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With the improvement of treatment and prevention methods, many countries have the

pandemic under control. Different from the globally large-scale outbreak of COVID-19 in

2020, now the outbreak in these countries shows new characteristics, which calls for

an effective epidemic model to describe the transmission dynamics. Meeting this need,

first, we extensively investigate the small-scale outbreaks in different provinces of China

and use classic compartmental models, which have been widely used in predictions,

to forecast the outbreaks. Additionally, we further propose a new version of cellular

automata with a time matrix, to simulate outbreaks. Finally, the experimental results show

that the proposed cellular automata could effectively simulate the small-scale outbreak of

COVID-19, which provides insights into the transmission dynamics of COVID-19 in China

and help countries with small-scale outbreaks to determine and implement effective

intervention measures. The countries with relatively small populations will also get useful

information about the epidemic from our research.
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1. INTRODUCTION

In December 2019, the high-speed expansion of COVID-19 managed itself into a global pandemic
in a minute, which ended up as a global crisis. China launches a resolute battle to prevent
and control the spread of COVID-19, within 4 months the transmission of the virus has been
successfully cut off. The daily confirmed cases in China mainland dropped below 100 and further
declined to a single digit. Hard work of China had gained remarkable achievement. Unfortunately,
the virus has mutated in a way that might spread easier, which poses a great challenge to epidemic
prevention.

According to the data from the National Health Commission of China, we can obtain some
general principles underlying the spread of the virus, as shown in Figure 1. During outbreaks, the
daily confirmed cases are less than one hundred. The outbreaks will last for around 30 days. It is
noticeable that the trend of daily confirmed cases reached its peak around 15 days after the outbreak
and the daily new recovered cases peak at 20 days later.

With the experience of fighting against COVID-19 in Wuhan, the Chinese government has had
science-based measures for COVID-19 prevention and control. In this article, we set our attention
on the small-scale outbreak and transmission of COVID-19 in various provinces of China, and try
to reveal the general principles underlying the spread of the virus to provide theoretical support
for epidemic prevention. With appropriate parameter setting and transmission rules, this study can
also be used for epidemic analysis in many other countries. The stability of the proposed model
is tested with COVID-19 data in Potter County, Texas US. This study can provide important
information for making appropriate decisions in countries that lack medical resources.
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FIGURE 1 | The daily confirmed cases and recovered cases of COVID-19 in Hebei province on January 2021.

Many models can be applied to simulate the spread of the
epidemic. The traditional SIR model has already been widely
used to simulate the epidemic at a country level, generally with
numerous infected cases a huge population (1–4). Nowadays,
many countries already have the COVID-19 under control, and
the infected cases in a city or county with a relatively small
population, are marginal compared with the total infected cases
at the country level. Most of the previous studies focused their
attention on outbreaks with sufficient infected cases, like the
outbreak in Wuhan (4, 5). We believe that COVID-19 will
show a trend of small outbreaks within a certain range. It is
significant to explore the regularity of small-scale outbreaks of
COVID-19. In this study, we focus our attention on small-scale
outbreaks with a limited number of cases. First, we applied
traditional SIR model and SEIU IDRURD model simplified from
SEIDIUQHRD (6). Then a new version of CA is proposed to carry
out the experiment. In the improved CA model, the parameters
and transmission rules are set according to the data from the
local health department. During the experiment, we simulate
the outbreaks in two provinces of China, Heilongjiang and
Hebei, and Potter County, Texas US. The results show that our
improved CA has a better performance compared with the two
compartments models mentioned above.

The contribution of this study can be summarized as follows.
To the best of our knowledge, this is the first study that tries to
simulate the small-scale outbreak of COVID-19. Additionally, a
new version of CA has been proposed with a time matrix that can
simulate the outbreak well by setting transmission rules. Utilizing
this model, epidemic trends in small-scale outbreaks can be used
to help health officials make decisions on public health policies.

2. RELATED STUDY

In 2002, the SARS (Severe Acute Respiratory Syndrome) virus
was first found in Guangdong China. Classical compartmental

models SIR have been used in simulation and prediction (7–
9). In their studies, the number of susceptible, infected, and
recovered from Beijing have been calculated using the SIRmodel,
and all parameters with epidemiological meaning including
transmission rate, removal rate, and basic reproduction number
have been estimated. The same methods have been used in
investigating the transmission rules of SARS in Guangdong
province (10). The studies showed that transmission dynamic
models, in the form of differential equations, could simulate the
process of SARS transmission with reasonable parameters and
reflect the dynamic of SARS transmission.

