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The exposome paradigm through an integrated approach to investigating the

impact of perinatal exposure to metals on child neurodevelopment in two

cohorts carried out in Slovenia (PHIME cohort) and Greece (HERACLES cohort)

respectively, is presented herein. Heavy metals are well-known neurotoxicants

with well-established links to impaired neurodevelopment. The links between

in utero and early-life exposure to metals, metabolic pathway dysregulation,

and neurodevelopmental disorders were drawn through urinary and plasma

untargeted metabolomics analysis, followed by the combined application of in

silico and biostatistical methods. Heavy metal prenatal and postnatal exposure

was evaluated, including parameters indirectly related to exposure and health

adversities, such as sociodemographic and anthropometric parameters and

dietary factors. The primary outcome of the study was that the identified

perturbations related to the TCA cycle are mainly associated with impaired

mitochondrial respiration, which is detrimental to cellular homeostasis and

functionality; this is further potentiated by the capacity of heavy metals

to induce oxidative stress. Insu�cient production of energy from the

mitochondria during the perinatal period is associated with developmental

disorders in children. The HERACLES cohort included more detailed data

regarding diet and sociodemographic status of the studied population,

allowing the identification of a broader spectrum of e�ect modifiers, such as

the beneficial role of a diet rich in antioxidants such as lycopene and ω-3 fatty

acids, the negative e�ect the consumption of food items such as pork and

chicken meat has or the multiple impacts of fish consumption. Beyond diet,

several other factors have been proven influential for child neurodevelopment,
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such as the proximity to pollution sources (e.g., waste treatment site) and

the broader living environment, including socioeconomic and demographic

characteristics. Overall, our results demonstrate the utility of exposome-wide

association studies (EWAS) toward understanding the relationships among the

multiple factors that determine human exposure and the underlying biology,

reflected as omics markers of e�ect on neurodevelopment during childhood.
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Introduction

The connectivity approach to environmental health builds

upon the connectivity across different biological scales in

a systems biology approach to elucidate the mechanisms

underlying the environmental burden of disease and adopting a

data-driven paradigm guided by systems biology principles; this

approach couples comprehensiveness in exposome and health

associations and biological plausibility.

In 2005, a new term was introduced by Wild (1) that

addressed the totality of environmental exposures across the

complete lifespan, including in utero exposure: the exposome.

Since, many exposome-related studies have highlighted the

importance of perturbation of sensitive biological processes

at critical developmental stages and their impact on later life

adverse effects (2).

Cumulative exposure, i.e., simultaneous exposure to

multiple stressors, is one of the significant exposome aims

to address. Although epidemiology usually focuses on

identifying associations among single stressors and adverse

health outcomes, real-life exposure scenarios are by definition

characterized by multiple stressors (3). This implies that the

synergistic effect of various stressors, even at low levels, can

initiate and sustain perturbations across an adverse outcome

pathway (4–6) or even better, across networks of adverse

outcome pathways.

The exposome encompasses three exposure sectors,

including (a) several external factors (the general ones),

(b) targeted external (the specific ones), and (c) internal

exposome (7). As a result, exposome analysis includes a broad

area of parameters of a completely different nature, such as

sociodemographic characteristics, lifestyle, and occupation, and

how they define exposure to multiple stressors. On the other

hand, the internal exposome includes the biological responses

resulting from the multitude of external exposure traits and the

genetic heritage of the individual. It is expressed in terms of

perturbation in metabolism, oxidative stress and inflammation

(8). It is essential to highlight the strong interplay among

the parameters above that define the external and internal

exposome, and proper interpretation requires a comprehensive

multidisciplinary approach.

As a result, assessing the individual exposome requires

state-of-the-art analytical and computational methods. Among

the developments to evaluate internal exposome, metabolomics

comprises a major component. Metabolomics deals with the

analysis of all the small molecules delivered by the homeostatic

function; thus, they are found in cells, tissues, and biological

fluids such as blood and urine. A major advantage of

metabolomics compared to other omics techniques such as

transcriptomics and proteomics is that it provides a molecular

snapshot that is more relevant to phenotypic observations,

rendering it an ideal fingerprint of the biological perturbations

that are associated with health outcomes observed in large

population-based studies. In addition, metabolomics allows

the assessment of endogenous and exogenous compounds.

Considering the broad chemical spectrum that comprises the

metabolome, the efficient coverage of the broad array of

metabolites is ensured by the synergistic contribution of various

spectrometry methods, where nuclear magnetic resonance

(NMR) and liquid chromatography-mass spectrometry are the

most important among them (9).

A valid interpretation of the multiple lines of evidence

provided by the exposome related methods that generate a

large set of heterogeneous data is of utmost importance. A

methodology that has proven to be particularly efficient in

this direction is the exposome-wide association study (EWAS)

approach (10). EWAS builds upon the genome-wide association

study (GWAS) paradigm while initially being applied to identify

external exposome factors associated with type 2 diabetes (11).

However, a significant limitation of this type of studies as

they have been applied thus far is that they focus on the

pairwise associations between the multiple parameters that

define the external exposome and adverse health outcomes.

The investigation of the mechanistic explanation between

exposure and disease (as described by the internal exposome),

remained somehow neglected to date in both epidemiological

and toxicological studies (12, 13).

Several studies have dealt with the adverse effects of heavy

metals due to their abundant presence in the environment, diet,

and consumer products (14), resulting in significant exposure

levels to children (15). Heavy metals have caused important

health awareness because it has been associated with adverse
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child neurodevelopment, even at environmentally relevant levels

(16). Of particular interest is that cumulative exposure to heavy

metals results in effects that go beyond additivity (17, 18).

Given the above, this study aims at providing additional

insights on the impact of in utero cumulative exposure

to phthalates and metals and how they impact child

neurodevelopment. Adopting a truly exposomics approach,

this is carried out in tandem with the assessment of external

factors such as sociodemographic characteristics and diet of the

target population and internal exposome factors, as described

by the metabolomic signatures. Toward this aim, metabolomics

profiles of individuals have been analyzed, starting from human

biomonitoring samples. Furthermore, to capture a broader

range of metabolites as much as possible, both NMR and liquid

chromatography-mass spectromery have been used. Finally, the

metabolite signatures have been used to identify statistically

significant metabolic pathways for each cohort member; the

perturbed pathways identified were associated with the various

external exposome factors using the EWAS method.

Materials and methods

Cohorts description

The PHIME cohort

General description

The “Public Health Impact of long-term, low-level Mixed

Element exposure in susceptible population strata” (PHIME)

study aimed to investigate environmentally relevant exposure to

mercury, related to fish and seafood consumption from pregnant

mothers, on child neurodevelopment. The study included four

Mediterranean countries (Greece, Slovenia, Croatia and Italy),

had started in 2006 and concluded in 2011. The study design and

recruitment process protocol are described elsewhere (19, 20).

Briefly, pregnant women were approached for consent at local

health care centers after their ultrasound scan between 20 and 22

gestational weeks, at routine visits between 34 and 38 gestational

weeks, or at delivery. Only above 18-year-old expectant mothers

carrying a singleton were recruited, having at least 2 years of

residency in the areas of interest (without leaving the area during

pregnancy for longer than 6 months), and with no history of

chronic diseases or abuse of drugs. Aiming at the association

between metals and neurodevelopmental toxicity, maternal hair,

blood, cord blood, and urine were collected in the 34th week of

pregnancy, at or immediately after birth. In addition, breast milk

samples were collected 1month after birth, and at the same time,

mothers were asked to complete a questionnaire. Hair samples

were stored at room temperature in a zip-lock plastic bag and

then analyzed without any cleaning. All other biological samples

(maternal blood and cord blood) were stored in a freezer below

−20◦C. Additional information related to consumer (including

smoking) and dietary (with a particular focus on fish and

seafood species associated with mercury exposure) behavior of

the mother had been included through questionnaires (Table 1).

