether NPIs have an e�ect on scarlet fever incidence,

while the intervention e�ects of specific NPIs were explored using correlation

analysis and ridge regression methods.

Results: From 2011 to 2017, the total number of scarlet fever cases was

400,691, with children aged 0–9 years being the main group a�ected. There

were two annual incidence peaks (May to June and November to December).

According to the best prediction model TBATS (0.002, {0, 0}, 0.801, {<12, 5>}),

the number of scarlet fever cases was 72,148 and dual seasonality was no

longer prominent. ITSA showed a significant e�ect of NPIs of a reduction in

the number of scarlet fever episodes (β2 = −61526, P < 0.005), and the e�ect

of canceling public events (c3) was the most significant (P = 0.0447).

Conclusions: The incidence of scarlet fever during COVID-19

was lower than expected, and the total incidence decreased by

80.74% in 2020. The results of this study indicate that strict NPIs

may be of potential benefit in preventing scarlet fever occurrence,
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especially that related to public event cancellation. However, it is still important

that vaccines and drugs are available in the future.

KEYWORDS

COVID-19, scarlet fever, SARIMA, TBATS, non-pharmaceutical interventions, ITSA

1. Introduction

Streptococcus pyogenes (group A Streptococcus, GAS) is the

most virulent of all clinically important streptococci and is

considered the fifth most deadly pathogen globally, posing not

only a major threat to humans but also a heavy global disease

burden (1–3). One study estimated that at least half a million

people worldwide die each year from severe GAS infection (4).

Scarlet fever is an acute respiratory infection caused by GAS and

is usually spread by respiratory droplets or direct contact with

mucus, saliva, or the skin of an infected person (5, 6). Although

scarlet fever is a benign infectious disease, it is prone to clusters

of outbreaks accompanied by complications including otitis

media, pneumonia, and sepsis, which causes a constant drain on

healthcare resources (7, 8). In the mid-19th century, scarlet fever

was amajor cause of death among children worldwide (9, 10). By

the 20th century, the mortality rate had decreased considerably

due to improved sanitation and widespread use of effective

antibiotics (9, 11). Since the 21st century, the re-emergence of

scarlet fever has become amajor public health concern in several

countries and regions. In 2011, the incidence of scarlet fever

increased rapidly in South Korea (12). In addition, in 2014, the

incidence of scarlet fever in the United Kingdom reached a new

highest level in 50 years (13).

Scarlet fever was classified as a category B notifiable disease

in China in 1950 and caused a significant economic burden in

the early 1980s, after which the incidence gradually declined

(14). The disease returned in 2011, associated with the rapid

economic development, living standards, population mobility,

and host population genetics in China (5). One study confirmed

that the average annual incidence of scarlet fever in China was

twice as high between 2011 and 2016 as that before between

2004 and 2011 (15). This may be closely related to the national

policy of liberalizing the second child, which puts the population

Abbreviations: COVID-19, Coronavirus disease 2019; NPIs, non-

pharmaceutical interventions; RMSE, residual mean squared error; MAPE,

mean absolute percentage error; TBATS, the advanced innovation state-

space modeling framework by combining Box-Cox transformations,

Fourier series with time-varying coe�cients and autoregressive moving

average error correction method; SARIMA, the seasonal autoregressive

integrated moving average; ITSA, Interrupted time series analysis;

OxCGRT, Oxford COVID-19 Government Response Tracker; ADF,

Augmented Dickey-Fuller.

of children susceptible to scarlet fever at great risk (16). The

preventive management of scarlet fever in China should increase

to a new level. However, there are relatively few studies on scarlet

fever in China, which mainly focus on specific regions or cities,

and the results of these studies may be diverse, fragmented, and

inconclusive. Therefore, a comprehensive and systematic study

of scarlet fever in mainland China is needed (6, 17). In addition,

there is still no effective vaccine available for preventing scarlet

fever; therefore, the importance of effective non-pharmaceutical

interventions (NPIs) should be emphasized.

