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Internet of Things (IoT) involves a set of devices that aids in achieving a smart

environment. Healthcare systems, which are IoT-oriented, provide monitoring services

of patients’ data and help take immediate steps in an emergency. Currently, machine

learning-based techniques are adopted to ensure security and other non-functional

requirements in smart health care systems. However, no attention is given to classifying

the non-functional requirements from requirement documents. The manual process of

classifying the non-functional requirements from documents is erroneous and laborious.

Missing non-functional requirements in the Requirement Engineering (RE) phase results

in IoT oriented healthcare system with compromised security and performance. In this

research, an experiment is performed where non-functional requirements are classified

from the IoT-oriented healthcare system’s requirement document. The machine learning

algorithms considered for classification are Logistic Regression (LR), Support Vector

Machine (SVM), Multinomial Naive Bayes (MNB), K-Nearest Neighbors (KNN), ensemble,

Random Forest (RF), and hybrid KNN rule-based machine learning (ML) algorithms.

The results show that our novel hybrid KNN rule-based machine learning algorithm

outperforms others by showing an average classification accuracy of 75.9% in classifying

non-functional requirements from IoT-oriented healthcare requirement documents. This

research is not only novel in its concept of using a machine learning approach

for classification of non-functional requirements from IoT-oriented healthcare system

requirement documents, but it also proposes a novel hybrid KNN-rule based machine

learning algorithm for classification with better accuracy. A new dataset is also created

for classification purposes, comprising requirements related to IoT-oriented healthcare

systems. However, since this dataset is small and consists of only 104 requirements,

this might affect the generalizability of the results of this research.

Keywords: non-functional requirements, healthcare, classification, machine learning, requirement document

1. INTRODUCTION

One of the most important tasks of developing high-quality software is gathering the right
requirements and ensuring no missing requirements. Often during the process of Requirement
Engineering (RE), more attention is given to eliciting the functional requirements than
non-functional requirements. This results in the poor quality end product and results in loss of
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cost, effort, and even failure of the project. Non-functional
requirements explain the important quality attributes (1, 2)
and constraints (3) that must be implemented in the system.
If these requirements are left ignored, the architecture is not
designed properly (4). Thus, classifying the non-functional
requirements becomes a mandatory task in the RE process
for designing the architecture design and performing other
related activities accordingly (4, 5). Traditionally, non-functional
requirements are identified and extracted manually which is
an erroneous process (5, 6) and laborious (7). The non-
functional requirements are intertwined with the functional
requirements in RE documents, not properly structured.
Therefore, proper identification and categorization are required
(8). Since the architect needs to know the types of non-functional
requirements, non-functional requirements must be classified
properly (9). Currently, the trend of using ML algorithms for
classifying the non-functional requirements is gaining attention
(8). However, there is still a need to classify the non-functional
requirements accurately. By using automated techniques, the
chance of missing the non-functional requirements is reduced,
classification accuracy can be improved, and time and effort
are also saved. IoT possesses a vital role in the health care
systems of the present era. It includes a set of devices, which
help store, process, and transfer data to achieve smart services
(10–13). Healthcare systems, which are IoT-oriented, provide
monitoring services of patients’ data and help take immediate
steps in an emergency (14–16). Thus, it is critical to ensure that
these smart healthcare systems are extremely secure and perform
reliably so that patients’ sensitive data is not only kept protected
from manipulation and attacks but also transferred entirely and
safely in a timely fashion (17–19). In order to ensure that the
IoT-oriented healthcare system possesses all these important
non-functional requirements, it is necessary to extract all the
non-functional requirements from the requirement document of
the IoT-oriented healthcare system in the RE phase. Machine
learning-based techniques are adopted to implement non-
functional requirements in smart health care systems. However,
attention needs to be given to the first classification of the
non-functional requirements from the requirement document to
ensure that non-functional requirements are not missed in the
RE phase. By performing this classification task automatically, the
chances of missing non-functional requirements will be reduced,
and the probability of developing a high-performing and secure
IoT-oriented healthcare system will increase (20).

In this research, the main focus is on finding machine learning
algorithm and relevant features which helps in the classification
of non-functional requirements with higher accuracy. For
features extraction, Bag of Words (BOW) and Term Frequency-
Inverse Document Frequency (TF-IDF) are adopted. The
algorithms considered by this study are Logistic Regression
(LR), Support Vector Machine (SVM), Multinomial Naïve Bayes
(MNB), K-Nearest Neighbors (KNN), ensemble, Random Forest
(RF), and hybrid KNN rule-based ML algorithms. The two main
distinct additions here are the ensemble and hybrid classifiers.

The existing studies have limitations. Some studies have
reported low performance (1, 6, 21). The types of non-functional
requirements considered by some studies are very less (4, 22, 23).

The dataset adopted by different studies has a limited number
of non-functional requirements (2, 9, 21). Some studies adopted
the manual process of validation which may have chances of
error (21).

This article makes the following contributions.

• Creation of dataset, which includes requirements related
to IoT-oriented healthcare system. The requirements
included in this dataset belong to 8 categories: Accuracy,
Reliability, Security and Privacy, Performance, Compatibility,
Usability, Functional, and Maintainability. The numbers of
requirements in this dataset are 104. IoT-oriented healthcare
system requirement documents create this dataset (24, 25).
Since there are no currently such dataset available that
contains labeled requirements related to IoT-oriented
healthcare systems, this will serve as an aid for future
research purposes in automating the classification of non-
functional requirements from IoT-oriented healthcare system
requirement documents.