Data acquisition

Exposure factors

All analyses of THg and MeHg in biological samples were

performed at the JoŽef Stefan Institute, Ljubljana, Slovenia.

Total Hg (THg) levels were measured in the maternal hair,

venous, and cord blood using Direct Mercury Analyzer (21, 22).

Cold vapor atomic absorption spectrometry (CVAAS) measured

the THg levels in breast milk samples collected 1 month after

birth. MeHg in hair was determined by solvent extraction

and gas chromatography electron capture detection (GC-ECD).

The method has been described elsewhere (23, 24). MeHg

in cord blood and milk was determined by acid dissolution,

solvent extraction, aqueous phase ethylation, isothermal GC

and cold vapor atomic fluorescence detection (CVAFS). A

complete description of the method has been given in previously

published studies (25, 26). Metals and metalloids (Fe, Mg,

Ca, Pb, Mn, Cd, As, Se, Cu, Zn) were determined in blood,

cord blood, breast milk and urine samples using inductively

coupled plasmamass spectrometry (ICP-MS) as described in the

references (27, 28).

Exposure and effect modifiers

Toward a comprehensive exposome analysis, additional data

on factors that modify either exposure or effect were collected

through questionnaires. Eighteen months after delivery, a

supplemental questionnaire was administered to report on the

children’s dietary habits and significant development milestones.

These data were related to (a) sociodemographic factors, such

as socioeconomic status of the family, educational and marital

status of the mother, and child attendance of day-care center

until the age of two, (b) mother and child physiological factors

such as body weight, height, age of mother at delivery, birth

weight and gender of the child, and (c) other parameters such

as mode of delivery and breastfeeding.

Health outcomes

The neurodevelopment progress of children had been

evaluated on month 18 after birth by trained psychologists.

For the assessment, Bayley Scales of Infant and Toddler

Development, Third Edition, Screening Test (BSID-III) had

been used, including (a) cognitive, (b) language, and (c)

motor evaluation. For the overall assessment, scaled, as well

as composite scores have been accounted for. Finally, children

were also examined for autism using the Modified Checklist

For Autism in Toddlers (M-CHAT), which was performed by

the same psychologists and pediatricians who administered the

BSID, and on the same day (19).
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TABLE 1 Characteristics of the study population (PHIME Cohort), and

Bayley scores for cognitive, language and motor Bayley-III scores (29).

Variable Measure PHIME Sample

size (n)

Maternal age at delivery (years) Mean (SD) 31 (5) 133

Maternal BMI (Kg/m2) Mean (SD) 25 (5.4) 133

Is the mother smoking? 133

Yes n (%) 24 (18)

No n (%) 109 (82)

Maternal education 133

Apprenticeship n (%) 4 (3)

Secondary school n (%) 38 (28.5)

High school n (%) 22 (16.5)

University n (%) 52 (39)

Master or PhD n (%) 17 (13)

Mother’s employment 133

Employed (full time) n (%) 130 (97.7)

Employed (part timke time) n (%) 3 (0.3)

Paternal age at delivery (years) Mean (SD) 30.9 (9.7) 131

Is the father/partner smoking?

Yes n (%) 24 (19)

No n (%) 104 (81)

Paternal education 131

Primary school n (%) 3 (2.2)

Apprenticeship n (%) 14 (10.7)

Secondary school n (%) 36 (27.5)

High school n (%) 46 (35.1)

University n (%) 25 (19.1)

Master or PhD n (%) 7 (5.4)

Partner’s employment 132

Employed (full time) n (%) 125 (94.7)

Employed (partial time) n (%) 2 (1.5)

Unemployed n (%) 5 (3.8)

Marital status 131

Married/in relationship n (%) 125 (95)

Widow n (%) 1 (0.7)

Divorsed n (%) 7 (4.3)

Child gender 133

Female n (%) 63 (37)

Male n (%) 70 (53)

Breastfeeding 133

No n (%) 5 (4)

Yes n (%) 128 (96)

Cognitive score Mean (SD) 115.6 (13.4) 131

Language score Mean (SD) 106.6 (12.7) 131

Motor score Mean (SD) 107.2 (9.3) 131

Fine motor score (FM) Mean (SD) 12.3 (2.1) 131

Gross motor score (GM) Mean (SD) 10.1 (1.6) 131

Full scale intelligence quotient

(FSIQ)

Mean (SD) 110.1 (12.8) 133

HERACLES greek cohort

The HERACLES Greek cohort focused on the impacts of

exposure to heavy metals (originating from a waste disposal site)

on child neurodevelopment in Athens, Greece. The study was

initiated in 2012, and 300 children aged 3 to 8 were enrolled, who

lived in the proximity of the waste management site (landfill,

children with a residential address up to a distance of 12 km

were enlisted). Characteristics of the study population including

demographics and health outcomes are given in Table 2.

Data used in the analysis

Exposure factors

Exposure to heavy metals was assessed to understand

the association between neurodevelopmental progress and

environmental factors. More specifically, As, Hg and Cd in

urine, Pb in blood and Hg and Mn in hair were analyzed. To

better understand the totality of exposures related to the waste

management site, residential distance from the landfill, as well

as concentration of heavy metals in the soil at the home of the

children were taken into account. Details on the study design,

as well as the chemical and metabolomics analysis are given

elsewhere (30).

Exposure and effect modifiers

Similarly to the PHIME study, exposure and effect modifiers

were also included. Namely (a) sociodemographic factors

(including socioeconomic status, mother and father education,

as well as stress events), (b) child physiology factors, including

body mass index and gender, and (c) dietary parameters such

as breastfeeding, and description of dietary components in

detail, including meat products (e.g., pork meat, beef, lamb,

sausages), fish and other seafood, poultry products (eggs,

chicken), dairy products (milk, yogurt), nuts, fruits, vegetables

and snacks (biscuits, chocolates) and (d) concentration of

Se in the mother during all perinatal period. The above-

mentioned dietary data have been collected using Food

Frequency Questionnaires (FFQ).

Health outcomes investigated

The assessment of children (aged 3–8 years)

neurodevelopmental disorders has been carried out using

the following test batteries, namely (a) the Child Behavior

Checklist, (b) the Cambridge Neuropsychological Test

Automated Battery—CANTAB (31, 32), (c) the Social

Responsiveness Scale—SRS which is used primarily to measure

Autism Spectrum Disorders (ASD) severity (33, 34) and (d)

the Wechsler Intelligence Scale for Children—Fourth Edition

for general intelligence. CANTAB was used for the assessment

of cognitive development, while Wechsler Intelligence Scale

provided information on the intelligence quotient (IQ) or

mental development index (MDI). All the resulting scores were

considered as outcomes. The resulting scores were included

in the downstream EWAS analysis, to examine the effects of
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TABLE 2 Characteristics of the study population (HERACLES Cohort), and Bayley scores for cognitive, language and motor Bayley-III scores.

