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Whole slide images (WSIs) are digitized histopathology images. WSIs are stored in

a pyramidal data structure that contains the same images at multiple magnification

levels. In digital pathology, most algorithmic approaches to analyze WSIs use a

single magnification level. However, images at different magnification levels may reveal

relevant and distinct properties in the image, such as global context or detailed spatial

arrangement. Given their high resolution, WSIs cannot be processed as a whole and are

broken down into smaller pieces called tiles. Then, a prediction at the tile-level is made

for each tile in the larger image. As many classification problems require a prediction

at a slide-level, there exist common strategies to integrate the tile-level insights into

a slide-level prediction. We explore two approaches to tackle this problem, namely a

multiple instance learning framework and a representation learning algorithm (the so-

called “barcode approach”) based on clustering. In this work, we apply both approaches

in a single- and multi-scale setting and compare the results in a multi-label histopathology

classification task to show the promises and pitfalls of multi-scale analysis. Our work

shows a consistent improvement in performance of the multi-scale models over single-

scale ones. Using multiple instance learning and the barcode approach we achieved

a 0.06 and 0.06 improvement in F1 score, respectively, highlighting the importance of

combining multiple scales to integrate contextual and detailed information.

Keywords: digital pathology, deep learning, multi-scale analysis, multi-label classification, multiple instance

learning, representation learning

INTRODUCTION

During the past decade, deep learning techniques have shown great potential in the analysis
of digitized histopathology images. Digitized histopathology images are generally referred to as
“whole-slide images” (WSIs). WSIs are gigapixel-sized images that provide important information
for diagnosing diseases and, given their huge dimensions, analyzing them by hand is expensive
and time-consuming.

The high resolution of WSIs prevents us from processing these images as a whole and therefore
WSIs are broken down into smaller pieces called tiles. Tile-based analysis is useful for tasks
where the location of a specific pattern in the image is important. On the other hand, in many
histopathology classification tasks, the analysis needs to be performed at the slide-level, that is,
whether the entireWSI contains a specific pattern or not. For instance, does aWSI contain a tumor?
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When performing a slide-level analysis, it is important to
aggregate the tile-level predictions into a single-prediction for
the whole image. Typical solutions include a type of weakly
supervised learning called multiple instance learning (MIL). MIL
is a framework where eachWSI is considered as a bag of instances
(the tiles) and only the bag label (e.g., the slide label) is known
and assigned to all instances contained in the bag (1). Typically,
MIL approaches include operators such as mean or max pooling,
but the use of attention networks has also become widespread
(2). An alternative approach is based on representation learning
that consists in obtaining a lower-dimensional representation
of the WSI (3). A recent study has shown the promise of
representation learning introducing a new method based on
clustering tile-level embeddings (4). We refer to this approach as
the “barcode approach”.

WSIs are characterized by a pyramidal structure consisting of
the same image stored at different spatial resolutions. Most deep
learning models in digital pathology require an a-priori choice of
one specificmagnification at which to perform the analysis. These
models do not take advantage of the multi-scale nature of this
type of data. Different magnification levels are usually required
to recognize different features at a macroscopic scale such as
the organ to which the image belongs and at a microscopic
scale such as tumor-related information. Pathologists generally
conduct their analysis under a microscope combining different
scales: they start looking at the tissue at low magnification
levels for macroscopic features and then they zoom in into
the region of interest to examine the microscopic features at
high magnification (5). The pathologists’ approach highlights
the importance of combining macroscopic and microscopic
information obtained from different scales. Although most of
the studies in digital pathology use one fixed magnification level,
some approaches to integrate multiple magnification levels have
recently been explored.

Chiefly, there are two approaches to incorporate multi-scale
information from WSIs (Figure 1) (6). First, the concentric
approach consists of using tiles centered on the same location
of the whole-slide image, with the same size and different
magnifications. Different studies have used this approach both
for segmentation (7, 8) and for classification (9, 10) tasks. Second,
the grid approach starts by splitting the WSIs into a grid of tiles
for each magnification level. The tiles that come from the same
region are concatenated subsequently. In the grid approach, the
number of tiles at different magnifications is different and each
tile at lower magnification can be linked with multiple tiles at
higher magnifications (11, 12).