Since December 2019, the COVID-19 started its transmission,
and classical compartmental models have been widely used
in predictions. But the rate of transmission and many other
parameters in classical models are constants. For better
simulation, numerous researchers have proposed many methods
of predicting the parameters dynamically (7, 11, 12). The
improved SEIR model has been used in forecasting the outbreak
and combined with a series of interventions formulated by
the government. With the development of machine learning, a
dynamic prediction method of the infection rate was derived
based on long short-term memory (LSTM) and has a better
performance compared with that of the traditional SEIR model
(13, 14). These models assumed that populations are completely
mixed and ignore spatial effects of spread epidemics; also
interaction between individuals is neglected since they model
populations as continuous entities (15).

Cellular automata are dynamic systems with discrete time,
space, and state. It discusses the overall properties on the premise
of synchronous updating based on local principles, which is
expected to simulate the real epidemic situation through the set of
local principles (16). It has been applied in the field of infectious
disease control (17–19). Classical epidemic models based on
differential equations may be unsuitable for simulating small-
scale outbreaks of COVID-19, given the lack of flexibility when
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simulating local characteristics of infectious diseases. Cellular
automata may have better performance in the simulation of
small-scale virus outbreaks.

In previous studies (13, 20), most of the methods have
been directed at the large-scale outbreak of SARS or COVID-
19. Most predictive studies based on cellular automata focused
on H1N1 and the small spread of chickenpox (19, 21). At
present, the epidemic situation in China is generally stable,
with rebounds in some provinces. In this contribution, we used
classic compartmental models (SIR and SEIU IDRURD) and CA
to simulate the small-scale outbreaks of COVID-19 in different
provinces of China, a time matrix is set to optimize the cellular
automata.

Alongside CA, many researchers have implemented an agent-
based model (ABM) in simulating the pandemic (22, 23). ABM
to some extent evolved from CA, they are a class of agents,
and each of them contains variable information. Each agent can
interact with their neighbors and transform their state. Themajor
difference between ABM and CA is that each agent within ABM
can move their position as well as change state and interact with
neighbors. However, the cell in the class of CA will not be able
to transform their physic position. ABM is more intuitive than
mathematical or statistical models because it represents objects as
individual things in the world. In previous studies, ABM models
have been used in searching for cost-effective proactive testing
strategies and simulating the effects of health policy (24, 25).

3. METHODS

3.1. SIR Model
In the SIRmodel, individuals are assigned to three compartments
or categories: susceptible(S), infectious(I), and recovered(R). S
compartment represents the susceptible individuals that are not
immune to the virus and might get infected when exposed to
it. I compartment stands for those individuals who are carrying
the virus and can spread it. R compartment indicates those
infected with the virus and have successfully recovered after
treatment or died. Suppose that the recovered individuals will not
be re-infected or spread the virus.

As a result of the China’s public health emergency system and
strict traffic controls, the number of deaths is close to zero and
population migration with neighboring provinces is negligible.
It is reasonable to suppose that the population remains constant
during the outbreak, and the birth, death, and migration rates
are zero. SIR model can be described by the following set of
differential equations.

dS

dt
= −β

S

N
I

dI

dt
= β

S

N
I − γ I

dR

dt
= γ I

N = S(t)+ I(t)+ R(t)

(1)

where N is the total population of an area and it remains
a constant during the spread of the virus and S(t), I(t),R(t)

FIGURE 2 | The framework of SIR model.

represent the number of individuals in a different compartment
at the time t. β is the infection rate, which means the transition
probability from S to I. Similarly, γ is the removal rate, which
represents the transition probability from I to R. They are

often regarded as constants for simplicity of calculation. dS
dt

is
the changing rate of susceptible individuals. The number of
susceptible individuals decreases with the increment of infected
individuals. dI

dt
is the changing rate of infected individuals. dR

dt
is

the changing rate of recovered individuals. The framework of SIR
is shown in Figure 2.