• Development of a novel hybrid KNN rule-based machine
learning algorithm, which provides better classification
accuracy than traditional machine learning algorithms
like SVM, KNN, RF, MNB, LR, and ensemble. This novel
hybrid machine learning algorithm helps classify non-
functional requirements from IoT-oriented healthcare
system requirement documents with an average classification
accuracy of 75.9%.

• Provision of features relevant to non-functional requirements
that the IoT-oriented healthcare system must possess. These
features will help the researchers to create better classifiers by
including them in machine learning-based techniques.

This research article is structured in the following manner.
Section 2 describes the relevant work conducted earlier in
the literature related to the classification of the non-functional
requirements. Section 3 describes the research methodology
which is adopted in this research. Section 4 shows the experiment
portion. Section 5 presents the results and discussion. Section 6
provides the conclusion and highlights possible future directions.

2. LITERATURE REVIEW

In literature, many studies have highlighted the problem of
ignored and missed non-functional requirements in the RE
process (8, 21). Non-functional requirements are sometimes
hidden and not clearly stated, due to which it becomes difficult
to identify them, and chances of missing them increase. Initially,
more importance is given to eliciting the functional requirements
where non-functional requirements are discovered at late stages
which results in issues related to architectural design (1–3,
5, 6), cost management (9, 22, 23), time management (4, 5,
7, 23), and risk (26) and quality management (5, 7, 27, 28).
The problem extrapolates due to manual identification and
classification of non-functional requirements (5). The manual
classification is quite a time-consuming and laborious process
(22, 29). Search function provided by tools is used by typing
keywords and searching, which is an exhaustive process and
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TABLE 1 | Non-functional requirements classification review.

Reference Machine learning

algorithm

Dataset Limitations

Shreda and Hanani (30) Convolutional Neural

Network

PURE dataset sample Only 5 non-functional requirement are considered, Probability of

biased result due to 2 fold cross validation

Dias Canedo and

Cordeiro Mendes (7)

Logistic Regression PROMISE_exp Classification error of 25% on average is reported which needs to

be minimized

Younas et al. (32) K Nearest Neighbor PROMISE Precision is found as 50.65%, Recall as 41.11% which indicates

quite low classification performance.

Lu and Liang (29) Bagging 21969 user review sentences Only four non-functional requirement are considered

Kurtanovic and Maalej

(33)

Support Vector Machines PROMISE Precision is found to be 78.25% which needs be further improved

Maiti (27) K Nearest Neighbors EU Procurement documents,

NFRM data set, PROMISE

Datasets used for validation contains only 56 and 78 requirements

which are very limited Validation is done only on EU procurement

documents

Riaz et al. (31) K Nearest Neighbors CCHIT, ED, NU, OSCAR Validation is done specifically on health care domain documents

Only security related requirement are considered

Knauss and Ott (26) Support Vector Machines 2,000 requirements in

Mercedes-Benz specifications

Non-Functional requirement types are not mentioned Validation is

done only on automotive industry domain document

Rashwan et al. (23) Support Vector Machines Corpus with 3064 annotated

sentences

Only 5 non-functional requirement are considered Chances of

biased results due to 6 cross fold validation

Slankas and Williams (9) Support Vector Machines CCHIT Ambulatory Requirements,

iTrust, PROMISE

Performance is low in terms of precision and recall which are only

72.8 and 54.4%, respectively

Casamayor et al. (4) Expectation Maximization

with Naïve Bayes

PROMISE Only accuracy of 75% is reported

Hussain et al. (22) Decision Trees PROMISE Non-Functional requirement types are not stated

Cleland-Huang et al. (5) Naïve Bayes PROMISE, SIEMENS IET Datasets Classification precision is 12.4% which is very low

may lead to missing the non-functional requirement (30). The
concept of automating or semi-automating this task gained
popularity (7, 27). However, this trend of automating the non-
functional requirement classification is still young and requires
further research for preprocessing, selecting optimum feature
sets, acquiring relevant datasets, and using appropriate ML
algorithms (8). Moreover, different studies have worked on
different categories of non-functional requirements (8) and
they considered different types of documents like Certification
Commission for Healthcare Information Technology (CCHIT)
Ambulatory requirement document (9), Emergency Department
Information Systems Functional Document (31), Mercedes-
Benz Specification Document (26), and European Union e-
Procurement documents (27) from where the non-functional
requirements are extracted. Due to different factors, the
classification performance reported by different studies is
different, and the comparison is not possible because of the
element of biasness. Few studies have managed to report the
full process of classifying the non-functional requirements from
the requirement document (8). Table 1 shows various techniques
which are adopted by different studies for the classification of
non-functional requirements.

2.1. Non-Functional Requirements
Classification Using Naive Bayes
One of the techniques to classify the non-functional requirements
from the requirement document is by Naive Bayes (5). In this
technique, the probability is calculated to classify non-functional

requirements. Nine non-functional requirements are focused
on, and the PROMISE dataset is used. For evaluation, leave
one out cross-validation is performed having 15 iterations. The
classifier’s performance is very poor precision, which is 12.4%.
The classification error of the above classifier indicates that it
needs improvement.

Similarly, in another study, the Naive Bayes algorithm is used
to classify the non-functional requirement but with Expectation-
Maximization (4). Non-functional requirements categories in
which the data is classified are 9. The classifier’s performance in
terms of accuracy is reported to be about 75%.

2.2. Non-Functional Requirements
Classification Using Decision Trees
Decision trees are also used to classify the non-functional
requirements (22). PROMISE dataset is used, and 10-fold
cross-validation is performed for evaluation. The accuracy of
classification is 98.56%. The study above has not mentioned the
types of non-functional requirements.