Variable Measure HERACLES Sample size

Child gender 299

Female n (%) 138 (46)

Male n (%) 161 (54)

Age of mother at birth Mean (SD) 31.7 (5) 299

Mother’s education according to the European Qualifications Framework Mean (SD) 2.9 (1.1) 298

Level 1: Secondary educational diplomas n (%) 10 (3)

Level 2: Secondary educational diplomas n (%) 112 (37.6)

Level 3: Secondary educational diplomas n (%) 116 (40)

Level 4: Secondary educational diplomas n (%) 10 (3)

Level 5: Diplomas of higher education and further education, foundation degrees and higher national diplomas n (%) 49 (16)

Level 6: Bachelor n (%) 1 (0.4)

Father’s education according to the European Qualifications Framework 295

Level 1: Secondary educational diplomas n (%) 10 (3)

Level 2: Secondary educational diplomas n (%) 131 (45)

Level 3: Secondary educational diplomas n (%) 112 (38)

Level 4: Secondary educational diplomas n (%) 5 (1.6)

Level 5: Diplomas of higher education and further education, foundation degrees and higher national diplomas n (%) 37 (12.4)

Childrens’ SES index 299

Low n (%)

Medium n (%)

High n (%)

Stress events index (calculated) Mean (SD) 40.9 (25.7) 299

Breestfeeding Mean (SD) 2.3 (1.6) 299

BMI Mean (SD) 18.2 (3.7) 216

Intelligence quotient score (IQ) Mean (SD) 104.7 (15.1) 279

Verbal comprehension index (CV) Mean (SD) 107.6 (15.8) 246

Perceptual reasoning index (PRI or RP) Mean (SD) 105.2 (14.8) 277

Working memory index (WMI or ML) Mean (SD) 99 (14.3) 258

Processing speed index (PSI) Mean (SD) 101.9 (13.6) 268

exposure to metals on cognition, motor, and social behavior in a

comprehensive manner.

Metabolomics analysis

UPLC-HRMS

For UPLC-HRMS analysis, urine and plasma samples were

thawed under stable conditions to standard protocols described

fromWant et al. (35) and Theodoridis et al. (36).

Urine: 600 µl from urine samples was centrifuged at 10,000

rpm for 10min. A supernatant of 500 µl was placed on

autosampler vials and diluted with 1:2 of LC-MS water. After

that, the samples were ready for analysis. The autosampler

operated at 4◦C.

Plasma: A quantity of 200 µl plasma sample was transferred

to a new Eppendorf and diluted with 600 µl of cold methanol.

After that, the samples were centrifuged at 10,000 rpm for

20min. A supernatant of 300µl was placed to a clean Eppendorf

and dried using a Techne Sample Concentrator. All samples

were reconstructed with 100 µl of LC-MS water. The samples

were further centrifuged (10,000 rpm for 20min). A final

quantity of 95 µl of supernatant was placed into 2-ml vials with

inserts and placed in UPLC autosampler operating at 4◦C, ready

for analysis. In addition, a 50µl quantity was used for the pooled

quality control (QC) sample.

Sample analysis was performed on a ThermoFisher Scientific
model LTQ Orbitrap Discovery MS, with a resolution of

30,000. The spectra from both urine and plasma samples were
acquired in both positive and negative ionization modes. The

mass scanning range was set at 50–1,000 m/z. The capillary

temperature was set at 320◦C. Nitrogen sheath gas and auxiliary

gas was flow rate was set to 40 L/min and 8 L/min respectively

and the spray voltage at 4.5 kV. LC-MS uses a gradient of

two solvents. One hundred percentage LC-MS water with 0.1%

formic acid as mobile phase A and 100% methanol with 0.1%
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formic acid as mobile phase B. For urine samples analysis, the

flow rate was 500 µl/min for both the positive and negative

modes. For the plasma sample analysis, the flow rate was 400

µl/min in positive mode and 360 µl/min in the negative mode.

For chromatographic separation, an Acquity UPLC HSS

T3 column (100 × 2.1mm, 1.8µm, Waters, Milford, MA,

USA) was used, which was kept at a constant temperature of

40◦C. The gradient of the mobile phase for urine samples for

both positive and negative mode was: 1% B at 0min, 1% B

at 1min, 15% B at 3min, 50% B at 6min, 95% B at 9min,

95% B at 10min, 1% B at 10.1min and 1% B at 14min.

For the plasma samples, a different gradient was used; for

the positive mode: 0% B at 0min, 0% B at 1min, 100% B at

16min, 100% B at 20min, 0% B at 22min, 0% B at 24min.

For the negative mode: 0% B at 0min, 0% B at 2min, 100%

B at 17min, 100% B at 22min, 0% B at 24min, 0% B at

26min. Blank samples, and pooled QC samples, were used to

monitor the systematic signal deviations between the batches.

Two blank samples containing internal standards in known

concentrations were injected before each batch, in the middle

and at the end of each batch, for (a) checking the condition

of the column and (b) calculating the mass error in ppm of

the isotope patterns. Additional, ten QC pooled samples were

injected at the onset of the experiment for the conditioning

of the column of the LC system. The pooled QC sample was

repeated every ten samples in urine samples analysis, whereas

plasma samples the QC samples were repeated every five

plasma samples.

NMR

First samples were centrifuged at 10,000 rpm for 10min.

Then, 500 µL of the supernatant was transferred to a

new Eppendorf and mixed with 120 µL of buffer solution

(Na2HPO4,0.2M, NaH2PO4,0.3Min 50% D2O/50% H2O) and

0.1% TSP-d4, which was used as chemical shift reference

(δH 0.00 ppm). The pH of the samples was 7.337. All

samples were vortexed and placed in −4◦C for 7min.

After 7min, samples were thawed and centrifuged, and

the supernatant was transferred to a 5mm NMR tube. A

1ml aliquot was evaporated to dryness under vacuum for

plasma samples. Reconstitution was performed with 50 µl

deuterium oxide (D2O), followed by vortex and centrifugation

at 14,000 rpm for 5min at 4◦C. The supernatant was

evaporated once more and then reconstructed in 660 µl

of 100mM phosphate buffer containing 1mM trimethylsilyl

propanoic acid (TSP) and 1mM sodium azide. The extract

was vortexed before a final centrifugation step at 14,000 rpm

for 5min at 4◦C. The supernatant was transferred to a 5mm

NMR tube.

For urine samples analysis, a 600 MHz Varian spectrometer

was used. The spectrometer frequency was 599.938 MHz in an

OneNMR Probe and a ProTune System (Agilent) using on-

resonance pre-saturation to suppress the intensity of the water

signal. Proton chemical shifts typically range from−2 to 10 ppm

(spectral width 9615.4Hz), with 128 scans, a relaxation delay

of 2 s, acquisition time 4 s and pulse width 8.587 µs. Plasma

samples were acquired in a Bruker Avance 500 MHz NMR

spectrometer equipped with a TCI cryoprobe. Data acquisition

and processing were performed using the software package

Topspin v 1.3 (Bruker, Germany). The central frequency used

was 500.1323505 MHz, using on-resonance pre-saturation to

suppress the intensity of the water signal, followed by a 1D

NOESY pulse sequence with irradiation of the residual water

signal the mixing time (200ms). The observation pulse length

was set at 10.0 µs, the delay between transients was 3 s, and

65,536 complex data points were acquired with a spectral

width of 10,400Hz (corresponding to a chemical shift range

of 14.0019 parts per million, ppm), giving a final acquisition

time of 4.679 s. The total time of the experiment was ∼67min

and included eight unrecorded (dummy) transients and 512

acquisition transients (scans).

Data analysis

Spectra preprocessing

Raw data generated from positive and negative ionization
were pre-processed as two different experiments. The tool

msConvert included in the ProteoWizard toolkit (37, 38)

was used to translate the data into the.mzML open format.
Spectral processing was performed using the Bioconductor

R—based packages XCMS v.3.10.1 (39) running under R

version 3.6.1 (https://www.r-project.org/). Chromatographic

peak detection was performed using the centWave algorithm,

and the Obiwarp method was used for alignment. The

definitions function was used for peak correspondence.