In this work, we show a complete pipeline from tile extraction
to training of architectures with a multi-scale variant, showing
the benefits and challenges of extracting and combining tiles
at multiple resolutions. We present a novel approach to
expand the barcode method to work with multiscale images.
We provide an in-depth comparison between single-scale
and multi-scale models to address a multilabel classification
problem in digital pathology. To illustrate generalizability,
we exploit different training methods to corroborate our
hypothesis and we identify promises and pitfalls of multi-scale
approaches for the classification of histopathology images. Our

FIGURE 1 | Different approach to extract tiles at multiple magnification levels.

The first row shows an example of grid multi-scale tiles. Each tile at 5x can be

linked with 4 tiles at 10x and 16 tiles at 20x. Hence, there is a 1:N mapping

between tiles from the highest magnification level to the next lower

magnification level. Note that for clarity we only show one such tile in this

illustration. The second row shows an example of concentric tiles. In this case,

each tile at 20x is considered as the centroid for the tiles at lower magnification

levels, resulting in a 1:1 correspondence between tiles at different

magnifications. When using concentric tiles there will be large overlaps

between tiles at lower magnification levels. When using grid tiles, there is no

such overlap.

findings demonstrate the importance of analyzing these images
at different magnification levels to integrate contextual and
detailed information.

The remainder of the paper is organized as follows: first, in
the “Methods” section, we describe the dataset, preprocessing
pipeline, classification methods used and experiment setup.
Then, in the “Results” section, we show comparative results
between the single- and multi-scale models. Finally, in the
“Conclusion and discussion” section we summarized this work
and provide guidelines on when multi-scale approaches are the
most beneficial.

METHODS

The problem tackled in this paper is a multilabel classification
on a publicly available “The Cancer Genome Atlas” (TCGA)
dataset (13). Specifically, we aimed to classify 30 distinct
tumor types in histopathology slides. Our methodology is
illustrated in Figure 2. First, we ran a quality control algorithm
on our WSIs and we extracted the grid and concentric
tiles. As a baseline, we used the tiles to train a plain deep
learning-based classifier and we aggregated the predictions
to generate a slide-level prediction. Then, we computed
embeddings from the tiles using both BYOL (14). ResNet
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FIGURE 2 | Overview of the steps in the different multi-scale approaches used in this work. Step 1: Perform QC to extract in-focus tiles that contain tissue not

covered by pen markers. Extract tiles for each magnification level using the grid and concentric approach. Step 2: Compute the embeddings from the tiles to obtain a

1xM representation for each tile, where M depends on the network (see main text “Compute embeddings”). Step 3, MIL: Train the model. Horizontally stack the

embeddings of the related tiles. When using grid tiles, the same embedding at lower magnifications is duplicated and linked with different embeddings at higher

magnification. Then, we provide the stacked embeddings as the input to the model. Step 3, barcode method: first cluster the embeddings for each magnification

level. Subsequently, generate the barcodes (see reference 4 for details) and slide-wise concatenate the barcodes across magnifications. Finally, the thus created

barcodes are used as input to a classifier: Illustration in Step 3 modified from Gueréndel et al. (4).
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self-supervised embeddings and embeddings obtained from a
plain ResNet classifier. Finally, based on those embeddings, we
assessed single- and multi-scale models using the MIL (2) and
barcode approaches.

Data
All of the proposed experiments were performed on a publicly
available dataset obtained from The Cancer Genome Atlas
(TCGA). From the complete dataset, only the diagnostic slides
fixated via the formaldehyde fixation and paraffin embedding
(FFPE) procedure were selected as they are generally of higher
quality compared to fast-frozen (FF) slides. Thirty different
cancer types were taken into account for this multilabel
classification task. When a patient had more than one image
(for instance from the bottom and top of the tissue block),
we removed the additional ones so that each patient has only
one image to avoid overfitting on patient-related properties.
The list of the cancer types and their corresponding acronyms
can be found in Supplementary Table 1. In total, we used
8,859 WSIs.

Before the extraction, we ran our in-house quality control
algorithm for artifact detection to determine the tissue regions
and remove adipose tissue, out-of-focus areas or regions
covered by pen markers. We extracted 224x224 tiles at three
magnification levels (5x, 10x, and 20x) using both the centroid
approach and the grid approach. The dataset was partitioned
into training and test sets. For more details on the dataset
composition and the support of the classes in each set, see
Supplementary Table 2.