2.3. Non-Functional Requirements
Classification Using Bagging
Research classifies the non-functional requirements from the
requirement document by using machine learning ensemble
meta-algorithm Bagging (29). The dataset consisted of 21,969
user reviews. The evaluation is performed using 10-fold cross-
validation. The classifier’s performance in terms of precision
is found to be 71.4% and recall of 72.3%. The non-functional

Frontiers in Public Health | www.frontiersin.org 3 March 2022 | Volume 10 | Article 860536

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Khurshid et al. Classification of Non-Functional Requirements

requirements types that are considered by the study are 4. First
of all, the types of non-functional requirements considered are
only four. Furthermore, the performance of the classifier is
relatively low.

2.4. Non-Functional Requirements
Classification Using SVM
In one research, a SVM is used to extract the non-functional
requirements from the requirement document (23). In the
technique, the documents are first preprocessed. After
preprocessing, SVM is applied. Cross-validation is applied
for validation in which the dataset is divided into subsets, and
validation is performed in iterations. One subset is used for
validation in each iteration, and the remaining subsets are used
for training. The performance of the classifier is evaluated using
6-fold cross-validation. The performance on the PROMISE
corpus in terms of precision is 77%. The non-functional
requirements types that are considered are 5. In terms of
performance, there is still work that needs to be done to increase
the precision. The Sequential Minimal Optimization (SMO)
algorithm is used for classifying the non-functional requirements
from the requirement document (9). First, preprocessing is
done on text, then SMO is applied. The evaluation is performed
using 10-fold cross-validation. The performance is found to
be 72.8% in terms of precision. The precision of the classifier
needs improvement.

Another study reported using the SVM algorithm to classify
the non-functional requirements from the specification of
Mercedes Benz (26). This approach is semi-supervised. Manual
evaluation is performed. The performance of the classifier in
terms of precision is >60%. The research is done using an
automotive industry document; there is no surety about how the
classifier performs in other industry specifications. SVM is used
by one more study to extract the non-functional requirements
(33). In this technique, the documents are first preprocessed,
then applied SVM. The performance of the classifier is
evaluated using 10-fold cross-validation. PROMISE dataset is
used for classification. The non-functional requirements which
are considered by the study are only 4. The performance in terms
of precision is found to be 78.25%.

2.5. Non-Functional Requirements
Classification Using KNNs
One of the studies focused on classifying security-related
requirements (31, 34, 35). In the study, first preprocessing is
done, then KNN is applied. The types of security requirements
into which the sentences are classified are 7. The evaluation
is performed using 10-fold cross-validation. The classifier’s
performance in terms of precision is found to be 82%. The above
study focused on only security-related requirements, not other
non-functional requirements.

In literature, another study used KNN to classify the
non-functional requirements (27). In the article, first, the
text is preprocessed, then KNN is applied. The classifier’s
performance is found to be 97.73% in terms of precision. The
datasets used for evaluation contain requirement documents

with 57 and 88 non-functional requirement sentences. The
data set used for validation has a minimal number of non-
functional requirements.

One of the research used the KNN algorithm concept
to classify the non-functional requirements (32). The dataset
used for classification is the PROMISE dataset. The classifier’s
performance is evaluated by iterating 14 times using different
threshold values. The classifier’s performance in terms of
precision is found to be only 50.65%.

2.6. Non-Functional Requirements
Classification Using LR
Logistic regression is used by research to classify non-functional
requirements (7). This algorithm works based on the probability
function. The data set used the PROMISE_exp dataset. The types
of non-functional requirements considered for classification
purposes are 11. The classifier’s performance is calculated
by performing 10-fold cross-validation, only 75% in terms
of precision.

2.7. Non-Functional Requirements
Classification Using Convolutional Neural
Network (CNN)
One study proposed CNN for classifying the non-functional
requirements from the requirement document (30). We focus
on a total of 5 non-functional requirements. The text is first
preprocessed in the study, then CNN is applied. A PURE dataset
which consists of 1,247 requirement sentences, is used. The
classifier’s performance is calculated by performing 2-fold cross-
validation, and it is found to be 92.2% in terms of precision.

Similarly, various techniques are proposed to ensure the
security of IoT-oriented health care systems. One technique
proposed is based on a machine-learning algorithm that uses a
biometric framework for ensuring the security of sensitive data
(36). In this technique, electrocardiogram (ECG) signals are used
to extract the features used by a machine-learning algorithm.
The proposed system is based on a multilayer perception model,
where in order to secure the signal and protect it from possible
interference, a secure communication channel is developed. The
authentication process is carried out in the testing phase by
considering unique generated EIs from the ECG and coefficients
from polynomial approximation.

One study highlights the usage of the biometric cryptosystem
(BCS) for ensuring security (37). The proposed approach
considers Artificial Neural networks (ANN) to analyze the signal
energy variations of implanted devices. The inertial measurement
units (IMU) are fixed inside the implanted devices, which help
detect signal energy changes. In this technique, ANN is trained
so that the first sensor is placed on the chest, and then signals
are processed by the algorithm. ANN in the proposed technique
comprises three layers: an input layer, an output layer, and
a hidden layer comprising 10 hidden nodes. The security is
achieved by a 128-bit key generated by gait cycles. This key is
difficult for hackers since it cannot be achieved by a modern
attacking mechanism like dictionary attacks.
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In research study, a novel machine learning-based security
framework is proposed to detect malicious activities in healthcare
systems (38). The proposed framework named Health Guard
is developed by considering four machine learning algorithms:
KNN, RF, Decision Trees, and ANN. The malicious activities
are detected by observing the vital signals of the implanted
devices and then correlating the vitals to identify the variations
in the patient body. The classifiers are developed by training
using nine databases of eight smart implantable devices and by
considering activities, among which 7 are normal user activities,
and five are disease-related. The validation process is conducted
by testing through only three threats: denial of Service (DoS)
attacks, tempered medical devices, and false data injection.