We used the fillChromPeaks method to fill in intensity

data for missing values from the original files due to false

negatives. Finally, the PerformPeakAnnotation function is

used for isotope and adduct annotation using the CAMERA

package (40). The resulting matrix was further reduced by

the 80% rule applied to the QC samples to obtain consistent

variables. The instrument and overall process variability

were then determined by calculating the median RSD for

authentic internal standards and all endogenous metabolites.

Normalization by the median, mean centering scaling, and

log transformation was performed to transform the data

matrix into a more Gaussian-type distribution, thus reducing

systematic error in experimental conditions. The annotation

R package xMSAnnotator (41) was used to perform the

accurate mass carries in online compound databases [HMDB

(42), LipidMaps (43), and KEGG (44)]. The adduct list used

for database matching included “M+2H,” “M+H+NH4,”

“M+ACN+2H,” “M+2ACN+2H,” “M+H,” “M+NH4,”

“M+Na,” “M+ACN+H” in positive ionization mode, and

the following in negative ionization mode: “M+ACN+Na,”

“M+2ACN+H,” “2M+H,” “2M+Na,” “2M+ACN+H” “M-2H,”
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TABLE 3 Conversion of continuous variables into categorical ones.

Variable Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 Bin 9 Bin 10

CBC9_1 (0, 0.4) (0.4, 1) (1, 1.6) (1.6, 2.7) (2.7, 4.1) (4.1, 6.2) (6.2, 9.1) (9.1, 13.2) (13.2, 18.9) (18.9, 28)

CBC9_2 (33, 36) (36, 39.2) (39.2, 41.9) (41.9, 45.6) (45.6, 49.7) (49.7, 54.1) (54.1, 57.8) (57.8, 62.9) (62.9, 68.5) (68.5, 76)

CBC9_3 (5, 6.9) (6.9, 9.5) (9.5, 12.9) (12.9, 17.3) (17.3, 23.3) (23.3, 31.1) (31.1, 41.5) (41.5, 55.2) (55.2, 73.3) (73.3, 100)

CBC10_1 (0, 0.5) (0.5, 1) (1, 1.9) (1.9, 2.9) (2.9, 4.7) (4.7, 7.4) (7.4, 10.4) (10.4, 15.6) (15.6, 23.4) (23.4, 33)

CBC10_2 (33, 35.8) (35.8, 39) (39, 42.4) (42.4, 46.2) (46.2, 50.2) (50.2, 54.7) (54.7, 59.5) (59.5, 63.7) (64.7, 69.3) (69.3, 77)

CBC10_3 (5, 7) (7, 9.5) (9.5, 12.7) (12.7, 16.8) (16.8, 23.8) (23.8, 31.3) (31.3, 41.2) (41.2, 53.9) (53.9, 70.6) (70.6, 100)

CBC19_1 (0, 0.3) (0.3, 0.7) (0.7, 1.3) (1.3, 2.1) (1.8, 2.8) (2.8, 4) (4, 5.7) (5.7, 7.9) (7.9, 10) (10, 15)

CBC19_2 (50, 52.3) (52.3, 55.1) (55.1, 57.5) (57.5, 60.5) (60.5, 63.1) (63.1, 66.5) (66.5, 69.3) (69.3, 73) (73, 76.1) (76.1, 81)

CBC19_3 (50, 53.8) (53.8, 57.7) (57.7, 61.9) (61.9, 64.9) (64.9, 69.6) (69.6, 74.7) (74.7, 80.2) (80.2, 86) (86, 92.3) (92.3, 100)

CBC20_1 (0, 1) (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8) (8, 9)

CBC20_2 (50, 52.8) (52.8, 54.6) (54.6, 57) (57, 58.9) (58.9, 61.5) (61.5, 63.6) (63.6, 66.3) (66.3, 68.6) (68.6, 71.5) (71.5, 74)

CBC20_3 (50, 54) (54, 57.4) (57.4, 60.9) (60.9, 66) (66, 70.1) (70.1, 76) (76, 80.7) (80.7, 85.7) (85.7, 92.8) (92.8, 100)

CBC21_1 (0, 0.3) (0.3, 0.7) (0.7, 1.2) (1.2, 1.9) (1.9, 2.7) (2.7, 3.8) (3.8, 5.3) (5.3, 7.1) (7.1, 9.5) (9.5, 13)

CBC21_2 (50, 52) (52, 53.8) (53.8, 56.2) (56.2, 58.2) (58.2, 60.8) (60.8, 62.9) (62.9, 65.7) (65.7, 68) (68, 71) (71, 75)

CBC21_3 (50, 53) (53, 57.9) (57.9, 61.7) (61.7, 65.9) (65.9, 70.3) (70.3, 75) (75, 81.8) (81.8, 87.3) (87.3, 93.1) (93.1, 100)

TRF9_1 (0, 0.5) (0.5, 1.2) (1.2, 2.3) (2.3, 3.7) (3.7, 5.9) (5.9, 9) (9, 13.6) (13.6, 20.3) (20.3, 30) (30, 46)

TRF9_2 (37, 40.4) (40.4, 43.7) (43.7, 48.1) (48.1, 53.1) (53.1, 57.3) (57.3, 63.2) (63.2, 68.3) (68.3, 73.8) (73.8, 81.2) (81.2, 89)

TRF9_3 (10, 12.3) (12.3, 15.5) (15.5, 19.6) (19.6, 24.6) (24.6, 30.8) (30.8, 38.6) (38.6, 48.3) (48.3, 60.3) (60.3, 75.3) (75.3, 100)

TRF10_1 (0, 0.4) (0.4, 1) (1, 1.8) (1.8, 3.4) (3.4, 5.2) (5.2, 7.7) (7.7, 11.3) (11.3, 16.4) (16.4, 25.8) (25.8, 38)

TRF10_2 (41, 43.3) (43.3, 46.6) (46.6, 49.3) (49.3, 52.2) (52.2, 56.1) (56.1, 59.4) (59.4, 62.9) (62.9, 67.6) (67.6, 71.5) (71.5, 77)

TRF10_3 (18, 22) (22, 26.2) (26.2, 31.2) (31.2, 37.1) (37.1, 44.1) (44.1, 52.3) (52.3, 62) (62, 73.6) (73.6, 87.2) (87.2, 100)

TRF21_1 (0, 0.4) (0.4, 0.8) (0.8, 1.7) (1.7, 2.6) (2.6, 4.2) (4.2, 5.9) (5.9, 9) (9, 12.2) (12.2, 18.3) (18.3, 27)

TRF21_2 (50, 52.4) (52.4, 55) (55, 57.7) (57.7, 60.6) (60.6, 63.2) (63.2, 66.4) (66.4, 69.7) (69.7, 73.1) (73.1, 76.8) (76.8, 81)

TRF21_3 (50 53.2) (53.2, 57.4) (57.4, 61.8) (61.8, 65.4) (65.4, 70.4) (70.4, 75.9) (75.9, 81.7) (81.7, 86.4) (86.4, 93.1) (93.1, 100)

TRF22_1 (0, 1) (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8) (8, 9) (9, 10)

TRF22_2 (50, 51.8) (51.8, 53.8) (53.8, 56) (56, 57.7) (57.7, 60) (60, 62.4) (62.4, 64.4) (64.4, 67) (67, 69.6) (69.6, 73)

TRF22_3 (50, 53.1) (53.1, 57.7) (57.7, 61.3) (61.3, 65.2) (65.2, 70.8) (70.8, 75.3) (75.3, 80.1) (80.1, 86.9) (86.9, 92.4) (92.4, 100)