Data leakage is a major concern for reproducibility of the
results. To combat this undesirable behavior the split was
performed by stratifying on the cancer type and using the Patient-
Wise protocol (15) to avoid any bias caused by having tiles from
the same slide in different partitions.

As can be seen from Supplementary Table 2, the dataset
is highly unbalanced, which can be a source of a data
leakage (15). We tackled this problem by comparing two
different methods: (i) we selected all the slides and during
the training phase we used a median frequency balancing
loss (16) to assign higher weights to the losses of minority
classes; (ii) we performed undersampling by randomly sampling
100 slides for each cancer type or the maximum number
of WSIs when fewer WSIs were available (which yielded
2,727 slides) and used a cross-entropy loss function. Given
that the concentric tiles are heavily storage consuming, the
concentric approach experiments were only performed using the
undersampling method.

The full TCGA dataset for tiles extracted with a grid method
has 5,714,689 tiles for 5x, 22,515,282 for 10x and 92,923,166 for
20x magnification. Average tile size is around 160KB, which in
total makes around 18 TB, out of which the 20x magnification
tiles use around 14TB. Downloading a full dataset using a
concentric method would take up around 42 TB.

Training the neural networks responsible for self-supervised
embeddings (see below) and classification was done on 8 Nvidia
Tesla T4 GPU’s; the barcode classifier was trained on a compute
unit with 96 CPU cores and 742 GB RAM.

QC and Tile Extraction
Before the extraction of tiles, we performed an in-house quality
control step to locate regions in the WSI that are in-focus
and free of adipose tissue or pen markers. We extracted
only tiles that contain tissue without artifacts and do not
contain adipose tissue (see Figure 2, “Step 1: QC and tile
extraction for each magnification level”). The extraction was
performed using both the grid approach and the concentric
approach (see Figure 1) to train single-scale and multi-scale
models. We use in-house cloud software build on top of
the OpenSlide (17) library, which provides a straightforward
interface to read WSIs and to extract tiles of specific sizes at any
magnification levels.

Compute Embeddings
Both the MIL-approach and the barcode-approach take as input
not the tiles themselves but the tile-level embeddings, which
is a one dimensional vector representation of a tile image
(see Figure 2, “Step 2: Compute embeddings”). They can be
obtained from any deep learning network that generates a latent
variable. Latent variables are hidden, internal representations of
network inputs, learned through the training of the network.
Generally, the latent variable is taken from the layer before the
classification layers in a deep neural network. We investigated
two different approaches to compute the tile embeddings. In
the first approach, we used the embeddings generated by our
baseline model. That is, the embeddings were generated by a
plain vanilla ResNet18 model (18) that was optimized to perform
the classification task at hand. The labels were defined weakly
as the images are not annotated and some regions of the WSI
might not be informative of the response variable. Each tile
was assigned the label of the entire WSI, so different tiles from
the same slide shared the same label. During validation and
test, the tile scores were aggregated at a WSI-level using mean
pooling. The embeddings are the results of the layer preceding
the fully connected layer; for ResNet18 the embedding vector
is 512-dimensional.

Second, we used the self-supervised “Bootstrap your own
latent” (BYOL) method (14) to generate embeddings agnostic of
the specific task. BYOL is a method that uses contrastive learning
in a self-supervised way. Using BYOL, we optimized another
ResNet18 model. Again, the embeddings were taken from the
last layer before the classification layers resulting in a 512-
dimensional embedding. By using the BYOL optimization, we
were able to assess if our methods are able to capture meaningful
information from the tiles independently of the approach used to
generate their embeddings.

We trained a distinct ResNet18 network using the BYOL self-
supervised learning paradigm for each magnification level. The
training set consisted of all previously extracted TCGA tiles.
To ensure high data diversity and to speed up training, we
subsampled N tiles from each slide at each epoch (500 tiles for
5x and 10x, 1,000 tiles for 20x magnification). The number of
epochs used for training the BYOL network varied so that each
network was presented with roughly the same number of input
images (e.g., tiles) to make a fair comparison.
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Models
To obtain a slide-level prediction, we used two approaches to
aggregate the tile-level embeddings to a slide-level one.