The coronavirus disease 2019 (COVID-19) pandemic has

been spreading since the end of 2019. To contain the spread

of the epidemic in a timely and effective manner, governments

have actively adopted NPIs such as masking, lockdown policies,

and distancing (18–21). Results from a global study noted that a

number of NPIs reduced the time-varying reproduction number

of COVID-19 by 3–24% by day 28 after introduction (22). As

the first epicenter of COVID-19, the epidemic was effectively

controlled in China after the adoption of strict NPIs. A study

found that the proportion of serious and critical COVID-19

cases fell from 53.1 to 10.3% in the 3 months following the

implementation of NPIs (23). It has also been found that

NPIs have a positive effect on the prevention and control of

respiratory infections (24–26). To our knowledge, few studies

have been conducted, using quantitative analysis, on the effect

of NPIs for a specific disease, such as scarlet fever, during

the COVID-19 era. In addition, the rigorous NPIs adopted in

China may help in studying changes in the incidence of scarlet

fever during COVID-19. Thus, a robust and accurate predictive

model, which is important for predicting the incidence of scarlet

fever in the COVID-19 era, is needed to detect and analyze

trends during this period.

Many forecasting methods have been widely adopted as

effective policy support tools to assess and analyze the temporal

patterns of infectious disease incidence, among which the

autoregressive integrated moving average (ARIMA) model has

proven to be more effective (27–29). Research has shown

that scarlet fever has multiple seasonal patterns (15), and

the advanced innovation state-space modeling framework

that combines Box-Cox transformations, Fourier series with

time-varying coefficients, and autoregressive moving average

(ARMA) error correction method (TBATS) model works better

in dealing with complex time series analyses with seasonal cycles,

non-integer seasonality, and dual calendar effects (30). To the
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best of our knowledge, few studies have used these advanced

methods to analyze and assess the long-term epidemiological

trends and seasonality of scarlet fever. To demonstrate their

applicability, the level of precision was compared using an

ARIMA model with seasonality (SARIMA).

In summary, this study aimed to examine the demographic

and spatiotemporal distribution and characteristics of scarlet

fever re-emergence in mainland China from 2011 to 2017. We

also verified whether the adoption of strict NPIs in China, had

an impact on the incidence of scarlet fever in the COVID-19

era, and which specific measures had the greatest impact. The

findings might provide evidence and support for future scarlet

fever prevention and control.

2. Materials and methods

2.1. Ethical statement

Pooled data were obtained from publicly available

monitoring platforms and ethical approval or informed consent

was considered unnecessary.

2.2. Data collection

Scarlet fever is a nationally notifiable infectious disease in

China. The scarlet fever data used in this study were obtained

from two main sources. (1) Data on the regional distribution

and demographic characteristics of scarlet fever in mainland

China were extracted from the China Public Health Science Data

Center (https://www.phsciencedata.cn/Share/index.jsp)1. As the

latest demographic data were only updated until 2017, only the

data in the years 2011–2017 were included in the preliminary

descriptive analysis of the demographics. (2) Monthly data of

new cases of scarlet fever in China from January 1, 2011 to

December 31, 2020, were collected from the National Heath

Commission of the People’s Republic of China (http://www.nhc.

gov.cn/wjw/index.shtml)2. This study constructed SARIMA and

TBATS models using the 2011–2018 data, and evaluated the

predictive effect of the models using the 2019 data.

The source of data for comprehensive NPIs in the

interrupted time series analysis (ITSA) is the Oxford COVID-19

Government Response Tracker (OxCGRT), which was

developed by Oxford scholars in 2020 to track the government’s

response to the coronavirus pandemic. In addition, this study

conducted analysis on the following eight specific NPIs included

in containment and closure policies in the OxCGRT: school

closures (c1), workplace closures (c2), cancellation of public

1 The China Public Health Science Data Center. Available from: https://

www.phsciencedata.cn/Share/index.jsp.

2 The National Heath Commission of the People’s Republic of China.

Available from: http://www.nhc.gov.cn/wjw/index.shtml.

events (c3), restrictions on public gatherings (c4), closures

of public transport (c5), stay-at-home requirements (c6),

restrictions on internal movements (c7), and international

travel controls (c8). The data for each NPIs are from Our World

in Data (https://ourworldindata.org/covid-stringency-index)3.