3.2. SEIUIDRURD Model
Based on the SIR model, we further analyzed China’s epidemics
prevention and set up the SEIR model. Due to the characteristic
of COVID-19, there will be a latency when individuals are
exposed to the virus (9). During the latency, exposed individuals
are incapable of transmitting the virus and the illness did
not deteriorate to the infected stage. Susceptible individuals
may become exposed. Exposed individuals (E) will eventually
evolve into the infected. Therefore, after being exposed to the
virus, patients usually turn into I after latency. However, in
SIR the exposed individual is not modeled. In addition, there
are two types of infectious diseases: symptomatic infectious
(ID) and asymptomatic infectious (IU) (6). Due to the strict
prevention and control measures, a newly detected ID will get a
strict quarantine, and the transmission of the virus will be cut
off. Consequently, the original SEIR model is extended to the
SEIU IDRURD model. The SEIU IDRURD model can be described
as follow.

dS

dt
= −β

S (IU + σ ID)

N
dE

dt
= β

S (IU + σ ID)

N
− ηE

dIU

dt
= φηE− γ IU

dID

dt
= (1− φ) ηE− γ ID

dRU

dt
= γ IU

dRD

dt
= γ ID

(2)

Compartments definition (Figure 3):

• Susceptible (S) is the part of the population that could be
potentially subjected to the infection.

• Exposed (E) is the fraction of the population that has
been infected but does not show symptoms yet: it can be
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FIGURE 3 | The framework of SEIU IDRURD model.

FIGURE 4 | The framework of CA.

called a latent phase. and at this stage, we define it to be
not infectious.

• Asymptomatic Infectious (IU) is people infected with a
novel coronavirus that does not exhibit symptoms at any
time during the course of infection, and are capable
of spreading the virus. They are a potential source of
substantial spread within the community (6). Due to the
undetectable character of IU , we assume all the infected
cases collected by the health department are symptomatic
infectious (ID).

• Symptomatic Infectious (ID) stands for population infected

with the virus and exhibit a verity of symptoms: fever or chills,

cough, shortness of breath, or difficulty breathing. Isolation

is needed to cut off the spread of the virus according to the

local health policies. In the later experiment, we assume that

confirmed cases collected by the public health department
represent ID only.

• Undetected Recovered (RU) are the people healed from IU ,

they have become immune to the virus and will no be

reintroduced into the susceptible category.

• Detected Recovered (RD) are the people healed from

ID, similar to RU they are immune to the virus,

but stand for recovered cases that are in the health
department record.

The framework of the SEIU IDRURD model is shown in Figure 3.
Parameters value definition:

(a) β infection rate. It is the number of people that a patient can
infect each day, which transports people from the S category
to the E category.We define it as a constant and the estimation
is in the setting of a later parameter.

(b) η transform rate from E to ID or IU , which represents the
incubation and is defined as a constant.

(c) φ percentage of infections that are asymptomatic stands for
the proportion of asymptomatic infectious individual (IU)
in all infections. For example, a parameter value of 0.5
represents that half of the exposed population will transform
into IU .

(d) σ the non-isolation rate of the symptomatic infectious
individual (ID). In some countries, the σ is set to 0, which
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TABLE 1 | Daily confirmed and recovered cases of Heilongjiang during the

outbreak in January 2021.

Time

(day)

Daily

confirmed

cases

Recovered

cases

Time

(day)

Daily

confirmed

cases

Recovered

cases

7-Jan 1 0 21-Jan 47 6

8-Jan 0 0 22-Jan 56 8

9-Jan 0 0 23-Jan 29 8

10-Jan 0 0 24-Jan 35 8

11-Jan 1 0 25-Jan 53 9

12-Jan 16 1 26-Jan 29 16

13-Jan 43 1 27-Jan 28 34

14-Jan 43 2 28-Jan 21 56

15-Jan 23 3 29-Jan 27 79

16-Jan 12 3 30-Jan 9 87

17-Jan 7 4 31-Jan 22 99

18-Jan 27 4 1-Feb 8 100

19-Jan 16 5 2-Feb 6 127

20-Jan 68 6 3-Feb 4 170

means that all symptomatic infectious are isolated and
incapable of transmitting the virus.