First, we used the embeddings to train an attention-based
multiple-instance learning model. In this setting, each WSI
is considered as a bag B containing multiple tiles B =

{x1, x2, ..., xn}. Each bag has a label y and the tile labels are
unknown. The attention mechanism from (2) uses a deep neural
network to assign different weights to the embeddings of a bag.
The MIL pooling consists of a sum of the embeddings weighted
by their attention, then the weighted sum is aggregated and
passed through a classifier in order to get a WSI-level prediction.
This approach is highly interpretable as key instances (e.g., tiles)
in the WSI are assigned higher weights allowing recognition of
regions of interest in the images.

We trained our attention MIL model using the embeddings
generated from the baseline ResNet18 and the ones from the
agnostic BYOL training (as explained in the previous subsection).
We trained the MIL algorithm at single-scale levels for all the
selected magnification levels and at multi-scale level using the
different combinations of magnification levels. To train the
classifier on multiple scales, we concatenated the embeddings of
the related tiles (see Figure 2, “Step 3—MIL”). For the concentric
approach, we have the same number of tiles for all the levels,
as there is a one-to-one correspondence between the tiles at
different scales. In the grid approach, there are fewer tiles
extracted at lower magnification than at higher levels. This
means that the embeddings from a lower magnification tile
need to be duplicated and concatenated to the embeddings of
its higher magnification tiles: for every 10x tile, we obtain four
different embeddings for the combined 20x−10x multi-scale (see
Figure 1). To reduce overfitting, we performed a hyperparameter
tuning that involved the number of instances in each bag, the
learning rate, the weight decay and the dropout-rate.

Second, we used a recently proposed representation-learning
method from (4). This method allows us to obtain a small but
meaningful representation of WSIs using a clustering approach
(see Figure 2, “Step 3—Barcode”). After the generation of the
tile embeddings, the embeddings of the tiles from the same slide
are combined in an NxM representation where N stands for the
number of tiles and M is the size of the embedding vector. This
matrix is used as input to a clustering algorithm to obtain K
clusters for each slide. After that, a barcode is generated for each
WSI by calculating the proportion of tiles associated with that
WSI that belong to each of the clusters. Finally, the barcodes
are used to feed a machine learning classifier to predict slide-
level labels. This approach is also highly interpretable as the
feature importance of the classifier translates to specific clusters
with distinct characteristics, which can be visually inspected by
an expert.

In the barcode approach, we use BYOL embeddings for
each magnification that were clustered using the Mini Batch K-
means (K = 150) method. WSIs with <64 tiles in any of the
magnifications were discarded. For classification, the XGBoost
(19) method was used, with hyperparameters tuned (learning
rate, maximum depth, subsample ratio, subsample ratio of
columns, regularization) and samples weighted based on class

TABLE 1 | Results obtained training the plain ResNet to perform the cancer type

classification.

Plain ResNet

5x 10x 20x

Weighted F1 0.86 0.85 0.83

Macro F1 0.79 0.80 0.77

ACC 0.43 0.67 0.64

BLCA 0.74 0.78 0.71

BRCA 0.92 0.91 0.90

CESC 0.82 0.75 0.74

CHOL 0.50 0.55 0.25

COAD 0.86 0.86 0.83

DLBC 0.00 0.00 0.00

ESCA 0.74 0.68 0.61

GBM 0.91 0.91 0.90

HNSC 0.88 0.84 0.80

KICH 0.90 0.97 0.90

KIRC 0.93 0.94 0.90

KIRP 0.79 0.75 0.74

LGG 0.95 0.97 0.94

LIHC 0.89 0.87 0.87

LUAD 0.79 0.77 0.78

LUSC 0.75 0.72 0.70

MESO 0.57 0.67 0.70

OV 0.90 0.91 1.00

PAAD 0.92 0.84 0.82

PCPG 0.96 0.96 0.93

PRAD 0.96 0.94 0.95

SARC 0.80 0.80 0.70

SKCM 0.83 0.87 0.83

STAD 0.84 0.80 0.80

TGCT 0.95 0.97 0.92

THCA 0.95 0.93 0.96

THYM 0.94 0.86 0.83

UCEC 0.88 0.87 0.83

UCS 0.37 0.63 0.72

Rows denote the F1 score for each tumor type individually. The value of the best

performing magnification is highlighted in green. The top two rows show the aggregated

classification results denoted by the weighted F1 and macro F1 scores for the overall

classification across all different tumor types.

prevalence in the training dataset. To train the classifier on
multiple scales, WSI barcodes obtained on each magnification
were concatenated slide-wise before classification (see Figure 2,
“Step 3—Barcode”).