2.3. TBATS model

Traditional seasonal exponential smoothing methods

cannot be used to describe complex seasonal time series

including multiple and non-integer seasonal patterns. The

BATS (p, q, m1, m2, ..., mT) method is thus proposed, where

B represents the Box-Cox conversion, A represents the ARMA

model, and T and S represent the trend and seasonal patterns

in the target series, respectively (31, 32). The key parameters

of the BATS model are the ARMA method (p and q) and the

seasonal period (m1, ..., mT). The advanced TBATS (ω, p, q,

φ, {m1, k1}, {m2, k2} ..., {mT, kT}) model was developed by

adding a Fourier series-based trigonometric representation

of the seasonal components to the traditional BATS method,

which can handle complex time series as well as linear and

non-linear time series (33) while adapting to dynamic seasonal

patterns over time (30). The parameters (p, q, and m) of the

TBATS model are consistent with those of the BATS model,

where k is the number of corresponding Fourier terms used

for each seasonality, ω is the Box-Cox transformation, and φ

is the damping parameter that facilitates trend extrapolation

to the model when the trend pattern is weakened (31, 34). The

TBATS model has many parameters, and this study automated

the determination of the values of each parameter in R software

using the principle of Akaike information criterion (AIC)

minimization to fit the model. It is worth mentioning that the

TBATS model has the potential to decompose the time series

into different components, enabling the identification and

extraction of one or more seasonal features that may not be

present in the object series graphs.

2.4. SARIMA model

The ARIMA model is a classical time-series predictive

analysis method proposed by Box and Jenkins, which is mainly

used to fit time series that are stationary (or can be converted to

stationary). Scarlet fever frequently has notable seasonal effects

(29), hence the use of the SARIMA method. The SARIMA

(p, d, q) (P, D, Q) model is based on the ARIMA model (27). In

this method, the seasonality of scarlet fever was considered as the

explanatory variable while the monthly scarlet fever incidence

was the response variable, and the model’s equation is

3 Our Word in Data. Available from: https://ourworldindata.org/covid-

stringency-index.
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where B indicates the backward shift operator, εt signifies

the errors of prediction, S denotes the periodicity of the scarlet

fever incidence series (S = 12 in this study), while d and D, are

the non-seasonal and seasonal differences in times, respectively.

p and q are the orders of the autoregressive and moving average

models, respectively. P and Q are the orders of the seasonal

autoregressive and moving average models, respectively. This

study used an automated time-series modeling for the specified

sample data.

Building the SARIMA model followed these key steps: First,

the stationarity of the scarlet fever incidence series was examined

using the Augmented Dickey-Fuller (ADF) method (35). When

the result of the ADF test was significant, the sequence was

proved to be stationary. For the non-stationary scarlet fever

series, log transformation or differencing was adopted to fulfill

the stationarity assumption. Second, an autocorrelation function

(ACF) graph and partial autocorrelation (PACF) plots were

used to select reasonable parameters for the SARIMA model

(36). Meanwhile, the auto.arima function of R 4.1.1 software

had been used to select a best SARIMA model according to

either the minimum of the AIC, AICc, or BIC. Third, we

evaluated the fit of the model to make predictions. Generally,

if a model was appropriate, the residuals of the model should

meet the independent distribution assumption; that is, there

was no correlation between the residuals. Finally, the residual

was determined as a white noise series using the Ljung-Box Q

test (37).

2.5. Performance statistics index

To assess the accuracy of the model predictions, two

metrics, the root mean square error (RMSE) and mean absolute

percentage error (MAPE), were used to compare the forecasting

capabilities of the TBATS and SARIMAmodels. The smaller the

measure, the better the corresponding model. The calculation

formula is as follows:

RMSE =

√

1

n

∑n

t=1
(yt − ŷt)

2
(2)

MAPE =
1

n

∑n

t=1

∣

∣yt − ŷt
∣

∣

yt
(3)

2.6. Statistical analysis

First, we conducted a descriptive analysis of the

demographic and spatiotemporal distribution of scarlet

fever incidence in mainland China from 2011 to 2017. Second,

the TBATS and SARIMA models were evaluated using two

indicators, RMSE and MAPE, to select the best model to predict

scarlet fever incidences in 2020 and to observe the changes in

the actual and expected number of cases. Finally, this study used

ITSA to explore whether comprehensive NPIs had an effect on

the number of cases and further analyzed which specific NPIs

had a significant effect on scarlet, using correlation analysis

and ridge regression. It is worth noting that each NPI must be

standardized prior to the statistical analysis.