TRF23_1 (0, 0.3) (0.3, 0.7) (0.7, 1.3) (1.3, 2) (2, 2.9) (2.9, 4.2) (4.2, 5.8) (5.8, 7.9) (7.9, 10.7) (10.7, 15)

TRF23_2 (50, 51.9) (51.9, 53.8) (53.8, 55.6) (55.6, 58) (58, 60) (60, 62.1) (62.1, 64.2) (64.2, 66.9) (66.9, 69.2) (69.2, 73)

TRF23_3 (50, 53.7) (53.7, 57.8) (57.8, 61.1) (61.1, 65.7) (65.7, 70.6) (70.6, 75.9) (75.9, 81.6) (81.6, 86.2) (86.2, 92.7) (92.7, 100)

RVP_1 (1, 1.6) (1.6, 2.2) (2.2, 3.2) (3.2, 4.2) (4.2, 5.8) (5.8, 7.6) (7.6, 10.1) (10.1, 12.9) (12.9, 17.1) (17.1, 23)

SWM_1 (0, 0.6) (0.6, 1.4) (1.4, 3) (3, 5.2) (5.2, 9.1) (9.1, 14.7) (14.7, 23.3) (23.3, 38.8) (38.8, 60.7) (60.7, 101)

SWM_2 (22, 23.8) (23.8, 25.4) (25.4, 27.5) (27.5, 29.5) (29.5, 31.9) (31.9, 34.1) (34.1, 36.9) (36.9, 39.5) (39.5, 42.7) (42.7, 47)

SST_3 (1, 2.4) (2.4, 4.3) (4.3, 8.3) (8.3, 13.8) (13.8, 22.5) (22.5, 39.8) (39.8, 63.8) (63.8, 112) (112, 178) (178, 285)

SST_4 (1, 2.3) (2.3, 4.2) (4.2, 7.8) (7.8, 12.6) (12.6, 22.2) (22.2, 35.1) (35.1, 60.2) (60.2, 94.2) (94.2, 161) (161, 252)

SST_7 (235, 242) (242, 249) (249, 256) (256, 263) (263, 271) (271, 279.6) (279.6, 287) (287, 296) (296, 305) (305, 314)

SOC_13 (1, 1.4) (1.4, 1.9) (1.9, 2.4) (2.4, 3.1) (3.1, 3.9) (3.9, 4.8) (4.8, 5.9) (5.9, 7.3) (7.3, 8.8) (8.8, 12)

SOC_14 (0, 1) (1, 2)

PGT_P (6, 8) (8, 10.8) (10.8, 13.7) (13.7, 18.2) (18.2, 23) (23, 30.4) (30.4, 40) (40, 50.3) (50.3, 66) (66, 84)

PTT_P (35, 38.2) (38.2, 41.5) (41.5, 45.9) (45.9, 49.9) (49.9, 54.2) (54.2, 59.9) (59.9, 65.1) (65.1, 70.7) (70.7, 76.8) (78.1, 85)

PGT_T (0, 0.6) (0.6, 1.5) (1.5, 2.9) (2.9, 5.6) (5.6, 9.2) (9.2, 14.8) (14.8, 23.4) (23.4, 40.3) (40.3, 62.9) (62.9, 102)

PTT_T (1, 1.7) (1.7, 2.6) (2.6, 3.8) (3.8, 5.8) (5.8, 8) (8, 10.9) (10.9, 15.7) (15.7, 21.2) (21.2, 28.4) (28.4, 40)

IQ (64, 69.3) (69.3, 75.8) (75.8, 81.7) (81.7, 88) (88, 96.2) (96.2, 104) (104, 113) (113, 122) (122, 131) (131, 145)

CV (64, 69.6) (69.6, 75.1) (75.1, 81) (81, 88.7) (88.7, 95.7) (95.7, 103.3) (103, 113) (113, 122) (122, 132) (132, 146)

RP (65, 70.4) (70.4, 75.7) (75.7, 81.4) (81.4, 88.8) (88.8, 95.5) (95.5, 102.7) (102.7, 112) (112, 120) (120, 129) (129, 142)

ML (61, 66) (66, 72) (72, 78.7) (78.7, 84.6) (84.6, 92.4) (92.4, 99.4) (99.4, 109) (109, 118) (118, 127) (127, 140)

VE (65, 70.4) (70.4, 76.3) (76.3, 82.7) (82.7, 89.6) (89.6, 98.4) (98.4, 106.6) (106.6, 116) (116, 125) (125, 136) (136, 148)
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“M-3H,” “M-H2O-H,” “M+Na-2H,” “M-H,” “M+Cl,” “M+FA-

H,” “M+K-2H,” “2M-H.” The list of the detected candidate

metabolites was filtered by metabolite status (Detected) and

biospecimen (Blood). Confirmation of identified biomarkers

was performed by comparing the RT and fragmentation pattern

of authentic analytical standards from the in-house library or

MS/MS spectra available in databases like HMDB and Metlin

(45).

Spectral analysis of NMR data proceeded usingMestReNova

(Mnova 11.0.3) (http://mestrelab.com), while for metabolite

identification ChenoMx (http://www.chenomx.com) was

used in addition. Briefly, after loading the spectra of all the

samples using the superimposed command, the first step

was to correct the position of the reference peak sample.

The detected peaks (binning) were grouped using length

values lower than 0.04 ppm in this study; the used reference

was deuterium oxide (D2O) due to the used buffer. After

the reference correction, the alignment of all reference

peaks was checked. The Smoother Whittaker algorithm

was chosen for baseline correction; after that, the spectrum

phase was checked and corrected. For phase correction,

an automatic algorithm is preferable. The detected peaks

(binning) were grouped using length values lower than

0.04 ppm. Then, the spectrum was imported into the

ChenomX NMR Suite 8.2 for peak identification. Finally,

the previously identified peaks of TSP and metabolites

were integrated using the MNOVA software, and the

metabolite peaks were identified. In cases where multiple

peaks and peaks characterized a metabolite in different

areas of ppm, the area of all these peaks were added

to fill the corresponding cell on the sheet of import file

to MPP.

All LC-MS andNMRdata were deposited to the EMBL—EBI

MetaboLights database with the MTBLS1882 identifier.

Pathway analysis

Pathway analysis has been carried out by combining two

GeneSpring modules, Mass Profiler Professional (MPP) and

Pathway Architect (Agilent Technologies). To calculate the

probability of enriching the listed metabolites with a pathway,

a hypergeometric test was used, while the p-values have been

corrected for multiple testing using the Benjamin-Hochberg

method (46).

EWAS

The exposome-wide association study (EWAS) paradigm

has been coined Patel et al. (11) to describe the associations

among several variables composing the human exposome,

using unsupervised learning (47). The study predictors can

be classified in numerical, nominal categorical, or ordinal

categorical. For example, the exposure factors were continuous

variables since they were data from mass spectrometry. In

contrast, the variables regarding the frequency of specific food

items or water consumption were ordinal. Before applying

the logistic regression algorithm, we investigated the skewness

of the continuous variables and then transformed them into

logarithmic form. Next, we adjusted each observation to the

mean and scaled it by the standard deviation and after that it

was classified into bins. The number of selected bins is 10. In

the present study the range of each class is calculated taking the

difference between the maximum and minimum value divided

by the number of bins. Therefore, observations are clustered

/into categorical classes so that they can then be used in logistic

regression. The rest of health outcome variables that were used

are presented in the following table in order to simply describe

the limits of each bin. In addition, we converted categorical

variables into numerical ones, using integer encoding, whereby

each unique label was mapped to an integer (Table 3).