RESULTS

The experiments were conducted using a Data Analysis Plan as
suggested in Bussola et al. (15), to ensure the highest degree
of reproducibility. The dataset was split into training set and
test set, consisting of 80 and 20% of the data, respectively. The
test set was only used for the final evaluation of the model.

Frontiers in Public Health | www.frontiersin.org 5 July 2022 | Volume 10 | Article 892658

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


D’Amato et al. Multi-Scale Approaches for Histology Image Classification

Because the dataset is highly imbalanced, we used a macro
F1 score as the main metric to compare model performances.

TABLE 2 | The embedding is important for the downstream classifiers.

Plain ResNet embeddings BYOL ResNet embeddings

MIL 0.85 0.67

Barcode Analysis 0.65 0.68

This table denotes the performance of the MIL and barcode method for both the plain

ResNet embedding and the BYOL-trained ResNet embedding. For each combination the

macro F1 score is provided for the classification across all tumor types. While the plain

ResNet embedding works best for the MIL approach, the barcode approach works best

with the BYOL-trained embedding.

The macro F1 is the arithmetic mean of F1 scores for each
class. Additionally, we used the weighted F1 score, which is the
weighted mean of F1 scores per class, with the weight being
the size of the class. Small differences between those metrics
indicate that the model performs equally well in classifying
classes that have either low or high support. We also employed
a robust metric, Matthews Correlation Coefficient (MCC) (20),
to confirm the obtained results were free from bias. The
classification using barcode approach was performed with 5
fold Monte Carlo cross-validation, calculating 95% confidence
interval (CI) (see Supplementary Table 3). Due to operating on
very large dataset and high compute power requirements with
MIL training, it was not feasible to apply cross-validation to
the method.

TABLE 3 | Results obtained performing MIL and the barcode analysis on single-scale and multi-scale inputs.