Multiple statistical packages including “forecast,” “tseries,”

and “tbats” in R (version 4.1.1, R Development Core Team,

Vienna, Austria) were employed to establish the SARIMA

and TBATS models. All the estimated parameter values were

statistically significant (P < 0.05). In addition, statistical R

packages such as “prais” and “sandwich” were used for the

ITSA. Correlation and ridge regression analyses were performed

using IBM SPSS Statistics forWindows version 24.0 (IBMCorp.,

Armonk, NY, USA).

3. Results

3.1. Demographic and distributive
features of scarlet fever from 2011
to 2017

The characteristics of the patients with scarlet fever in

mainland China are shown in Table 1. From 2011 to 2017,

400,691 cases of scarlet fever were reported in mainland China,

with an average of 57,000 cases per year and the highest

incidence occurred in 2017. More than half of all patients were

males, with amale-to-female ratio of 1.59:1. Second, themajority

of the patients were children aged 0–9 years (92.83%). In

addition, kindergarten children, students, and scattered children

were the main groups diagnosed with scarlet fever between 2011

and 2017.

3.2. Spatiotemporal analyses

The distribution by the total number of scarlet fever and by

province in China from 2011 to 2017 revealed a high degree

of dispersion (Figure 1). Northern regions such as Shandong,

Liaoning, and Heilongjiang had a high incidence of scarlet

fever. In contrast, the incidence was very low in areas such as

Hainan and Tibet. Based on the monthly number of reported

cases by province in China from 2011 to 2017 and ranked by

the total number of scarlet fever cases over the seven years,

Shandong and Liaoning showed the most prominent incidence

rates. Among the months observed, the incidence was highest in

May, June, November, and December, and the highest incidence

in December was observed in Shandong Province (Figure 2).

A clear cyclical and seasonal pattern of monthly scarlet

fever incidence and trend was observed from January 2011 to
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TABLE 1 Demographic and distributive features of scarlet fever in mainland China from 2011 to 2017.

Variable Total 2011 2012 2013 2014 2015 2016 2017

N = 400,691

(%)

n = 63,878

(%)

n = 46,459

(%)

n = 34,207

(%)

n = 54,247

(%)

n = 68,249

(%)

n = 59,282

(%)

n = 74,369

(%)

Sex

Male 245,777 (61.34) 39,826 (62.35) 29,039 (62.50) 20,736 (60.62) 32,932 (60.71) 41,502 (60.81) 36,390 (61.38) 45,352 (60.98)

Female 154,914 (38.66) 24,052 (37.65) 17,420 (37.50) 13,471 (39.38) 21,315 (39.29) 26,747 (39.19) 22,892 (38.62) 29,017 (39.02)

Age, years

0–9 371,968 (92.83) 58,825 (92.09) 41,723 (89.80) 31,268 (91.41) 50,348 (92.81) 63,963 (93.72) 55,589 (93.77) 70,252 (94.46)

10–19 24,727 (6.17) 4,401 (6.89) 4,082 (8.79) 2,468 (7.21) 3,321 (6.12) 3,710 (5.44) 3,147 (5.31) 3,598 (4.84)

20–29 2,440 (0.61) 437 (0.68) 436 (0.94) 287 (0.84) 357 (0.66) 335 (0.49) 319 (0.54) 269 (0.36)

30–39 914 (0.23) 112 (0.18) 125 (0.27) 114 (0.33) 135 (0.25) 137 (0.20) 139 (0.23) 152 (0.20)

40–49 346 (0.09) 57 (0.09) 52 (0.11) 34 (0.10) 51 (0.09) 55 (0.08) 43 (0.07) 54 (0.07)

50–59 170 (0.04) 27 (0.04) 22 (0.05) 25 (0.07) 20 (0.04) 31 (0.05) 28 (0.05) 17 (0.02)

≥60 126 (0.03) 19 (0.03) 19 (0.04) 11 (0.03) 15 (0.03) 18 (0.03) 17 (0.03) 27 (0.04)

Occupation

Children in kindergarten 168,601 (42.08) 25,357 (39.70) 18,956 (40.80) 13,303 (38.89) 21,476 (39.59) 29,014 (42.51) 26,283 (44.34) 34,212 (46.00)

