Local governments in China took restrictive measures after the outbreak of COVID-19 to control its spread, which unintentionally resulted in reduced anthropogenic emission sources of air pollutants. In this study, we intended to examine the effects of the COVID-19 lockdown policy on the concentration levels of particulate matter with aerodynamic diameters of ≤1 μm (PM1), ≤2.5 μm (PM2.5), and ≤10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO) and the potential subsequent reductions in the incidence of ischemic and hemorrhagic stroke in Shandong Province, China.
A difference-in-difference model combining the daily incidence data for ischemic and hemorrhagic stroke and air pollutant data in 126 counties was used to estimate the effect of the COVID-19 lockdown on the air pollutant levels and ischemic and hemorrhagic stroke incident counts. The avoided ischemic stroke cases related to the changes in air pollutant exposure levels were further estimated using concentration-response functions from previous studies.
The PM1, PM2.5, PM10, NO2, and CO levels significantly decreased by −30.2, −20.9, −13.5, −46.3, and −13.1%, respectively. The O3 level increased by 11.5% during the lockdown compared with that in the counterfactual lockdown phase of the past 2 years. There was a significant reduction in population-weighted ischemic stroke cases (−15,315, 95% confidence interval [
The COVID-19 lockdown indirectly reduced the concentration levels of PM1, PM2.5, PM10, NO2, and CO and subsequently reduced the associated ischemic stroke incidence. The health benefits due to the lockdown are temporary, and long-term measures should be implemented to increase air quality and related health benefits in the post-COVID-19 period.