FIGURE 1

Pregnancy and early life biomonitored levels of heavy metals in blood and urine of PHIME cohort participants (n = 160). Mean concentrations of

metals are below 1 µg/L, except for arsenic, where the concentration levels are the higher among the rest of the metals. Lead had the higher

concentration in blood samples, which is expected given that lead is a compound that bioaccumulates.
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Henceforth, we used survey-weighted logistic regression

models to associate each of the exposure factors and modifiers

with a health outcome like the psychomotor scores (cognitive,

language, and motor score), while adjusting for child gender,

and a variety of sociodemographic, anthropometric and

other gestational and post-delivery parameters collected from

self-reported questionnaires. Spearman correlation, a non-

parametric test, was applied to calculate the correlations among

variables and avoid any distributional assumptions. The False

Discovery Rate (FDR) q-value was calculated to associate the

factor with a health outcome, like Bayley test levels, controlling

the type I error using the Benjamini-Hochberg step-down

approach (48). Applying permutation resampling to Bayley III

test scores allowed us to validate the FDR results (49). The

significance level was set at 0.05, corresponding to an FDR of

10%. The same procedure was repeated for the study of exposure

factors and the detected metabolic pathway associations, as

well as for revealing the associations between health outcomes

(Bayley III test) and the perturbed metabolic pathways. An

Ubuntu 16.04 server was used for carrying out the calculations,

and the “X-Wide Association Analyses” R package (50) was

used for the logistic regression and the FDR calculations, while

the “RCircos” package (51) was employed for visualizing the

results through correlation globes. Dataset skewness correctness

has been checked using the R library “moments,” while the R

package “permute” was used for the restricted permutations of

the randomization tests. Finally, for data analysis, clustering,

utility operations, computing sample size and power, the Hmisc

R package (52) was used to import and annotate datasets, and

impute missing values.

In order to generate a list of candidate biomarkers for

the stressors of interest, which were identified by untargeted

metabolomics analysis, a manual literature search was carried

out including combinations of the following terms: “exposure,”

“metals,” “neurodevelopment disorders,” “biomarkers” and

“underlying mechanisms.” The query was performed for both

levels of analysis (molecular biomarkers and pathway analysis)

for all the experiments. It was designed not only to determine

candidate biomarkers based on their known biological function

but also to avoid the exclusion of biomarkers associated with

the occurrence of a stressor, even though there is yet lack of

knowledge regarding its exact biological function.

Results

PHIME cohort

The levels of metals in the urine and blood samples of the

mothers and the children (as well as the cord blood during the

delivery) are presented in Figure 1. For most of the metals in

urine, mean concentrations are below 1 µg/L, except for arsenic,

FIGURE 2

Metabolomics analysis results per matrix, population group and technology for the PHIME cohort. It is evident that the use of di�erent platforms

(LC-MS and NMR) resulted in a much broader coverage of detected metabolites.
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TABLE 4 Identified biomarkers and pathways related to neurodevelopmental adverse outcomes.

Pathway Identified

biomarker

Technique Biological

fluid

Samples frommothers

(M)/Children (C)

Health

outcome

Urea cycle L-arginine LC-MS Plasma C Autism

L-citrulline LC-MS Plasma C Autism

Glycolysis/gluconeogenesis alpha-D-Glucose LC-MS Plasma C Autism

(S)-Lactate LC-MS Plasma C Autism

Acetate LC-MS Plasma M

alpha-D-Glucose LC-MS Plasma M

(S)-Lactate LC-MS Plasma M

Serotonin and melatonin

biosynthesis

L-tryptophan LC-MS Plasma C Autism

L-tryptophan LC-MS Plasma M

Exposure to metals is highly correlated with the urea cycle, glycolysis/gluconeogenesis, serotonin andmelatonin biosynthesis, due to the presense of l-arginine, l-citrulline, alpha-d-glucose,

(s)-lactate, acetate, and l-tryptophan in the participants’ blood samples. The identified pathways, indicate perturbations in mitochondrial respiration after exposure to metals.

FIGURE 3

Levels of specific metabolites, heavy metals and for the children with ASD participated in the PHIME cohort. L-arginine of the children diagnosed

with ASD, L-tryptophan and acetate of their mothers were above the 95th percentile (S)-Lactate of the children was below the 5th percentile. As

and Hg levels in children blood diagnosed with ASD were above the 95th percentile.

where concentration levels are higher. Regarding blood, higher

concentrations are observed for lead, an expected feature since

lead is bioaccumulative.

The corresponding metabolomics results are presented in

Figure 2. The use of different platforms (LC-MS and NMR)

resulted in a much broader coverage of detected metabolites.

In terms of metabolic pathway analysis, it was found

that exposure to metals is negatively correlated with the

metabolism of fatty acids, amino and nucleotide sugar,

porphyrin and chlorophyll, and glycolysis/gluconeogenesis

(Table 4). The identified pathways indicate perturbations in

mitochondrial respiration. The down-regulated activity of

these metabolic pathways resulted in mitochondrial function

impairment during early pregnancy (in relation to heavy metals

exposure). Considering the importance of mitochondria on

energy metabolism and cellular signaling, their dysfunction may

very likely result in impaired neurodevelopment (53).

Also of particular interest are the results that correlate

the levels of specific metabolites with heavy metals and ASD.

Among the cohort participants, 11 children had been diagnosed

with ASD. L-arginine of the children, L-tryptophan and acetate

of their mothers were above the 95th percentile (S)-Lactate

of the children was below the 5th percentile. As and Hg

levels in children’s blood were above the 95th percentile. Even

though this result is indicative of a positive association between

these biomarkers and ASD diagnosis, the influence of the low

sample size on the statistical power of the analysis must be

considered. This suggests that the associations between ASD and

the identified biomarkers must be further examined with the

involvement of larger populations (Figure 3).

In addition, the levels of the various exposure biomarkers

have been associated with the respective metabolic pathways.

We found that prenatal concertation of Hg is negatively

associated with the metabolic pathway sorbitol degradation I. In

contrast, postnatal exposure to As is significantly related to the

metabolism of arylamine (Figure 4).

Beyond the exposure parameters, metabolic pathways

have also been associated with neurodevelopmental outcomes
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FIGURE 4

Correlation globe of the exposure parameters and the pathways resulted from the detected metabolites in the PHIME participants. Prenatal

concentration of Hg is negatively associated with the metabolic pathway sorbitol degradation I, while postnatal exposure to As is significantly

associated with the metabolism of arylamine.

(Figure 5). In this case, it was found that the ones that

are negatively associated with the cognitive capacity of the

children (FSIQ) are methylglyoxal degradation I, methylglyoxal

degradation VI and pyruvate fermentation to lactate. Motor

development is negatively associated with the expression profiles

of the metabolites involved in the urea cycle, the biosynthesis

of arginine and of proline from arginine, the degradation of

citrulline and the citrulline-nitric oxide cycle.

Child cognitive development is positively associated with

the metabolism of tryptophan (Figure 6). According to the

literature, abnormalities in the urea cycle and amino acid

metabolism play a key role in adverse outcomes associated with

oxidative stress (54, 55). The imbalance between the cellular

reactive oxygen species (ROS), which may be an effect of

exposure to metals, and the impossibility for the cell to detoxify

them, leads to oxidative stress.
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FIGURE 5

Correlation globe of the health outcomes regarding the neurodevelopment of the children participated in the PHIME cohort and the metabolic

pathways. Cognitive capacity of the children (FSIQ) is negatively associated the following metabolic pathways: methylglyoxal degradation I, the

methylglyoxal degradation VI and the pyruvate fermentation to lactate. In addition, motor development is significantly negatively associated

with the urea cycle, the biosynthesis of arginine, the biosynthesis of proline from arginine, the degradation of citrulline and the citrulline nitric

oxide cycle.