Students 151,778 (37.88) 25,809 (40.40) 17,958 (38.65) 13,352 (39.03) 21,912 (40.39) 25,299 (37.07) 21,195 (35.75) 26,253 (35.30)

Scattered children 75,810 (18.92) 11,822 (18.51) 8,698 (18.72) 7,040 (20.58) 10,252 (18.90) 13,337 (19.54) 11,251 (18.98) 13,410 (18.03)

Farmers 1,503 (0.38) 246 (0.39) 257 (0.55) 196 (0.57) 214 (0.39) 234 (0.34) 188 (0.32) 168 (0.23)

Housework and

unemployment

903 (0.23) 142 (0.22) 150 (0.32) 101 (0.30) 143 (0.26) 127 (0.19) 99 (0.17) 141 (0.19)

Workers 455 (0.11) 80 (0.13) 78 (0.17) 60 (0.18) 71 (0.13) 60 (0.09) 65 (0.11) 41 (0.06)

Others 1,641 (0.41) 422 (0.66) 362 (0.78) 155 (0.45) 179 (0.33) 178 (0.26) 201 (0.34) 144 (0.19)

FIGURE 1

Distribution of the total number of scarlet fever cases in each

province in China from 2011 to 2017.

December 2018 (Figure 3). Since 2013, the incidence of scarlet

fever in mainland China has been fluctuating and increasing,

and has continued to show an increasing trend in recent years.

3.3. Sample simulation and prediction

The ndiffs show that the scarlet fever time series was not

smooth; first-order difference (d = 1) and seasonal difference (D

= 1) were determined, and the final ADF test was statistically

significant (P < 0.01), making the series smooth. The ACF and

PACF graphs (Figure 4) were generated to help estimate the

other parameters. The model automatically selected SARIMA

(2, 1, 2) (0, 1, 1)[12] as the best fit [AIC = 1,356.48, Bayesian

information criterion (BIC) = 1370.99] using time-series

modeling software on the specified sample data. Therefore, in

this study p, d, q = 2, 1, 2 and P, D, Q = 0, 1, 1, respectively.

The Ljung-Box Q test further indicated that the model residuals

were consistent with the white noise series (χ2 = 0.0018521,

P > 0.05), indicating that the residual series was purely random

and that the SARIMA model extracted sufficient information.

In addition, sensitivity analyses were constructed by varying

p, q in SARIMA. Based on similar studies where the range

of p, q should not be too large, the range of values for p, q

in this study was 0–3. The results of the sensitivity analysis

(Supplementary Table 1) imply that the SARIMA (2, 1, 2) (0,

1, 1)[12] model identified can effectively and adequately track

the epidemiological trends of scarlet fever in mainland China.

The TBATS model included numerous parameters and was

automatically modeled in R using the “tbats” function to obtain

the model parameters ω =0.003, φ = 0.822, p = 0, q = 0,
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FIGURE 2

The time series of monthly number of cases from 2011 to 2017, standardized by the monthly number of cases reported by each province

according to the total number of scarlet fever cases recorded in the 7 years.

seasonal cycle length mT = 12, kT = 5, and model AIC =

1716.454. A final TBATS model (0.003, {0, 0}, 0.822, {<12, 5>})

was obtained.

3.4. Model performance evaluation

The results of the model performance metrics for SARIMA

(2, 1, 2) (0, 1, 1)[12] and TBATS (0.003, {0, 0}, 0.822, {<12,

5>}) were investigated. The performances of the two models

were compared in terms of both simulation and prediction, and

the results showed that the RMSE and MAPE measures of the

TBATS (0.003, {0, 0}, 0.822, {<12, 5>}) model were lower than

those of the SARIMA (2, 1, 2) (0, 1, 1)[12] model (Table 2).

Therefore, the TBATS (0.003, {0, 0}, 0.822, {<12, 5>}) model

worked better (Figure 5).