MIL Barcode

5x 10x 20x 5x + 10x 5x + 10x +

20x

5x 10x 20x 5x + 10x 5x + 10x +

20x

Weighted F1 0.88 0.86 0.91 0.93 0.94 0.69 0.58 0.65 0.72 0.74

Macro F1 0.87 0.85 0.88 0.90 0.94 0.67 0.55 0.62 0.70 0.73

MCC 0.88 0.86 0.9 0.93 0.94 0.68 0.57 0.64 0.71 0.74

ACC 0.86 0.86 0.95 0.95 0.95 0.53 0.48 0.58 0.59 0.60

BLCA 0.92 0.90 0.95 0.97 0.98 0.60 0.20 0.45 0.49 0.55

BRCA 0.84 0.86 0.89 0.95 0.84 0.62 0.49 0.59 0.68 0.71

CESC 0.83 0.86 0.88 0.90 0.95 0.62 0.68 0.57 0.71 0.73

CHOL 0.83 0.80 0.71 0.86 0.83 0.33 0.36 0.36 0.36 0.36

COAD 0.84 0.82 0.88 0.95 0.93 0.68 0.45 0.56 0.65 0.76

DLBC 0.50 0.00 0.00 0.00 1.00 0.67 0.00 0.00 0.67 0.67

ESCA 0.95 0.76 0.93 0.95 0.95 0.68 0.26 0.62 0.65 0.67

GBM 0.89 0.90 0.84 0.95 0.87 0.82 0.79 0.71 0.86 0.86

HNSC 0.78 0.89 0.93 0.90 0.90 0.70 0.34 0.65 0.76 0.79

KICH 0.97 0.97 1.00 0.97 0.98 0.90 0.82 0.75 0.87 0.85

KIRC 0.95 0.97 0.90 0.95 0.97 0.87 0.90 0.90 0.92 0.95

KIRP 0.88 0.95 0.92 0.93 1.00 0.72 0.47 0.55 0.78 0.67

LGG 0.92 0.90 0.93 0.90 0.90 0.95 0.90 0.90 0.95 0.95

LIHC 0.92 0.84 0.89 0.92 0.95 0.55 0.58 0.57 0.59 0.63

LUAD 0.79 0.76 0.77 0.85 0.84 0.60 0.58 0.64 0.63 0.70

LUSC 0.72 0.68 0.68 0.73 0.79 0.35 0.28 0.47 0.38 0.49

MESO 0.83 0.85 0.97 1.00 1.00 0.37 0.21 0.21 0.47 0.32

OV 0.90 0.98 1.00 0.98 0.95 0.68 0.59 0.53 0.74 0.78

PAAD 0.90 0.90 0.92 0.95 0.98 0.83 0.51 0.80 0.79 0.82

PCPG 0.97 0.98 1.00 1.00 0.97 0.76 0.68 0.88 0.81 0.90

PRAD 1.00 1.00 1.00 1.00 1.00 0.97 0.87 0.87 0.97 0.97

SARC 0.89 0.90 0.97 0.92 0.95 0.61 0.70 0.58 0.73 0.76

SKCM 0.78 0.92 0.87 0.92 0.92 0.55 0.59 0.60 0.56 0.74

STAD 0.92 0.82 0.76 0.87 0.89 0.57 0.21 0.40 0.53 0.53

TGCT 0.92 0.95 0.98 1.00 1.00 0.86 0.74 0.80 0.89 0.85

THCA 0.98 0.95 1.00 0.98 1.00 0.95 0.88 0.90 0.95 0.95

THYM 0.93 0.90 1.00 0.95 1.00 0.83 0.85 0.87 0.85 0.85

UCEC 0.86 0.78 0.92 0.95 0.91 0.76 0.65 0.67 0.71 0.74

UCS 0.80 0.70 0.83 0.84 0.90 0.25 0.54 0.52 0.60 0.63

The results are obtained by training the models on a smaller subsample of the dataset (2,727 slides) and testing on a 20% split. The value of the best performing magnification (or

combination thereof) is highlighted in green. The top 3 rows show the aggregated classification results: weighted F1, macro F1 and MCC scores for the overall classification across all

different tumor types on the test set.
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As a benchmark, we used a state of the art method
(21), which utilizes ResNet18 to perform tile-level prediction.
During training, we performed standard data augmentation
techniques such as rotations, flipping and color augmentation.
For computational reasons and to guarantee that our classifiers
encounter a high number of training instances, we randomly
subsampled 500 tiles per slide at each epoch. Note that if a
slide contained <500 tiles that passed the QC checks, all tiles
from that slide were used. During inference, the slide-level
score is computed with mean pooling leading to the results in
Table 1. As we can see, the models trained at 5x (Macro F1 =

0.79) or 10x magnification (Macro F1 = 0.8) obtain comparable

results. Looking at the per-category F1 score, we can see that
in some critical situations the model suffers from the absence
of microscopic information, this is the case for 4 classes that
achieve the highest F1 score for 20xmagnification: Mesothelioma
(MESO), Ovarian serous cystadenocarcinoma (OV), Thyroid
carcinoma (THCA), Uterine Carcinosarcoma (UCS).

The performances of the models change considerably
according to the embeddings used as input. This shows that
the algorithms are highly dependent on the quality of the
generated embeddings (see Table 2). In particular, MIL performs
better by 18 percentage points for Macro F1, when taking
as input embeddings generated from the ResNet18 trained

TABLE 4 | Results obtained performing MIL and the barcode analysis on single-scale and multi-scale inputs.