(e) γ stands for recovery rate. It gives information about how fast
people may recover from the disease or pass away during the
treatment (1/γ is the average recovery time).

3.3. Cellular Automata
During the transmission, the relationships between data of
infectious diseases are extremely complex. However, cellular
automata can predict the epidemic through multi-step iteration
and parallel evolution only by determining relatively simple
evolution rules (18). In the case of traditional dynamics models
that are unsuitable for modeling the spread of COVID-19 in
China nowadays, we try to use cellular automata to carry out the
experiment. Cellular automata are a dynamic system discrete
in time, space, and state, different kinds of cells represent
different groups of people: S-cell represents susceptible, E-
cell represents exposed, IU-cell is asymptomatic infectious,
ID-cell is symptomatic infectious, RU-cell is Undetected
recovered, RD-cell the detected recovered. The transmission
rules of COVID-19 in cellular automata are the same
as SEIU IDRURD.

When cellular automata are used to simulate the
transformation from the Infected (IU and ID) to Recovered
(

RU and RD
)

, previous studies often generate a random number
and make a comparison with the removal rate, γ . If the random
number is less than γ , the infected cell will turn into recovered
(1). However, it is not satisfactory for the real scene. Therefore,
we introduce a time matrix to record the time of virus infection
of each cell as defined in Equation (3).

TABLE 2 | Daily confirmed and recovered cases of Hebei during the outbreak in

January 2021.

Time

(day)

Daily

confirmed

cases

Recovered

cases

Time

(day)

Daily

confirmed

cases

Recovered

cases

2-Jan 1 0 16-Jan 72 13

3-Jan 4 0 17-Jan 54 13

4-Jan 14 0 18-Jan 35 17

5-Jan 20 0 19-Jan 19 18

6-Jan 53 0 20-Jan 20 26

7-Jan 33 0 21-Jan 18 39

8-Jan 14 0 22-Jan 15 56

9-Jan 46 0 23-Jan 19 73

10-Jan 82 0 24-Jan 11 115

11-Jan 40 0 25-Jan 5 148

12-Jan 90 0 26-Jan 7 218

13-Jan 81 13 27-Jan 3 275

14-Jan 90 13 28-Jan 1 310

15-Jan 90 13 29-Jan 1 404

TABLE 3 | The daily successful infection rate of Hebei province during the

outbreak in January 2021.

Time (day) F(t) Time (day) F(t)

5-Jan 0.60938 13-Jan 0.20057

6-Jan 0.58974 14-Jan 0.19598

7-Jan 0.44484 15-Jan 0.17769

8-Jan 0.32936 16-Jan 0.14816

9-Jan 0.30050 17-Jan 0.13243

10-Jan 0.29280 18-Jan 0.10498

11-Jan 0.24036 19-Jan 0.08197

12-Jan 0.21479 20-Jan 0.06205

Tn×n =











t11 t12 . . . t1n
t21 t22 . . . t2n
...

...
. . .

...
tn1 tn2 . . . tnn











(3)

At first, all elements in the time matrix, Tn×n, are set to 0. The
state of the cell is 0 and there is a 0.5% probability of a cell
turning into 1, which represents exposure at the beginning of the
outbreak. The structure of CA will be defined as follows:

• The two dimensional lattice of square cells in an orthogonal
grid. The size of the orthogonal grid is n × n, a vector (i, j)
represents the position of the cell in the grid.

• The size of the grid is theoretical infinity, but in the
experiment, we set it as n2 = 3002. Each cell’s neighborhood
is composed of all its eight neighboring cells (the Moore
neighborhood).

• Each cell has six states, we can picture 0 as the state of being
susceptible to a given cell, 1 as the state of being exposed,
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FIGURE 5 | Trend chart of daily confirmed cases of the models in Heilongjiang province.

FIGURE 6 | Trend chart of recovered cases of the models in Heilongjiang province.
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2 as being asymptomatic infectious (IU), 3 as symptomatic
infectious individuals (ID) that are not being isolated, 4
as symptomatic infectious individuals (ID) that are being
isolated, last 5 and 6 as RU and RD, respectively.

• The time matrix T as defined in the previous section will
record the time when cells turn into the Exposed. COVID-19’s
transition rule goes as follows. At each time step t exactly one
of five things can happen to a cell.