The literature review reflects the limitations of the current
study. The performance of some techniques is quite average
(1, 6, 26). The non-functional requirements classes considered by
some studies are very few (4, 23, 31). The dataset contains limited
non-functional requirement sentences for training and testing
purposes (2, 3, 9). Studies have mostly considered classifiers,
which are developed using single machine learning algorithms
(8). Different combinations of hybrid and ensemble classifiers are
barely considered.

3. RESEARCH METHODOLOGY

In order to find the relevant features and determine the ML
algorithm that achieves better accuracy for the classification of
non-functional requirements, the research answers the following
research questions:

• RQ.1. Which features help to increase the accuracy of non-
functional requirement classification?

• RQ.2. Which machine learning algorithm classifies non-
functional requirements with better accuracy?

The research method used for the validation of the ML algorithm
is experimentation (39). Experimentation is a systematic
method that involves observation, manipulation, and control
to generate accurate and reliable results. It is used to study
the cause-effect relationship and prefers standardizing tools
for maintaining control and achieving precision. It helps
develop automatic techniques and evaluate the accuracy of
classifying the non-functional requirements while controlling
variables like data used for classification, number of non-
functional requirements to be classified, and validation method
adopted. Simulation, which is similar to experimentation, is
not adopted because of the unavailability of its immense
requirements to simulate the technique correctly and because
of more chances of uncertainty in results due to its abstract
nature (40).

PROMISE_exp dataset is used for classification (7). This
dataset contains requirements from real projects, and it is the
expanded form of the existing PROMISE dataset. The use of a
large dataset also helps in generalizing the results (7). Eleven non-
functional requirements are chosen for classification: Availability,
Legal and Licensing, Look and Feel, Maintainability, Operability,

Performance, Scalability, Security, Usability, Fault Tolerance, and
Portability. These non-functional requirements are the common
non-functional requirements in many projects and are also
misclassified and ignored due to their ambiguous nature (41).
The ambiguity level is reduced in this research by using features
relevant to non-functional requirements. In addition to this, the
PROMISE_exp dataset also supports learning on these types of
non-functional requirements (7).

Bag of Words and TF-IDF are used separately to answer the
first research question and find the relevant features. The reason
for using these methods for finding relevant features is that
they work well for classifying the non-functional requirements
(7, 8). Moreover, both methods cover different weighing features,
and experimenting with both methods helps find more relevant
features. BoW ignores the sequence of words; however, in the case
of non-functional requirement classification, some algorithms
can work well irrespective of the order of the information.
BoW method weighs the features according to their number of
occurrences in all documents (29) while the TF-IDFmethod gives
more weight to those features which have less overall frequency
but more frequency in a specific document (4, 7). Some highly
relevant features are also added to help rule-based learning, part
of the hybrid KNN-rule based ML algorithm.

To answer the second research question and find the ML
algorithm that helps classify non-functional requirements with
better accuracy, LR, SVM, MNB, KNN, the ensemble made from
these algorithms, RF and hybrid KNN-rule based ML algorithms
are applied. The reason for choosing these ML algorithms for
classifying the non-functional requirements is because these
supervised ML algorithms perform better than unsupervised
or semi-supervised ML algorithms (8). The algorithms are also
selected while keeping in front the dataset, which is used to
classify non-functional requirements. To evaluate the accuracy
of these classifiers, 10-fold cross-validation is performed. The
reason for choosing this method of evaluation is that it
helps in producing more accurate and unbiased results (4,
23). Furthermore, many studies adopt 10-fold cross-validation
method which helps in comparing the results without bias
(4, 5, 7, 23). The steps to the classification of non-functional
requirements are given in Figure 1.

Internet of Things plays a crucial role in the health care
systems of the modern era. It provides a facility to monitor,
control, and prevent diseases by collecting and processing health-
related data through sensors (42). Since these health care systems
are critical, it is important to ensure that they work efficiently,
encompassing all the required non-functional requirements.
Health care systems have compromised performance or security,
resulting in the loss of critical health data and even threats and
attacks by hackers, which may affect the life of patients (17). An
IoT-oriented health care system generally has three layers, which
are the perception layer, fog layer, and cloud layer (43–45). The
layered architecture is shown in Figure 2. The perception layer
includes actuators or devices that help collect sensory data. The
fog layer processes the data to produce the required response
quickly. The Cloud layer deals with storing the data and big data
analytics (44).

Frontiers in Public Health | www.frontiersin.org 5 March 2022 | Volume 10 | Article 860536

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Khurshid et al. Classification of Non-Functional Requirements

3.1. Dataset Description
In this research, the PROMISE_exp dataset (46) is used for
the classification of non-functional requirements. This dataset

FIGURE 1 | Steps of classifying non-functional requirements.

is the expanded form of the original PROMISE dataset,
which comprised only a total of 625 labeled requirement
sentences (21). The expanded form contains more labeled
requirement sentences including 444 functional requirements
and 525 non-functional requirements (7). The 11 types of non-
functional requirements are distributed among the sentences
in an unbalanced fashion. Table 2 shows the formulation of
this dataset.

TABLE 2 | Number of requirements per class.