MIL Barcode

5x 10x 20x 5x + 10x 5x + 10x +

20x

5x 10x 20x 5x + 10x 5x + 10x +

20x

Weighted F1 0.88 0.88 0.87 0.90 0.90 0.78 0.70 0.74 0.80 0.73

Macro F1 0.85 0.84 0.82 0.87 0.86 0.68 0.61 0.64 0.71 0.62

MCC 0.87 0.87 0.86 0.90 0.89 0.77 0.69 0.74 0.80 0.73

ACC 0.86 0.64 0.63 0.86 0.78 0.42 0.47 0.47 0.56 0.43

BLCA 0.83 0.83 0.79 0.86 0.83 0.70 0.48 0.69 0.68 0.65

BRCA 0.93 0.94 0.91 0.93 0.93 0.90 0.82 0.84 0.89 0.82

CESC 0.79 0.77 0.73 0.81 0.80 0.53 0.40 0.53 0.57 0.52

CHOL 0.60 0.80 0.55 0.67 0.83 0.22 0.20 0.00 0.25 0.00

COAD 0.93 0.90 0.85 0.96 0.90 0.82 0.75 0.81 0.86 0.77

DLBC 0.80 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00

ESCA 0.68 0.69 0.73 0.74 0.74 0.50 0.35 0.51 0.55 0.53

GBM 0.85 0.90 0.89 0.90 0.91 0.80 0.76 0.80 0.77 0.80

HNSC 0.87 0.89 0.87 0.88 0.89 0.85 0.51 0.61 0.82 0.62

KICH 0.86 0.87 0.98 0.93 0.92 0.89 0.83 0.80 0.89 0.78

KIRC 0.94 0.95 0.93 0.96 0.95 0.94 0.89 0.89 0.93 0.90

KIRP 0.87 0.82 0.81 0.89 0.90 0.83 0.68 0.68 0.90 0.68

LGG 0.92 0.92 0.94 0.94 0.94 0.89 0.86 0.88 0.84 0.87

LIHC 0.93 0.93 0.91 0.92 0.94 0.82 0.81 0.87 0.87 0.86

LUAD 0.81 0.81 0.85 0.87 0.86 0.69 0.56 0.62 0.72 0.59

LUSC 0.77 0.77 0.79 0.82 0.82 0.60 0.54 0.61 0.66 0.60

MESO 0.67 0.67 0.57 0.73 0.83 0.11 0.11 0.29 0.09 0.20

OV 0.98 0.93 0.93 0.98 1.00 0.67 0.67 0.56 0.70 0.56

PAAD 0.90 0.86 0.89 0.93 0.89 0.72 0.55 0.59 0.75 0.42

PCPG 0.97 0.94 0.96 0.96 0.96 0.90 0.84 0.91 0.94 0.92

PRAD 0.94 0.96 0.96 0.97 0.97 0.96 0.97 0.91 0.97 0.88

SARC 0.84 0.80 0.86 0.85 0.85 0.73 0.63 0.70 0.84 0.70

SKCM 0.85 0.90 0.88 0.93 0.92 0.59 0.53 0.59 0.72 0.60

STAD 0.85 0.88 0.86 0.89 0.86 0.66 0.50 0.66 0.73 0.60

TGCT 0.95 0.93 0.95 0.97 0.97 0.87 0.79 0.75 0.89 0.79

THCA 0.97 0.98 0.97 0.96 0.98 0.93 0.95 0.94 0.94 0.94

THYM 0.93 0.96 0.92 0.96 0.96 0.78 0.78 0.78 0.77 0.79

UCEC 0.87 0.87 0.87 0.91 0.89 0.85 0.77 0.77 0.84 0.77

UCS 0.43 0.52 0.70 0.58 0.64 0.22 0.32 0.12 0.45 0.13

The results are obtained by training the model on the entire set of slides, after reserving a 20% split for testing. The value of the best performing magnification (or combination thereof)

is highlighted in green. The top 3 rows show the aggregated classification results: weighted F1, macro F1 and MCC scores for the overall classification across all different tumor types

on the test set.
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on the entire dataset, compared to embeddings from BYOL
training. The barcode analysis shows a 3 percentage point
improvement when using embeddings from BYOL training. For
the experiments below, we considered only the best performing
embedding type for each classification method, namely BYOL
embeddings for the barcode approach, and plain ResNet18 for
MIL approach.

Having established a baseline for single-level models,
we now assess the importance of combining multiple
magnification levels by multi-scale tiles as input to
MIL training and the barcode analysis. We train
the models on two different datasets (see Methods
and Data).

First, we train on the balanced subset of the data to
avoid performance issues due to imbalanced datasets.
In Table 3, we show the results obtained using the best
embeddings and trained on the balanced dataset. As
we can see, the multi-scale outperforms the single-scale
models and a consistent improvement is observed for
multi-scale models. In the classification task at hand, the
combination of three magnification levels leads to the

best results (MIL: Macro F1 = 0.94, barcode: Macro F1 =

0.73). When training a single-scale model, the choice of a
magnification level can be critical. In a multi-scale setting, the
combination of information coming from different levels is
overall beneficial.

Second, we use the entire, highly imbalanced dataset. Table 4
illustrates the obtained model performances. We can see that
using tiles at 5x and 10x is sufficient to obtain good results
(MIL: Macro F1 = 0.87, barcode: Macro F1 = 0.71) and a
0.02 and 0.03 improvements respectively with respect to the
best single-scale model is observed. In Figure 3, we report the
confusion matrix obtained from the MIL algorithm trained on
5x and 10x tiles. There is a clear predominance of diagonal
values, which indicate a good performance of the models.
Classes where the model predictions are less accurate (e.g.,
lower values on the diagonal) correspond to the classes with
fewer examples in them. Comparing the macro F1 (MIL: 0.87
barcode: 0.71) and the weighted F1 (MIL: 0.9 barcode: 0.8), the
gap between the two scores shows that both the methods and
particularly the barcode analysis suffer from the imbalance in the
entire dataset.