The structure of CA is shown in Figure 4.

(a) Expose: If the cell state at t−1 was 0 (susceptible), the cell state
has a possibility to become 1 (exposed) if any neighbors were
2 or 3 at t − 1;

(b) Infect into IU : If the cell state at t − 1 was 1 (exposed),
the cell has a chance of φ to become 2 if the corresponding
number in time matrix, Ti,j is greater than the average
confirmed time;

(c) Infect into ID: If the cell state at t − 1 was 1 (exposed), the
cell has a chance of (1− φ) σ to become 3 (ID not under
isolation) meantime a probability of (1 − φ) (1 − σ) turn into
4 (ID under isolation), if the corresponding number in time
matrix, Ti,j is greater than average confirmed time;

TABLE 4 | MAE of the models on the outbreak data of Heilongjiang.

Model MAE

SIR 122.00

SEIR 95.38

SEIU IDRURD 37.05

CA without Ti,j 99.72

CA 30.37

(d) Recover: If the cell state at t − 1 was 2, 3, or 4, the cell state
becomes 5 (recovered) if the corresponding element in the
time matrix, Ti,j is greater than the duration of treatment.

(e) Stay: If the cell state and its corresponding number in Ti,j can
not meet any of the transmission rules that were previously
defined, the cell state remains the same, and the number in the
time matrix, Ti,j will plus a random number from a normal
distribution with mean 1 and variance 1.

4. EXPERIMENTAL RESULTS AND
ANALYSIS

4.1. Data and Parameters Setting
Similar to previous studies (1, 26, 27), we obtained the COVID-
19 epidemic data from the COVID-19 Data Repository managed
by the local public health agency. The number of confirmed and
recovered cases is updated once a day and includes all provinces
of China. In this article, we use the data on COVID-19 in the
Heilongjiang and Hebei provinces of China in January 2021 to
conduct experiments. These data are shown in Tables 1, 2.

According to the previous study (28), the value of the infection
rate β in Equations (1) and (2) can be computed as follows:

β = k× F (4)

where F represents the number of people that a patient has close
contact with. According to the data from the National Health
Commission, during the first 15 days of the outbreak, the average
number of people a patient has close contact with is 12 per
day. Then with the implementation of restrictive measures, k
drops to 5. The parameter F is the median of the time-dependent
successful infection rate, F(t). It can be described as follows:

F(t) =
Mn(t)

Ms(t)
(5)

FIGURE 7 | Simulation results of CA: (A) is the results of 19th day; (B) is the results of 32th day.
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FIGURE 8 | Trend chart of daily confirmed cases of the models in Hebei province.

There is an incubation period between getting infected with the
virus and being confirmed as infected. Some previous studies
have performed a simulation of the incubation period of COVID-
19 (28), and the result shows that the median incubation period
of COVID-19 is 6 days. So, in this study, the parameters Mn(t)
and Ms(t) represent the sum of daily confirmed cases and the
sum of confirmed cases in 6 days preceding time t respectively.
We calculate the F(t) of each day during the outbreak using
Equation (5) The parameter k is the median of F(t).

According to the data collected by the National Health
Commission of China, the daily successful infection rate, F(t)
is calculated by the data of the COVID-19 outbreak in Hebei
Province in January 2021. The results are shown in Table 3.

The median of F(t) is 0.054, so as the value of F. Finally, we
can calculate the infection rate β :

β = k× F =

{

0.648 (t ≤ 15)
0.270 (t > 15)

(6)

According to the law of the PRC on the Prevention and
Treatment of Infectious Diseases, the isolation will be
immediately implemented once the individual is showing
the symptoms of COVID-19, thus the non-isolation rate (σ ) is
set to 0 in outbreaks that take place in China. The percentage
of the asymptomatic individual in all infections (φ) is a
strongly debated aspect, the value of this parameter shows a
great difference in outbreaks of COVID-19 that take place in
different areas. This phenomenon may due to the definition
of asymptomatic infectious has not reached an international
agreement and obstacles to fully understanding the virus (29, 30).
In this experiment, we choose 0.59 as the value of φ according to

the prediction of a China medical team. Based on the recovery
data of 364 patients in Mobile cabin hospital (13), the average
treatment time G is 28.1 days. Thus, we take removal rate γ as
a constant during the spread of disease and can be defined as
γ =

1
G =

1
28.1 . Now the value of parameters in SIR has all been

set. As mentioned above, the virus has an incubation period of 6
days. In the SEIR model, the transmission rate from exposed to
infected η is regarded as a constant and can be defined as η =

1
6 .