Requirement type Number of requirements

Functional requirement (FR) 444

Availability (A) 31

Security (SE) 125

Usability (US) 85

Look and Feel (LF) 49

Legal and licensing (L) 15

Maintainability (MN) 24

Operability (O) 77

Performance (PE) 67

Scalability (SC) 22

Fault Tolerance (FT) 18

Portability (PO) 12

Total 969

FIGURE 2 | The architectural design of Internet of Things (IoT) oriented Healthcare non-functional requirement classification.
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FIGURE 3 | Distribution of requirement classes.

The labeled requirements are distributed in the following
manner: availability: 31, security: 125, usability: 85, look
and feel: 49, legal and licensing: 15, maintainability: 24,
operability: 77, performance: 67, scalability: 22, fault tolerance:
18, portability: 12, and functional requirements which are 444
in number. Figure 3 below shows the distribution of the labeled
requirement sentences.

3.2. Text Preprocessing
Text preprocessing is the first step in which the data is
cleaned to remove redundant and less relevant features (8).
In-text preprocessing, first, the data is normalized. During
normalization, natural language text is first converted to lower
case, then non-alphabetical characters, symbols, and punctuation
are removed. Tokenization is performed after normalization, in
which text is converted to tokens. Then in the next step, the stop
words are removed, which are also less relevant features. Finally,
words are lemmatized in which they are converted to their root
form in order to remove extra features (7).

3.3. Feature Extraction
Feature extraction is the second step in which the preprocessed
data is converted into vectors. To extract the features, BoW
and TF-IDF are applied. The description of both techniques is
given below.

3.3.1. Bag of Words

Bag of Words is a simple technique in which the words are
converted into a numerical format based on their number of
occurrences. Each feature gets its value equal to the number
of times it appears in the requirement sentence. The vector of
requirement sentence ‘j’ is represented in Equation 1.

Xj = (x1,j. . .xi,j. . .xn, j) (1)

In Equation 1, xi,j represents the weight of the feature which is
calculated on the basis of the occurrence of ‘i’ in the requirement
‘j’, whereas ‘n’ represents the total number of words (7). When
the vectors are created, they are given as an input to the ML
algorithms in the next step.

3.3.2. Term Frequency-Inverse Document Frequency

In this technique of vectorization, two metrics play their role.
The first metric is the Term Frequency (TF) which represents
the number of times a particular word occurs in a requirement.
The second metric is the Inverse Document Frequency which is
achieved by dividing a total number of requirement sentences
by the requirement occurrence number for each word and then
applying a logarithmic function on the output (47). Below is the
mathematical representation of TF-IDF.

TF − IDF(termi,j) = tfi,j × idfi (2)

In Equation 2, tfi,j shows the frequency of the term i in the
requirement j, where idfi is the Inverse Document Frequency of
‘i’ which is mathematically represented as Equation 3:

Idfi = log
total_requirements

total_requirements_with_term_i
(3)

3.4. Machine Learning Algorithms
The machine learning algorithms LR, SVM, MNB, KNN
ensemble, RF, and hybrid KNN-rule based ML algorithms are
applied to vectorized data. The classifiers are constructed not only
by using the monolithic concept but also ensemble and hybrid
are also considered since they yield better results according to
literature (8).
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3.5. Evaluation
The performance of the classifiers in terms of accuracy is
evaluated using 10-fold cross-validation (7). In 10-fold cross-
validation concept, the training set is divided into ten subsets of
data which are of almost the exact sizes, and then testing takes
place in 10 iterations, wherein each iteration, one fold which
comprises 10% of the dataset is left for testing and other nine
folds which comprises 90% of the dataset are used for training. In
this way, each sample of the data is used once in both training and
testing (30). The purpose of performing 10-fold cross-validation
is to reduce the chance of biasness in results. In this research, the
metric ‘Accuracy’ is considered to get an overall idea of the correct
classification made by the classifier. Accuracy of the classifier is
the measure of how many correct predictions are made by the
classifier in contrast to a total number of predictions as shown in
Equation 4.

Accuracy =
(TP + TN)

P + N
(4)

Where TP represents the predictions correctly identified as
positive, TN represents those correctly identified as negative.

4. EXPERIMENT

In order to implement the technique and perform the
experiment, the Anaconda tool is used. PROMISE_exp dataset is
obtained and converted into CSV format to process by the tool.
The data is first preprocessed in order to remove useless features.
In the first step of data preprocessing, the text is normalized. In
the next step, the sentences are converted into tokens. Then in the
next step, the stop words are removed. Then in the final step of
text preprocessing, words are lemmatized and converted to their
root form to remove extra features. After preprocessing, the data
is vectorized using BoW and TF-IDF.

For classification of non-functional requirements, 7 ML
algorithms are considered, which are LR, SVM, MNB, KNN,
ensemble, RF, and hybrid KNN-rule based ML algorithms. The
Hyperparameter of the classifiers is tested and set manually by
checking their performance. The performance is evaluated in
terms of accuracy by using 10-fold cross-validation.

The work in this research differs from the recent study (7) in
the sense that this study considers more ML algorithms like RF,
Ensemble, and hybrid KNN-rule based ML algorithm. Moreover,
the relevant features are also added to increase the performance
in terms of accuracy.

The non-functional requirements of an IoT oriented health
care system generally include security (17, 42, 44) privacy
interoperability, scalability, reliability (17, 44), accuracy, usability
(17), performance (17, 44, 48), and maintainability (48). The
system must possess these non-functional requirements since
missing any critical non-functional requirement results in severe
loss of healthcare data and other threats to patients’ lives.
Thus it is important to extract and classify all the non-
functional requirements from the requirement document to
be implemented accordingly in the IoT-oriented healthcare
system. The manual process of extracting the non-functional
requirements is erroneous and laborious. To avoid missing

non-functional requirements, this research aims to adopt a
machine learning-based approach to automatically classify the
non-functional requirements from the IoT-oriented healthcare
system’s requirement document.