Besides the associations of child psychomotor development

with the urea cycle and the metabolism of the amino

acid, dietary and socioeconomic factors play a crucial

role in neurodevelopment. Cheese, offal and local food

consumption during the pregnancy and pumpkin oil

consumption from the child benefit the cognitive and

gross motor development. In contrast, seafood consumption,

especially canned fish, is negatively associated with cognitive

(Figure 7) and fine motor development. The father’s age

is the only factor significantly associated with language

development, but it was also negatively correlated with

child motor development. As expected, the education of the

mother’s partner was positively correlated with the child’s

cognitive development.
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FIGURE 6

Volcano plot representing the correlations of children’s

cognitive development with prenatal and postnatal exposure

factors during the first year of life based on the results from the

PHIME cohort. The pathways resulted from the untargeted

urinary metabolomics analysis. Cognitive development of

children is positively associated with the metabolism of

tryptophan indicating that the imbalance between the cellular

reactive oxygen species (ROS), which may be an e�ect of

exposure to metals, and the impossibility for the cell to detoxify

them, leads to oxidative stress.

HERACLES cohort

The levels of heavy metals were monitored in both

environmental (soil) and biological matrices. On top of that,

dietary and sociodemographic data had also been collected. The

corresponding biomonitored levels are illustrated in Figure 8. In

urine, As was the most abundant, while Hg was found in hair.

The lowest concentrations in urine corresponded to Cd and in

hair to Se—it is noteworthy that Se is primarily beneficial to child

neurodevelopment at these concentrations.

Metabolomics analysis resulted in the detection of 2,806

peaks. Sixty-two percentage of the detected peaks were

annotated. Most detected metabolites correspond to carboxylic

acids and derivatives and, more specifically, to amino acids,

peptides, and analogs (Figure 9).

A heatmap (Figure 10) and three correlation globes

(Figures 11–13) have been produced to understand better how

the various parameters are correlated.

The distance of the residential address from the

contamination source has been identified as a determinant

FIGURE 7

Correlations of children’s cognitive development with prenatal

and postnatal exposure factors during the second year of life

based on the results from the PHIME cohort. The pathways

resulted from the untargeted plasma metabolomics analysis.

Besides the associations of psychomotor development of the

child with the urea cycle and the amino acids metabolism,

dietary and socioeconomic factors play a key role to child

neurodevelopment.

for most of the WISC IV indices. At the same time,

distance from the source is highly negatively associated

with the concentrations of Hg and Mn in soil (Figure 10).

In addition, our study revealed significant associations

between the conjoint behavioral consultation (CBC)

indices and exposure to metals [for example, the

Attention Deficit/Hyperactivity Problems index was

positively correlated with exposure to Hg (p-value = 0.02)]

(Figure 13).

Regarding dietary factors, it was found that the inclusion

of tomatoes often in the diet has a beneficial impact on

IQ (Figure 14), Verbal Comprehension index and Working

Memory. At the same time, cereal-rich diets are highly

associated with the Perceptual Reasoning index. Overall, regular

consumption of tomatoes and cereals has a beneficial effect

on cognition indices. Based on the conclusions of previous

studies, the positive effect of tomatoes is mainly attributed to

the antioxidant activity of lycopene, which has been proven

beneficial for a broad variety of adverse outcomes, both mental

(e.g., psychiatric disorders) and physical (CVD, cancer) (56).

Cereal consumption during breakfast has been proven in many
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FIGURE 8

Heavy metals concentration in blood, urine and hair from the children participated in HERACLES cohort. In urine, As was found in highest

concentrations, while in hair the Hg. The lowest concentrations in urine belongs to Cd, and in hair in Se, which role is mostly beneficial for a

child’s neurodevelopment.

FIGURE 9

Metabolomics analysis results per analyzed batch and ionization mode of the HERACLES cohort. The samples were analyzed in three di�erent

analytical batches due to technical limitations of the used platform. At the end of each batch, the system was cleaned and re-calibrated to avoid

the introduction of variations. In total, 2,806 peaks were identified, while 1,742 were annotated and used as input for the pathway analysis.

studies a significant booster to cognitive abilities relevant to

performance in educational activities (57).

In addition, tomatoes, white fish, nuts and raspberries are

associated with a lower score in Social Responsiveness Scale,

indicating that regular consumption of this foodstuff may have

a protective role against ASD impairments, in contrast to other

food items such as pork, sausages, crisps, herring mackerel and

chards that affect social responsiveness adversely.

Fish is generally considered among the most valuable

food items concerning child neurodevelopment. However, it

has been shown that this is related to (a) fish type and (b)

the specific neurodevelopmental parameter under investigation.

More precisely, it has been found that white fish consumption

is positively associated with cognitive development, while it is

not beneficial on indices related to Perceptual Reasoning and

Working Memory. It is worth mentioning that according to
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FIGURE 10

Exposure parameters heatmap for the HERACLES cohort. The distance of the living address found to be highly negatively associated with the

concentrations of Hg and Mn in soil. In addition, white fish consumption is highly correlated with the concentrations of Hg in hair. The

significance of these results is associated with the impact of exposure to Hg and Mn on children neurodevelopment. The exposure levels on Hg

and Mn are correlated with most of the WISC IV indices.

our results, white fish is also associated with the concentrations

of Hg in hair. The associations of white fish consumption,

Hg concentrations, and neurodevelopment must be further

investigated to help the authorities establish the most beneficial

public health advice regarding consumption of white fish.

Besides nutrition, social factors play an essential role on

child neurodevelopment. Factors negatively correlated with

neurodevelopment were maternal partner’s age, maternal

weight, and the source of drinking water. On the other

hand, maternal and paternal education were positively

associated with IQ, as expected from already published

studies (58).

Based on the results, metabolic pathways related to amino

acid metabolism and the urea cycle are highly associated with

heavy metals concentrations in biological samples. For example,

the biosynthesis of L-tyrosine was found to be significantly

correlated with the concentrations of Pb (p-value = 0.04), Mn

(p-value = 0.02), and Hg (p-value = 0.03). The biosynthesis of

NAD from tryptophan and the synthesis of acetyl-CoA from

citrate are highly correlated with the Pb concentrations (p-

value = 0.02). Also, the metabolism of the neurotransmitter

dopamine is correlated with the concentrations of Pb (p-value

= 0.02) and Hg (p-value = 0.01). The correlations between

the detected pathways related to amino acids metabolism
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FIGURE 11

Correlation globe of exposure factors and detected metabolic pathways in HERACLES cohort participants. Based on the results metabolic

pathways related to amino acids metabolism and urea cycle found to be highly associated with the concentrations of heavy metals in biological

samples. For example, the biosynthesis of L-tyrosine found to be significantly correlated with the concentrations of Pb (p-value = 0.04), Mn

(p-value = 0.02), and Hg (p-value = 0.03). The biosynthesis of NAD from tryptophan, and the synthesis of acetyl-CoA from citrate are highly

correlated with the Pb concentrations (p-value = 0.02). Also, the metabolism of the neurotransmitter dopamine is correlated with the

concentrations of Pb (p-value = 0.02), and Hg (p-value = 0.01). The correlations between the detected pathways related to amino acids

metabolism and urea cycle and the concentrations of metals, indicate imbalance between the cellular reactive oxygen species (ROS), which

may be an e�ect of exposure to metals, and the inability of the cell to detoxify them, leading to oxidative stress.

and urea cycle and the concentrations of metals indicate

an imbalance between the cellular reactive oxygen species

(ROS), which may be an effect of exposure to metals, and the

inability of the cell to detoxify them, leading to oxidative stress

(Figures 11, 12).