According to the previous study carried out by (31), the
infection rate of close contacts is 0.04. During the outbreak,
nucleic acid tests will be carried out every 4 days, therefore, the
confirmed time of COVID-19 is set to 4 (9, 16).

In this experiment, we use Matlab to develop these models.
Additionally, mean absolute error (MAE) is used to evaluate the
performance of these models.

4.2. Results and Analysis
4.2.1. Small-Scale Outbreaks in China
We predict the outbreaks of COVID-19 in Heilongjiang and
Hebei provinces in January 2021. First, Figures 5, 6 show the
predicted numbers of the confirmed and recovered cases for
Heilongjiang province. These results indicate that CA has a
better performance in simulating the outbreak of COVID-19 in
China nowadays. Classical compartmental models may no longer
be suitable for modeling small-scale outbreaks in China. The
MAE values of these methods are shown in Table 4. From these
compared results, it can be observed that the proposed CA has
the smallest errors. In addition, compared with the traditional
CA, the MAE value of the CA model with time matrix is 30.37,
which is reduced by 66.35.
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FIGURE 9 | Trend chart of recovered cases of the models in Hebei province.

We further visualize the simulation results of CA on the 19th
day and the 32th day of Heilongjiang province. The red spots
represent ID-cell, and the blue is RD-cell. In Figure 7A, there
is only a marginal amount of RD-cell and some red spots. In
Figure 7B, one can also see that most red spots have turned
blue which means that the outbreak is coming to an end.
This is consistent with the actual situation of the outbreak in
China. The transmission of COVID-19 can get under control
within a month. More results about CA can be found in the
Supplementary Materials.

Once again, we analyzed the data of outbreaks in Hebei
province in January 2021 and evacuated these models. The
experimental results are shown in Figures 8, 9. In Figure 8,
the daily confirmed cases of the SIR model grew rapidly
and reached 350 on the 100th day, which makes it deviate
from official data. Compared with SIR, the SEIR model has a
significant improvement in the fitting, the daily confirmed cases
of SEIU IDRURD slowly rose to 10 person at 35th day and climbed
steadily to 60 at the end of outbreak. Compared with the first
two models, the cellular automata can fit in the data with high
accuracy. The difference between the maximum time of cellular
automata and real data is about 5 days, and the trends of the two
curves are roughly the same.

In Figure 9, the recovered cases of SIR keep increasing
and reach about 270 on the 65th day. The recovered cases of
SEIU IDRURD remained at a low value during the former part of
outbreak, and grow from around 70 person at 35th day to 500
person at 65th day. We can see that recovered cases of CA are
close to 0 from 0 to 18 days then grow dramatically to 800 in the
45th day and slowly climb to around 1,000 in the remaining time.
The predicted results of CA are close to the official data.

TABLE 5 | MAE of the models on the outbreak data of Hebei.

Model MAE

SIR 47.98

SEIR 44.34

SEIU IDRURD 30.35

CA without Ti,j 40.93

CA 9.43

The MAE values of these methods of the outbreak in
Hebei province are shown in Table 5. The MAE of SIR, SEIR,
SEIU IDRURD, CA without Ti,j and CA are 47.98, 44.34, 30.35,
40.93, and 9.43, respectively. It is clear that the MAE of SIR and
SEIU IDRURD is more than 4 times CA, they performed poorly in
both long-term and short-term fitting. These differential models
based on compartments may not be suitable for fitting the small-
scale outbreaks.

4.2.2. The Outbreak in Potter County Texas US
Furthermore, we performed our CA in the simulation of the
small-scale outbreak in Potter County, to test its reliability in a
different country. Unfortunately, the databases of Potter County
health department just maintained confirmed cases and death
cases, and the collection of recovered cases has been stopped
since April 2021, which means that the,Ms (t), sum of confirmed
cases in 6 days preceding time t are unknown. Because daily
recovered cases are not in the record, which makes the existing
confirmed cases of each day stay unclear. As a consequence,
Equation (4), which defined to calculate the infection rate β , is
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FIGURE 10 | Trend chart of daily confirmed cases of CA in Potter County.