To implement the automatic technique, experimentation is
performed. First dataset is created, comprising of functional and
non-functional requirements of IoT-oriented health care systems
(24, 25). This dataset contains requirements belonging to 8
classes: Accuracy, Reliability, Security and Privacy, Performance,
Compatibility, Usability, Functional, and Maintainability. The
dataset obtained is then preprocessed. IoT-oriented healthcare
systems’ requirement sentences are first normalized in the
preprocessing stage. The text is converted to lower case in
normalization, and punctuation marks and non-alphabetical
characters are removed. In the second phase of preprocessing, the
text is converted into tokens. In the third phase of preprocessing,
stop words are removed. In the fourth phase, lemmatization
converts the words into their lemma or dictionary format. After
text preprocessing, vectorization is performed using TF-IDF. The
features extracted by TF-IDF are then used to create classifiers
by applying a machine learning algorithm. The machine learning
algorithms adopted in this experiment are SVM, LR, KNN,MNB,
RF, Ensemble, and hybrid KNN-rule based machine learning
algorithm. For evaluation of classifiers performance, 10-fold
cross-validation is performed.

5. RESULTS AND DISCUSSION

This section presents the experimentation results, which are
conducted to find out the relevant features that increase the
accuracy of classification of non-functional requirements (RQ1)
and explore the ML algorithm, which performs better in terms of
accuracy for classification of non-functional requirements (RQ2).

5.1. Relevant Features for Non-Functional
Requirements Classification
In the experiment stage, two feature extraction techniques are
adopted: BoW and TF-IDF. After preprocessing of text and
extracting the features with the help of vectorization techniques,
the top relevant features which are obtained from both the
techniques are shown in Table 3. Furthermore, some coding is
also performed to add more features.

In addition to these features obtained by the vectorization
techniques, the features which are added according to the
relevancy of the type of non-functional requirement are shown
in Table 4. These added features helped achieve an accuracy as
high as 85% on average, as can be seen, which is achieved by the
hybrid KNN rule-based ML algorithm.

The performance of the ML algorithms when fed with
the features is shown in Figure 4. Figure 4 highlights the
effect of BoW and TF-IDF on the classification accuracy of
ML algorithms. In the hybrid KNN rule-based ML algorithm
application, TF-IDF outperforms BoW to extract more relevant
features and provide more accurate results. In the case of the
ensemble, BoW provides more relevant features. BoW also
outperforms TF-IDF in extracting more relevant features when
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applied LR and MNB. In the case of SVM and KNN, the features
extracted by TF-IDF proved to be more relevant. Both BoW and
TF-IDF provide similar accuracy with RF.

5.2. Machine Learning Algorithm With
Higher Accuracy
The second research question (RQ2) is about finding the
ML algorithm that provides more accurate results than
others classifying non-functional requirements. In Figure 5, the
accuracy provided by all the 7 ML algorithms is illustrated in

TABLE 3 | Top relevant features.

Top relevant features

Number TF-IDF BoW

1 Must Must

2 Information Information

3 Sensitive User

4 Website Website

5 Registered Security

6 Security Registered

7 Secure Secure

8 User Sensitive

9 Third High

10 Issue Agreement

trend line fashion when BoW is used. There are a total of 10
iterations along which the accuracy is highlighted. The accuracy
provided by the hybrid KNN rule-based ML algorithm is the
highest overall. The accuracy of the ensemble drops at iteration
3, but overall, it provides almost average classification accuracy
compared to the hybrid classifier. On the other hand, LR
provides better accuracy than the ensemble overall but is still
lower than the hybrid classifier’s accuracy. SVM does not show

FIGURE 4 | Classification accuracy with Bag of Words (BoW) and Term

Frequency-Inverse Document Frequency (TF-IDF).

TABLE 4 | Additional relevant features.

Requirement type Relevant features

Availability availability, available, uptime, mtbf, uptime, system, support, time, hours, whenever, demand.

Legal and Licensing licensing, legal, law, rule, rules, regulation, law, legal, claim, norm, sarbanesoxley, eula, comply, confirm, meet, violate, violating, violated, follow,

agree, requirement, term, condition, accounting, standard.

Fault Tolerance malfunction, fault, fail, failure, loss, error, warn, alive, handle, prevent, recover, retain, remain, operational, restored, system, back, connection,

unavailable, operate, operating.

Security trusted, unauthorized, malicious, hacker, illegal, secure, security, securely, limited, control, private, password, constrained, constraint, access,

accessible, only, need, allow, allowed, require, required, IP address, log, logged, encrypt, encryption, hide, hidden, invisible, password,

authentic, PW, attempt, unique, valid, tracking, manner, way, SSL, impose, steal, reveal, infection, virus, threat, trojan, bomb, attack.

Scalability scale, add, accommodate, include need, increase, release, market, country, country, state, capable, supporting, new, current, customer, user,

year, processing, number, grow, multiple, database server, expected, remote.

Look and Feel look, size, color, shape, texture, position, positioned, located, location, pixel, circle, circular, square, clue, visual, scroll, tool, bar, button, icon,

image, buttons, icons, menu, comply, meet, confirm, guideline, standard, display, show, illustrate, simulate, feel, sound, announce, view, grid,

graphics, animation, tabbed, schema, attractive, offensive, ethnic, nomenclature, GUI, drilldown, interface.