Moreover, cohort participants identified specific metabolic

signatures in children diagnosed with Autism spectrum

disorder (ASD). As and Hg exposure levels were above

the 95th percentile. According to untargeted metabolomics

analysis, the levels of L-arginine and L-tryptophan were above

the 95th percentile, while (S)-lactate was below the 5th

percentile. The results mentioned above suggest significant

disturbances in cell biochemistry, which resulted in the

impairment of antioxidant defense mechanisms leading to the
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FIGURE 12

Correlation globe of health outcomes and detected metabolic pathways in HERACLES cohort participants. No significant relationships were

found between exposure factors and TRF values, while the conjoint behavioral consultation (CBC) indices and metabolic pathways related to

urea cycle were highly correlated (for example biosynthesis of aspartate had a positive relationship with the Attention Deficit/Hyperactivity

Problems index (p-value = 0.02).

clinically observed results in linguistic, motor development and

cognitive capacity.

Discussion

Exposome science provides opportunities for a paradigm

shift that has the potential to provide a more in-depth

understanding between environmental exposure and clinical

outcomes. Studying the exposome allows us to capture

the complex interactions resulting from both complex

physical, chemical and biological exposures, and dietary

and sociodemographic factors during the human lifespan

(including in utero life). Linking this comprehensive view

of exposure determinants and modulators and of the

corresponding exposure levels with the underlying biology

we can connect mechanistically and dynamically in time

exposure triggers and molecular mechanisms related to adverse
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FIGURE 13

Correlation globe of exposure factors and health outcomes for the children participated in HERACLES cohort. Our study revealed significant

associations between the conjoint behavioral consultation (CBC) indices and exposure to metals [for example the Attention Deficit/Hyperactivity

Problems index was negatively correlated with exposure to Hg (p-value = −0.03)]. No significant relationships were found between exposure

factors and TRF values.

health outcomes, through multi-omics, bioinformatics and

systems biology analysis.

The mechanisms involved in impaired child

neurodevelopment based on our results, namely perturbations

in the citric acid cycle, urea cycle, and amino acid metabolism,

are proven to be significant in the oxidative stress cascade.

Formate, 2-oxoglutarate, isocitrate, glycerol, carnitine,

glutathione, methionine, cysteine, pyruvate, N-acetylglutamic

acid, β-alanine, serine, arginine, citrulline, tryptophan,

alpha-D-glucose, (S)-lactate and acetate, which have been

detected in samples from the above cohorts, could be candidate

biomarkers for neurodevelopmental disorders related to

oxidative stress.

Based on data from high dimension biological analysis,

exposure to heavy metals results in abnormal mitochondrial

function. Considering the importance of mitochondria in

energy metabolism and cellular signaling, along with the

observed disruption in glycolysis, it is of no surprise that an
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FIGURE 14

Association of intelligence quotient with environmental, dietary and exposure factors in the framework of HERACLES cohort. Based on the

analysis, distance of the living address has been pointed out as a key determinant for most of the WISC IV indices. With regard to the dietary

factors, it was found that inclusion of tomatoes often in the diet, has a beneficial impact on IQ, Verbal Comprehension index and Working

Memory. At the same time, cereal rich diets, are highly associated with the Perceptual Reasoning index. It has also to be noted that both

tomatoes and cereals are beneficial for cognition indices. White fish has been found to be associated with lower score in Social Responsiveness

Scale thus, to provide protection against ASD impairments, in contrast to other food items such as pork, sausages, crisps, herring mackerel, and

chards that impact adversely social responsiveness. Besides nutrition, social factors, play an important and crucial role.

association between exposure to heavy metals and impaired

neurodevelopment is found. More specifically, in both studies

related to child neurodevelopment, it was found that impaired

energy production due to environmental factors at an early

developmental stage, be that prenatal or postnatal, is crucial

for child neurodevelopment. In addition, perturbations of

the identified pathways, for the homeostatic operation of

which the presence of the above biomarkers is crucial,

must be examined as a putative underlying mechanism.

Some of the identified pathways are S-methyl-5-thio-alpha-D-

ribose 1-phosphate degradation, folate metabolism, serotonin

degradation, taurine biosynthesis, citrulline-nitric oxide cycle,

etc. Dysfunctions in carnitine metabolism may affect calcium

homeostasis, which is involved in oxidative phosphorylation,

leading to neurodevelopmental disorders. Biochemical markers

directly or indirectly related to mitochondrial dysfunction,

which were found to participate in dysregulated metabolic

pathways were carnitine, alanine, lactate, pyruvate, lysine

and acylcarnitine.

A critical methodological finding of the HERACLES

study is that the simultaneous evaluation of environmental,

sociodemographic and dietary parameters gives a more

comprehensive picture of the most influential factors related to

neurodevelopment impairment. Among these factors, distance

of residential address to the primary contamination source in the

area (landfill), an inverse proxy of environmental exposure, has

been proven to be of key importance, followed by the effect of

parental education level and child/family socioeconomic status.

Dietary components affect positively or negatively specific

neurodevelopmental indices. Regular consumption of white

fish and tomatoes and breastfeeding are positively associated

with healthy neurological development during childhood. The

high content of omega 3 fatty acids, which are considered as

“brain foods” through neurotransmission regulation explains

the positive effect of white fish. Omega 3 fatty acids

benefit neurodevelopment mainly by modulating membrane

biophysical properties and presynaptic vesicular release of classic

amino acid and amine neurotransmitters (59). Tomatoes, too,

have been recognized as solid antioxidants (60), being able to

defend against the presence of reactive oxygen species (such

as the ones generated by heavy metals) that can impair the

mitochondrial function of neuronal cells (61).

Overall, the detailed dietary data collected in this study

resulted in a more comprehensive interpretation of the interplay

among exposure, dietary and sociodemographic parameters

on child neurodevelopment. This, in turn, highlights why
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the exposome is a powerful tool for assessing the interaction

between environment and health; it allows us to understand the

actual exposure determinants (including environmental quality,

lifestyle, diet and sociodemographics), which trigger biological

responses related to adverse health effects; this enables to

design targeted interventions toward protecting and promoting

public health.

Conclusions

Two are the main characteristics that stand out from

these studies:

(a) We have chosen to consider factors such as dietary habits

and socio-economic status as additional parameters associated

with child neurodevelopment beyond environmental exposure

to neurotoxicants; and

(b) We were particularly interested in capturing the overall

metabolome perturbation and associating it with the totality

of environmental exposure factors we could quantify on the

one hand and with clinically observed neurodevelopmental

disorders on the other. The aim of this coupled approach

is to identify the metabolic mechanisms that govern the

interactions between the exposome and the observed adverse

health outcomes in order to support the built-up of adverse

outcomes networks on the basis of real cohort data.

Thus, although the two studies included in this work

involved different cohorts, the reanalysis of samples following

a biology-based perspective allowed us to investigate

how perinatal and early-life exposome affected child

neurodevelopment. Finding associations between clinical

or sub-clinical health outcomes and key features of the early-life

external and internal exposome supports the elucidation of

the mechanisms through which xenobiotics interact with and

eventually perturb cell metabolism to induce specific pathways

of toxicity in infants and young children. As a next step, in vitro

testing coupled to targetedmetabolomics onmetabolically active

relevant cell lines are planned to provide mechanistic evidence

of the observed exposome-wide associations, building thus the

evidence base for the development of the respective adverse

outcome networks enhanced by exposome-wide analysis.
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