Based on the comparison of the above models, we found

that the TBATS (0.003, {0, 0}, 0.822,{<12, 5>}) model had a

better level of predictive accuracy, with incidence rates close to

their expected levels in years. Therefore, this study used the new

TBATS (0.002, {0, 0}, 0.801, {<12, 5>}) model from 2011 to

2019 to predict the incidence of scarlet fever during the 2020

COVID-19 pandemic. The final prediction model showed that

the number of scarlet fever cases that were expected to occur in

mainland China in 2020 was 89,354, whereas the actual number

of cases was 17,206, with a total of 72,148 averted cases, showing

an unprecedented decline. The actual number of cases that

occurred in January 2020 showed the lowest relative decrease of

only 11.47%, which was similar to the expected value (Table 3).

The incidence of scarlet fever plummeted from February until

May, when it dropped to the lowest level.

In Figure 6A, the expected incidence rate during the

continuing spread of COVID-19 in 2020 differed significantly

from the actual incidence rate trend, with the forecast showing a

large fluctuating trend while the actual incidence rate showed

a low and stable trend. Compared to the average number

of cases in 2016–2019, the number of cases during the

COVID-19 pandemic decreased by 76.83%, which is a much

lower rate than the historical average incidence rate (Table 3).

Surprisingly, there was a downward trend in the number of

cases, wherein an increase should have occurred in March. Even

in May and June, when scarlet fever was the most prevalent,

the number of cases did not increase significantly, but instead

decreased by∼95% compared to the predicted value and showed
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FIGURE 3

Monthly scarlet fever incidence and variations, from January 2011 to December 2018.

FIGURE 4

Autocorrelation and partial autocorrelation plots for the di�erenced scarlet fever time series.

a flat trend. We also found that the dual seasonality of scarlet

fever during COVID-19 pandemic was no longer prominent,

and the proportion of scarlet fever cases, although increasing

again in November, remained below the expected level.
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Figure 6B shows that the total annual incidence of scarlet

fever in China showed a steady increase from 2011 to 2019

(β1 = 4396, P < 0.05) and an immediate decrease in 2020

(β2=−61526, P < 0.05). The post-intervention change was not

statistically significant (Table 4).

Table 5 shows a significant negative correlation between the

number of scarlet fever episodes and each NPIs in mainland

China (P < 0.05). By ridge regression analysis, the k-value in this

study was 0.103, and ANOVA result was significant (P < 0.05).

TABLE 2 Comparison of the model fitting e�ect.

Model RMSE MAPE

TBATS 1,423.6 0.14

SARIMA 1,705.65 0.25

As seen in Table 6, among the eight NPIs, only cancellation of

public events (c3) was statistically significant (P = 0.045).

4. Discussion

In brief, this study revealed the demographic and

spatiotemporal distribution of the incidence of scarlet fever

and patient characteristics in China from 2011 to 2017, with a

fluctuating upward trend toward recent years. The comparison

of the predicted and actual values of scarlet fever incidence

in mainland China in 2020 also revealed an unprecedented

downward trend, improving ∼80% of infections among the

susceptible population. We confirmed that the comprehensive

NPIs implemented during the COVID-19 pandemic led to a

reduction in the number of scarlet fever cases; in particular, the

cancellation of public events had the most significant effect.

FIGURE 5

Comparison of SARIMA and TBATS models prediction fit.

TABLE 3 Comparison between actual and expected incidence in 2020, and the relative reduction in average incidence from 2016 to 2019.

Month 2020 Expect value Relative reduction 2020 2016–2019 Relative reduction

January 6,352 7,175 11.47% 6,352 6,797 6.54%

February 580 3,002 80.68% 580 2,290 74.67%

March 444 4,822 90.79% 444 4,386 89.88%

April 442 8,239 94.63% 442 6,377 93.07%

May 562 11,687 95.19% 562 9,801 94.27%

June 677 13,018 94.80% 677 10,022 93.24%

July 789 6,167 87.21% 789 5,201 84.83%

August 763 3,047 74.96% 763 2,235 65.86%

September 877 3,455 74.61% 877 2,962 70.39%

October 1,102 6,117 81.98% 1,102 4,663 76.37%

November 1,925 9,264 79.22% 1,925 8,547 77.48%

December 2,693 13,362 79.85% 2,693 10,970 75.45%

Total 17,206 89,354 80.74% 17,206 74,248 76.83%
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FIGURE 6

(A) Graph of monthly scarlet fever incidence trends in mainland China from 2016 to 2020 compared with expected values in 2020. (B) Incidence

of scarlet fever before and after NPIs intervention in China, January 2011 to May 2022.