Usability show, display, provide, find, locate, icons, tool, tools, toolbar, image, able allow, use, user, customer, scroll, map, web, navigate, navigation,

system, friendly, convention, help, ask, section, offer, customize, customization, quickly, easily, quick, easy, understand, entirely, click, select,

learn, translate, language, languages, intuitive, feeling, happy, satisfied, content, free, access, accessibility, handicap, disability, one, click,

familiar, self-supporting, explanatory.

Performance perform, check, handle, every, within, second, process, processing balancing, large, simultaneously, parallel, load, response, throughput, lead,

cycle, respond, minimum, fast, time, speed, rate, increase, more, high, performance, access, minute, seconds, minutes, space, memory,

resource, utilize, utilization, depend, upon, later, returned, asynchronous, asynchronously, overhead, synchronize.

Maintenance update, maintain, modify, add, integrate, remove, delete, change, replace, upgrade, easily, easy, new, different, release, updated, operate,

maintenance, highly, maintainable, configurable, manage, management, function, functionality, component, module, record, data, information.

Operability operate, exchange, interface, API, APIs, with, without, through, compatible, window, system, os, manage, format, information, data, utilize,

run, current, currently, existing, equipment, environment, use, protocol, network, operated, condition, database, store, programming,

language, connectivity, evoked, command, platform, prompt, service, stream, navigation, operable.

Portability portable, portability, support, run, mobile, laptop, tablet, platform, window, os.
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FIGURE 5 | Accuracy of machine learning algorithms with BoW.

FIGURE 6 | Accuracy of machine learning algorithms with TF-IDF.

good classification accuracy and performs low overall compared
to other ML algorithms except KNN. The classification accuracy
provided by MNB is low compared to hybrid and LR overall
but still better than other ML algorithms. KNN provides the
least good accuracy compared to other ML algorithms overall.
RF performs better in terms of accuracy overall than SVM
and KNN.

In Figure 6, the classification accuracy of all ML algorithms
is shown when TF-IDF is adopted. The hybrid KNN rule-
based ML algorithm outperforms all other ML algorithms in
providing better classification accuracy. Compared to other ML
algorithms, ensemble only proved to perform better than MNB
in providing better accuracy overall. LR provides better accuracy
than MNB, SVM, and ensemble overall, while SVM provides

better classification accuracy than just ensemble and MNB.
The classification accuracy provided by MNB is low overall
compared to all other ML algorithms. KNN, in this case, provides
better accuracy than other ML algorithms except for hybrid. RF
performs lower in accuracy than hybrid and KNN but provides
better classification accuracy overall than other ML algorithms.

The classification results in terms of accuracy are shown
in Tables 5, 6. The result in Table 5 clearly shows that
hybrid KNN-rule based ML algorithm outperforms other
ML algorithms by achieving an average accuracy of 0.778
with BoW. As a result of its nature, a hybrid classifier
considers the usage of rules constructed with relevant
features, which helps in the classification of non-functional
requirements more accurately. Similarly, Table 6 also shows
that the highest classification accuracy among all the ML
algorithms is achieved by the hybrid KNN-rule based ML
algorithm, which is 0.857 accuracy on average. The results
show that by using TF-IDF for feature extraction and
hybrid KNN-rule based ML algorithm for classification,
an average accuracy of 85.7% can be achieved, which is
quite promising.

Table 5 shows the average classification accuracy of ML
algorithms in 10 iterations when BoW is applied. The hybrid
KNN-rule based ML algorithm achieves the highest average
classification accuracy, which is 77.8%.

The results of experimentation using IoT-oriented healthcare
requirement documents are shown in Table 7. Table 6 shows
the average classification accuracy of ML algorithms in 10
iterations when TF-IDF is applied. The hybrid KNN-rule
based ML algorithm achieves the highest average classification
accuracy, 85.7%.

The results show that the hybrid KNN-rule based machine
learning algorithm outperforms others by showing average
classification accuracy of 75.9%. In existing studies, many
machine learning-based techniques are adopted to classify the
non-functional requirements from the requirement document.
However, to our knowledge, this is the first research that solely
focuses on IoT-oriented healthcare system requirement
documents to classify the non-functional requirements
automatically. The automatic technique proposed in this research
classifies the non-functional requirements with reasonable
accuracy, enabling the development of an excellent IoT-oriented
healthcare system.

Certain limitations are present in the approach presented
by this research. First, the dataset adopted is minimal
and contains only 104 requirements, which may affect the
generalizability of the results of this research. Second, the
non-functional requirements related to IoT-oriented healthcare
systems covered by this research are only 7 in number. Third,
the machine learning algorithms considered by this research
for classification of non-functional requirements from IoT-
oriented healthcare system requirement document are only 7,
including only one ensemble and hybrid algorithm and five
supervised machine learning algorithms. This research does
not cover neural Networks, Semi-supervised or unsupervised
machine algorithms.
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TABLE 5 | Classification accuracy of ML algorithms using BoW.

Classification accuracy in 10 iterations using BoW

Machine learning algorithm 1 2 3 4 5 6 7 8 9 10 Average classification accuracy

Hybrid 0.72 0.72 0.73 0.77 0.84 0.81 0.86 0.74 0.75 0.84 0.778

Ensemble 0.68 0.71 0.60 0.72 0.70 0.72 0.72 0.71 0.67 0.59 0.682

LR 0.72 0.78 0.68 0.78 0.75 0.76 0.77 0.80 0.69 0.68 0.741

SVM 0.63 0.66 0.57 0.63 0.61 0.70 0.54 0.64 0.57 0.53 0.608

MNB 0.72 0.73 0.68 0.75 0.70 0.77 0.77 0.78 0.71 0.66 0.727

KNN 0.55 0.56 0.49 0.56 0.63 0.54 0.67 0.52 0.51 0.48 0.551

RF 0.64 0.69 0.67 0.71 0.67 0.75 0.70 0.71 0.65 0.55 0.674

TABLE 6 | Classification accuracy of ML algorithms using Term Frequency-Inverse Document Frequency (TF-IDF).