TABLE 6 | MAE for models in Potter County.

Model MAE

SIR 201.36

SEIR 92.23

SEIU IDRURD 96.87

CA 79.25

out of work. In that case, we refer to the previous study and
determine the value of infection rate, β , is 0.4428. According
to the Centers for Disease Control and Prevention (CDC), the
current best estimated average time from exposure to symptom
onset is 6 days. Therefore, parameter η = 1/6. The percentage of
asymptomatic infections in the US is 30% (φ = 0.3). The non-
isolation rate of the symptomatic infectious individual (σ ) is
0.5. The estimation of the average treatment time is 24.7 (32)
(

γ =
1
G =

1
24.7

)

.
The result of daily new cases can be seen in Figure 10. Table 6

shows the MAE for each model in Potter County. The Figure 10
gives a breakdown of the trend of CA and real data. The real
data of daily cases rise dramatically during the former part of
the outbreak and reach the beak in around 92 days with 350
new cases. CA performs well in the former part; it also reaches
a peak of 250 new cases at around the same time as real data.
However, the daily new cases decrease severely to around 100
shortly after the peak, and slowly down to 0 during the later
part of the outbreak. The result of CA in the later part of the
outbreak is relatively unsatisfactory. It falls to simulate the sharp
decrease and there are still around 100 new cases at the end of
the outbreak. But on the bright side of our model, it simulates
the former part of the outbreak in Potter County with relatively
high accuracy, which means that our CA can roughly simulate
the trend in small-scale outbreaks outside China.

5. DISCUSSION

With appropriate parameters and rules, compared with SIR,
SEIR, and SEIU IDRURD, our CA can simulate the small-scale
outbreaks of COVID-19 in nowadays China more effectively.
The MAE of CA in the outbreak that took place in Hebei
reached a value of 9.43, it provides valuable information
about the decision on medical policy. Classic compartmental
models have been widely used in modeling the transmission
dynamics with numerous infected cases, and have gained great
success (7, 33). One major drawback of those compartmental
models is the hiking of the number and complexity of
parameters (6). The parameters of these models had to be
more precise and complex to achieve better performance
(26). Although many researchers hold the belief that non-
linearities in CA alongside ABM destroyed any attempt to
use the predicatively, they are oversimplified from realistic
words (34, 35). However, this study has proved that small-
scale outbreaks can be modeled through a relatively simple
abstract model.

5.1. Strengths and Weaknesses
In this contribution, we proposed an improved CA to carry out
experiments that introduced a time matrix to have a precise
simulation of the outbreak. As the results shown, CA simulated
the outbreak accurately which suggests that researchers can
consider using it to study the current epidemics in China.
However, our rules and parameters of CA are far from perfect.
There have been numerous methods to estimate the value of
parameters (9, 11, 14). It is true that all parameters are set
according to the best simulation rest from the local health
department or CDC in the real world situation. But they may not
be the perfect values we need according to the structure of our
model. During the experiments, we use a time matrix to record
the time of virus infection of each cell. Only if the t(i,j) is greater
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than the average treatment time G shall the cell state turn into
3, which means that a patient can only recover from COVID-
19 after 28 days of treatment. However, this assumption is an
oversimplification, as young patients may get recovered before 28
days of treatment, while the aged typically needmore time during
treatment (9).

5.2. Further Study
In further study, the recovered rate γ will no longer be regarded
as a constant in CA. At different times of treatment, the recovery
rate will be different. Combined with the time matrix, the
transition rules of COVID-19 in CA will be updated. In addition,
the structure of CA is a 300 square static orthogonal matrix. Each
cell is adjacent to 8 others. In further study, the best adjacent
number is needed to be determined, since each cell may have
interactions with 4, 6, or more neighbors. In the real world, the
number of people an individual have contact with is different
from each day, as a result, the cell in the CA may intricate with a
different number of neighbor each day at further study. Another
major improvement in the future is that we will change our CA
into an ABM model. Because ABM is developed from CA, they
share many similar characters (36, 37). The existing platforms for
ABM are fundamentally helpful when setting up transform rules
(38–40).
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