Based on the incidence of scarlet fever in mainland China

from 2011 to 2017, the following conclusions can be drawn:

scarlet fever is predominantly a childhood disease in China, and

boys are more likely to contract scarlet fever than girls, which

is consistent with the results of other studies (38). Children are

prone to aggregate scarlet fever infection due to factors such

as their weak resistance and high risk of exposure to the virus

during school days. Furthermore, boys are associated with being

more active than girls during the school year, thus increasing the

risk of illness to some extent. That the incidence of scarlet fever

reached a new peak in 2017may be closely related to the effective

implementation of the two-child policy (16).

In addition, scarlet fever has two seasonal peaks in mainland

China each year, when children are in school, with cases

decreasing during winter, and during summer holidays. The

results of this study show that the incidence of scarlet fever

varies significantly in different regions, which is consistent with

other studies (5, 15). High incidence concentrations are mainly

in the north, such as Shandong, Liaoning, Heilongjiang, Beijing,

and Hebei, and previous studies have shown that this may be
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positively correlated with mean temperature and mean relative

humidity (39). In addition, a study in Beijing showed that

the incidence of scarlet fever was positively correlated with

the number of hours of sunshine. The low incidence clusters

are mainly in the south, such as Jiangxi, Guangxi, Guizhou,

Hunan, and Hubei, and the incidence is especially low in

winter, which may be related to the low sunshine during the

rainy winter months. The causes of infectious diseases are

complex and are not caused by a single meteorological factor,

but are also closely related to social factors and pathogenetic

characteristics (40). Therefore, school-based preventive and

control measures are particularly important for preventing

scarlet fever, such as paying attention to personal hygiene in

schools, increasing the frequency of disinfection in schools, and

strengthening exercises to enhance students’ physical fitness.

In addition, health departments should pay more attention to

the surveillance, prevention, and control of infectious diseases;

formulate scientific public health policies; and implement

effective interventions to control infectious diseases and protect

the children.

For the choice of the prediction model, the TBATS model

was found to have higher predictive performance and was more

suitable for predicting the incidence of scarlet fever in China.

TABLE 4 Interrupted time series analysis of the annual number of

scarlet fever cases in mainland China from January 2011 to May 2022.

Series Estimate S.E. t P-value

Intercept 40,643 7,588 5.357 <0.001

Preintervention trend 4,396 1,355 3.245 0.012

Intervening variable −61,526 12,946 −4.753 0.001

Postintervention −7,981 8,081 0.988 0.352

Interestingly, we conclude that the expected incidence of scarlet

fever in mainland China in 2020 showed an opposite trend

to the actual incidence. Nearly 90,000 cases of scarlet fever

were predicted to occur in mainland China in 2020, and the

implementation of NPIs in the context of COVID-19 may have

prevented more scarlet fever infections. Further exploration

using ITSA showed a tendency toward a decrease trend in the

total annual incidence of scarlet fever in China from January

2020 to May 2022, indicating that comprehensive NPIs achieved

better results. This is largely due to the government’s prevention

and control policies as well as voluntary behavioral changes

by individuals with reduced exposure risk, hospital visits,

and exposure to counseling, which have greatly reduced the

likelihood of disease transmission. For example, on January 20,

2020, the National Health and Wellness Commission included

COVID-19 in themanagement of statutory category B infectious

diseases, and in February, 2020, the State Council issued a notice

on the prevention and control of COVID-19 in children and

pregnant women. Therefore, this may be an important reason

why scarlet fever incidence was not increased, but showed a

downward trend in March, 2020. Thereafter, it did not show

an increase in May and June, the strongest months of the

season, in accordance with previous trends. This may be closely

related to the importance of school closures in mitigating the

spread of seasonal infections, similar to the findings of other

related studies (41). Besides focusing on susceptible populations,

it is also important to note that scarlet fever is an infectious

disease that is prone to aggregate transmissions, and that,

of the eight specific NPIs, the cancellation of public events

had the most prominent impact in this study. In addition,

a global study confirmed the cancellation of public events

as an effective intervention to reduce COVID-19 infection

rates (42). Therefore, in the absence of a vaccine or effective

drugs for scarlet fever, reducing the risk of transmission and

TABLE 5 Correlation of the number of scarlet fever cases with each NPI from January 2011 to May 2022.