FIGURE 3 | Confusion matrix of multi-scale MIL model trained at 5x and 10x on the entire dataset. The largest values for each row are found on the diagonal

indicating the predicted tumor type correspond to the true tumor type. Color intensity represents number of samples in the class. With lower color intensity there are

less samples and the task becomes harder. Correspondence between class id and tumor name is presented in Supplementary Table 1.
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CONCLUSION AND DISCUSSION

In this work, we performed a comparison of single-scale
and multi-scale models using several alternatives in terms of
tile extraction and models for classification. Our goal was
to provide the models with more contextual information
by combining different magnification levels. Our results
support our hypothesis that multi-scale models outperform
the single-scale models as demonstrated by the application
of two different training methods, i.e., the MIL and the
barcode approaches.

The combination of multiple scales has recently been an
interesting topic in DP and different approaches to extract and
combine tiles at different magnifications have been proposed
for different tasks (22) introduces a naive multiscale models
in a MIL setting by pooling the predictions obtained from
the single-scale models (23) proposes a multi-scale CNN
with a branch for each magnification level to predict tumor
mutational burden (7, 8, 24) integrate patches at multiple
scales for tumor segmentation (9) presents a multi-scale multi-
branch architecture for classification and (10–12) combine MIL
and multi-scale inputs. All of these methods show significant
improvements of the multi-scale models with respect to
the single-scale’s.

The main outcome of this paper is to provide an overview
of a complete pipeline, with different alternatives, from multi-
scale tile extraction to model training using variants of
the MIL and the barcode approaches, which can be both
directly adapted to deal with multi-scale inputs. Moreover,
we follow the recent developments of self-supervision (25–
27) and we use domain-specific feature extractors, in a self-
supervised and supervised way, as a better alternative to
pretraining on ImageNet. As in the previously mentioned
references, we show the benefits of combining multiple scales,
but also the challenges in terms of cloud computing and
data engineering.

The challenge of using multi-scale methods resides in
limitations provided by (cloud) computing infrastructures and
their costs. As shown in this work, the extraction of concentric
tiles is storage intensive. This approach generates a number
of tiles equivalent to the number of tiles at the highest
magnification level but multiplied by the of magnification
levels. Moreover, the tiles of the lower magnification levels
overlap significantly with each other. To alleviate this issue,
we implemented an alternative version that extracted tiles on
the fly rather than storing them on beforehand. Unfortunately,
limitations in the number of I/O operations required to
construct the concentric tiles rendered this implementation
unfeasible to execute in a reasonable time. That is not to say
that it is impossible to do, but highlights the importance of
data engineering when dealing with these high amounts of
data. Apart from these technical considerations, for several
applications the use of multi-scale approaches might be beneficial
and lead to more insights and valuable results as shown in
this study.

Based on our findings we provide some rules of thumb.
Firstly, if the slide-level classification task works to the expected

accuracy while using a single scale, there is no need to use
multiple scales. That said, our results indicate that usingmultiple-
scales generally outperforms single-scales analyses. Therefore,
when compute time and storage requirements are not an issue,
we recommend using multi-scale approaches for slide-level
classification tasks. The next recommendation relates to what
magnification levels are best to use. The answer depends on
the specific task at hand. When macroscopic structures (such
as organ-specific patterns) are required, we found that using
a low magnification such as 5x is useful. On the other hand,
when microscopic patterns such as the tumor environment
are required, we recommend adding 20x data. As seen in the
experiments (Tables 3, 4), for tumors in the same tissue (e.g.
LUSC and LUAD are both lung cancers), the lack of details in
single-scale models penalizes the model as it cannot correctly
recognize the type of cancer. In these cases, the combination
of different magnification levels might lead to more valuable
results. Adding more magnification levels generally improves the
performance further but with smaller gains and the decision
has to be made between the trade-off of accuracy vs. compute
and storage requirements. In future work we would extend our
research to investigate the benefits of multi-scale methods for
other digital histopathology tasks, such as tissue segmentation,
semantic segmentation of cellular objects and cancer growth
pattern prediction.
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