Classification accuracy in 10 iterations using TF-IDF

Machine learning algorithm 1 2 3 4 5 6 7 8 9 10 Average classification accuracy

Hybrid 0.82 0.85 0.82 0.89 0.88 0.85 0.87 0.86 0.85 0.88 0.857

Ensemble 0.62 0.64 0.56 0.64 0.62 0.67 0.67 0.62 0.54 0.49 0.607

LR 0.62 0.67 0.57 0.66 0.64 0.70 0.71 0.66 0.59 0.58 0.640

SVM 0.65 0.66 0.59 0.67 0.64 0.70 0.69 0.66 0.58 0.53 0.637

MNB 0.51 0.54 0.48 0.55 0.57 0.55 0.58 0.51 0.48 0.45 0.522

KNN 0.67 0.75 0.64 0.72 0.69 0.68 0.77 0.69 0.67 0.58 0.686

RF 0.67 0.74 0.61 0.72 0.69 0.72 0.71 0.65 0.64 0.58 0.673

TABLE 7 | Classification accuracy of ML algorithms for IoT oriented healthcare requirements.

Classification accuracy in 10 iterations using TF-IDF

Machine learning algorithm 1 2 3 4 5 6 7 8 9 10 Average classification accuracy

Hybrid 0.73 0.73 0.73 1.00 0.70 0.90 0.60 0.70 0.80 0.70 0.759

Ensemble 0.82 0.64 0.27 0.64 0.80 0.60 0.70 0.70 0.60 0.50 0.627

LR 0.82 0.64 0.27 0.64 0.80 0.60 0.70 0.70 0.60 0.50 0.627

SVM 0.82 0.64 0.27 0.64 0.80 0.60 0.70 0.70 0.60 0.50 0.627

MNB 0.82 0.64 0.27 0.64 0.80 0.60 0.70 0.70 0.60 0.50 0.627

KNN 0.82 0.55 0.45 0.64 0.80 0.70 0.70 0.70 0.50 0.60 0.646

RF 0.82 0.64 0.27 0.64 0.80 0.60 0.70 0.70 0.60 0.50 0.627

6. THREATS TO VALIDITY

This section presents the possible threats which affect the validity
of this research. The steps taken to mitigate the effect of threats
are partially highlighted.

6.1. Construct Validity
Construct validity refers to the concept that defines the degree
to which the variables measures accurately what they are
supposed to measure (41). Many studies consider this measure
for measuring the performance of classification, and it is
believed to capture the aspect of performance required. In this
research, the standardmeasure “Accuracy” is adopted to measure
classifiers’ performance.

6.2. Internal Validity
Internal validity is related to measuring the extent to which
the experimental results are derived from the data and not
any unconsidered variables (29). In this research, a threat is
considered related to the over-fitting of test data on the machine
learning algorithms. The effect of this threat is mitigated by using
10-fold cross-validation.

6.3. External Validity
External validity refers to the extent to which the results
of this research apply to other settings (29). In this
research, the domain and size of the dataset affect the
external validity of this research. This threat is mitigated
partially by selecting the PROMISE-exp dataset (46),
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which contains requirement sentences from the software
domain, and contains more requirements than the existing
PROMISE dataset.

7. CONCLUSION AND FUTURE
DIRECTIONS

Non-functional requirements are essential in the RE process
since they play an essential role in driving the software
architecture and determining the product quality. Since these
requirements are written in natural language and often get
twined up with the functional requirements, they are often
missed or ignored. In order to overcome the difficulties caused
due to human manual processes and inadequate tools, this
research has focused on using ML algorithms for the automatic
classification of non-functional requirements. Since this task of
non-functional requirements classification has to be performed
accurately, this study has focused on finding relevant features and
ML algorithms that can perform this task with great accuracy. In
this research, BoW and TF-IDF are used for feature extraction.
Further, some features are also added for increasing the accuracy.
The ML algorithms adopted in this research are LR, SVM,
MNB, KNN, ensemble, RF, and hybrid KNN-rule based ML
algorithms. The types of non-functional requirements considered
are 11. The dataset used for classification is the PROMISE_exp
dataset. In order to compare the accuracy of classifiers created
by different ML algorithms and features, experimentation is
considered. The experiment results show that by using TF-
IDF for extracting the features and hybrid KNN-rule based
ML algorithm for classification, an average accuracy of 85.7%
can be achieved, which is a pretty excellent performance. It
is noteworthy that the accuracy level achieved by this study
is higher than the accuracy achieved by a recent study (7)
on the PROMISE_exp dataset. Automatic classification of non-
functional requirements using high-performing ML algorithms

and relevant features helps the Requirement Engineers accurately
classify the non-functional requirements. It saves their critical
time by using fewer advanced tools and adopting human
manual processes.

The research for using the machine learning approach for
automatic classification of non-functional requirements with
better performance is still in progress. The literature noted that
the studies barely consider hybrids and ensembles to classify
non-functional requirements. In the future, further study can be
done to increase the size of the dataset and incorporate more
types of non-functional requirements. Further attention can also
be given to creating more custom classifiers by using different
combinations of ML algorithms.
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