Cases c1 c2 c3 c4 c5 c6 c7 c8

Cases r 1 −0.449** −0.454** −0.460** −0.460** −0.384** −0.437** −0.453** −0.444**

c1 r −0.449** 1 0.964** 0.978** 0.977** 0.838** 0.948** 0.974** 0.910**

c2 r −0.454** 0.964** 1 0.982** 0.981** 0.836** 0.979** 0.986** 0.914**

c3 r −0.460** 0.978** 0.982** 1 0.998** 0.838** 0.958** 0.989** 0.956**

c4 r −0.460** 0.977** 0.981** 0.998** 1 0.836** 0.957** 0.986** 0.956**

c5 r −0.384** 0.838** 0.836** 0.838** 0.836** 1 0.866** 0.859** 0.796**

c6 r −0.437** 0.948** 0.979** 0.958** 0.957** 0.866** 1 0.970** 0.900**

c7 r −0.453** 0.974** 0.986** 0.989** 0.986** 0.859** 0.970** 1 0.929**

c8 r −0.444** 0.910** 0.914** 0.956** 0.956** 0.796** 0.900** 0.929** 1

Pearson correlation coefficient is “r”.
**P < 0.01.

Eight specific NPIs in OxCGRT’s containment and closure policy: school closures (c1), workplace closures (c2), cancellation of public events (c3), restrictions on public gatherings (c4),

closures of public transport (c5), stay-at-home requirements (c6), restrictions on internal movements (c7), and international travel controls (c8).
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TABLE 6 Ridge regression analysis between the number of scarlet fever cases and each NPI in mainland China from January 2011 to May 2022.

Coeff S.E. t p Std. coef VIF

c1 −497.895 731.038 −0.681 0.497 −0.060 1.309

c2 −670.791 582.133 −1.152 0.251 −0.078 0.777

c3 −638.506 315.099 −2.026 0.045 −0.085 0.297

c4 −609.591 368.837 −1.653 0.101 −0.081 0.404

c5 −67.180 1,025.133 −0.066 0.948 −0.006 1.628

c6 −83.115 758.895 −0.110 0.913 −0.010 1.316

c7 −410.545 498.746 −0.823 0.412 −0.052 0.676

c8 −742.939 843.410 −0.881 0.380 −0.087 1.641

Constant 5,241.198 916.078 5.721 0.000 0.000 0.000

Eight specific NPIs in OxCGRT’s containment and closure policy: school closures (c1), workplace closures (c2), cancellation of public events (c3), restrictions on public gatherings (c4),

closures of public transport (c5), stay-at-home requirements (c6), restrictions on internal movements (c7), and international travel controls (c8).

preventing infection may be the best way to reduce the number

of scarlet fever cases. In the future, combination of vaccines,

drug therapy, and NPIs should be considered as a most effective

preventive measure.

Despite these findings, some limitations of our study should

be mentioned. First, the data are not reported as individual

case data, and daily data may be subject to error. Second, the

decline in the age structure and regional distribution of scarlet

fever due to COVID-19 was not explored because demographic

and geographic distribution data were unavailable in 2020.

Third, this study utilized two prediction models for scarlet fever,

and their applicability to other diseases remains unexplored.

In future studies, if daily scarlet fever data are available, it is

necessary to conduct an in-depth analysis of the effectiveness

of each NPI and further refine the model for the study of

other diseases.

5. Conclusion

Scarlet fever poses a continuous threat to children in China,

especially in the northern region, and it exhibits bimodal

seasonal patterns. The TBATS model predicted a higher level

of scarlet fever in China than the SARIMA model, showing

that more than 80% of infections in susceptible populations

wasmanaged under the COVID-19 pandemic prevention policy.

Strict NPIs have a positive impact on the prevention of scarlet

fever, with the cancellation of public events having the most

significant impact. This suggests that government policymakers

need to maintain the use of different types of NPIs to prevent

scarlet fever in the future, with a focus on vaccine development

and drug treatment. In addition, data limitations suggest the

need to still explore the impact of scarlet fever in different

regions in the future.
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